

CM System

Technical Reference
Manual

Version 7.3

Printed on 12 June 2013

Copyright and Licensing Statement

All intellectual property rights in the SOFTWARE and associated user documentation, implementation

documentation, and reference documentation are owned by Percussion Software or its suppliers and are

protected by United States and Canadian copyright laws, other applicable copyright laws, and

international treaty provisions. Percussion Software retains all rights, title, and interest not expressly

grated. You may either (a) make one (1) copy of the SOFTWARE solely for backup or archival purposes

or (b) transfer the SOFTWARE to a single hard disk provided you keep the original solely for backup or

archival purposes. You must reproduce and include the copyright notice on any copy made. You may not

copy the user documentation accompanying the SOFTWARE.

The information in CM System documentation is subject to change without notice and does not represent a

commitment on the part of Percussion Software, Inc. This document describes proprietary trade secrets of

Percussion Software, Inc. Licensees of this document must acknowledge the proprietary claims of

Percussion Software, Inc., in advance of receiving this document or any software to which it refers, and

must agree to hold the trade secrets in confidence for the sole use of Percussion Software, Inc.

The software contains proprietary information of Percussion Software; it is provided under a license

agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse

engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information and

intellectual property contained herein is confidential between Percussion Software and the client and

remains the exclusive property of Percussion Software. If you find any problems in the documentation,

please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written

permission of Percussion Software.

Copyright © 1999-2013 Percussion Software.

All rights reserved

Licenses and Source Code

CM System uses Mozilla's JavaScript C API. See http://www.mozilla.org/source.html for the source

code. In addition, see the Mozilla Public License (http://www.mozilla.org/source.html).

Netscape Public License

Apache Software License

IBM Public License

Lesser GNU Public License

http://www.mozilla.org/source.html
http://www.mozilla.org/source.html

Other Copyrights

The CM System installation application was developed using InstallShield, which is a licensed

and copyrighted by InstallShield Software Corporation.

The Sprinta JDBC driver is licensed and copyrighted by I-NET Software Corporation.

The Sentry Spellingchecker Engine Software Development Kit is licensed and copyrighted by Wintertree

Software.

The Java™ 2 Runtime Environment is licensed and copyrighted by Sun Microsystems, Inc.

The Oracle JDBC driver is licensed and copyrighted by Oracle Corporation.

The Sybase JDBC driver is licensed and copyrighted by Sybase, Inc.

The AS/400 driver is licensed and copyrighted by International Business Machines Corporation.

The Ephox EditLive! for Java DHTML editor is licensed and copyrighted by Ephox, Inc.

This product includes software developed by CDS Networks, Inc.

The software contains proprietary information of Percussion Software; it is provided under a license

agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse

engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information and

intellectual property contained herein is confidential between Percussion Software and the client and

remains the exclusive property of Percussion Software. If you find any problems in the documentation,

please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written

permission of Percussion Software.

AuthorIT™ is a trademark of Optical Systems Corporation Ltd.

Microsoft Word, Microsoft Office, Windows®, Window 95™, Window 98™, Windows NT® and MS-

DOS™ are trademarks of the Microsoft Corporation.

This document was created using AuthorIT™, Total Document Creation (see http://www.author-it.com).

Schema documentation was created using XMLSpy™.

Percussion Software
600 Unicorn Park Drive

Woburn, MA 01801 U.S.A.
781.438.9900

Internet E-Mail: technical_support@percussion.com

Website: http://www.percussion.com

http://www.author-it.com/
mailto:technical_support@percussion.com
http://www.percussion.com/

Contents vii

Contents

About the CM System Technical .. 9

Reference Manual ... 9

Content Reference .. 11

Logical Architecture and Processing .. 12

Logical Architecture .. 13

Content Editor Configuration .. 14

Content Processing .. 16

Search Processing .. 18

Content Editor Extensions ... 19

Item Validations ... 19

Field Validations ... 19

Field Transformers ... 23

Item Transformers ... 33

Document Pre-processors ... 33

Result Document Processors ... 33

Writing Content Editor Extensions ... 34

Content Editor Control Reference ... 38

Writing Custom Controls .. 38

Customizing Controls .. 40

Standard CM System Controls .. 46

Creating an Internal Lookup Query .. 72

Content Editor System Definition Reference ... 74

Search Reference ... 77

Contents vii

Search Indexing ... 77

Text Extractors ... 77

Text Analyzers .. 78

Assembly Reference ... 75

Logical Architecture and Processing: Assembly ... 76

Logical Architecture: Assembly .. 76

Assembly Processing ... 79

Assembly Plugin Processing ... 80

Velocity in CM System ... 85

Embedding Velocity Code in Templates .. 86

Standard Velocity Macros ... 86

Adding Macros to the Snippet Drawer ... 94

Assembly Extensions .. 98

Assembly Plugins ... 98

Slot Content Finders .. 102

Writing Assembly Extensions ... 105

Workflow Reference .. 107

Logical Architecture and Processing .. 108

Logical Architecture ... 108

Workflow Processing ... 110

Extending Publishable States ... 112

Workflow Actions ... 113

sys_createTranslations .. 113

sys_PublishContent ... 114

sys_TouchParentItems .. 116

Contents vii

Publishing Reference .. 117

Logical Architecture and Processing .. 118

Logical Architecture ... 118

Publishing Processing .. 120

Demand Publishing .. 124

Configuring Unpublish Flags .. 125

Publishing Extensions ... 126

Content List Generators... 126

Template Expanders ... 127

Delivery Handlers .. 129

Shared Features .. 131

Java Expression Language (JEXL) .. 132

JEXL Extensions .. 132

Java Content Repository .. 144

Item Filters and Filter Rules ... 145

Filter Rule Extensions .. 145

Link Generation and Context ... 148

Location Scheme Generator Extensions .. 148

Scheduled Tasks ... 150

sys_purgePublishingLog .. 151

sys_runCommand ... 152

sys_runEdition... 153

sys_purgeRevisions ... 153

System Issues ... 153

Custom Implementations .. 154

Contents vii

Implementing Custom Java Server Pages and Servlets ... 154

Implementing Transactional Services... 156

Extending Java Server Faces Page Flows .. 158

File Locations ... 158

CM System Request Context ... 159

CM System Server Information ... 159

Integrating Content Explorer Action Menu Entries .. 159

Spring Configurations .. 171

Alternate Hibernate Session Connections to the ... 172

CM System Datasource .. 172

Logging for Custom Implementations .. 172

Defining Non-CM System Datasources .. 173

Security .. 174

CM System, JBoss, and JAAS .. 174

Implementing Custom Authentication .. 174

Implementing Custom Login Pages .. 175

Security Extensions.. 176

Password Filters .. 176

Security for Custom Web Applications ... 177

Configuring Logging ... 178

Extensions ... 179

General Requirements of Extensions .. 180

Registering an Extension .. 181

Extensions Reference by Type ... 185

Alphabetical Reference to CM System .. 188

Contents vii

Extensions .. 188

Legacy Extension Reference .. 190

Result Document Processing ... 190

Request Preprocessing .. 228

User Defined Function Processing ... 264

Workflow Action Processing .. 287

9

C H A P T E R 1

About the CM System Technical
Reference Manual

The CM System Technical Reference Manual provides detailed technical information about the system

for advanced implementers performing advanced implementation and customization of CM System, such

as developing custom extensions or specialized web applications and JSP pages.

Users of this manual should have attended Developer's Training for the CM System Content Management

System and should have significant hands-on experience implementing the system.

Users of this manual should already be familiar with the CM System Concepts Guide and CM System

Implementation Guide.

11

C H A P T E R 2

Content Reference

The Content engine is the means by which users enter and maintain content.

The basic content unit in CM System is the Content Item. A Content Item is a portion of a page, such as

an image, banner, footer, or block of text; or a collection of other Content Items, such as a sidebar, or even

a complete page. By defining a web page in terms of Content Items and collections of Content Items, CM

System provides the maximum flexibility to modify only the portions of a page that actually change,

leaving the remainder undisturbed, and to reformat individual Content Items for multiple uses.

The first section of this chapter outlines the logical architecture and processing of the Content engine. The

next section is a reference to the extensions used in this engine. The last section documents the controls

available for use on Content Editors.

12 CM System Technical Reference Manual

Logical Architecture and Processing

This section consists of the following topics:

 Logical Architecture (on page 13)

This topic describes the overall architecture of the Content engine.

 Content Editor Configuration (on page 14)

This topic describes the architecture of Content Editor configuration in detail.

 Content Processing (on page 16)

This topic describes the processing of the Content engine.

 Search Processing (on page 18)

This topic describes the processing of the Search engine.

Chapter 2 Content Reference 13

Logical Architecture

The Content engine is comprised of two distinct but related engines:

 the Content Editor engine, which allows users to interact with Content Items, and which

interacts with the Repository to add and retrieve Content Item data; and

 the query engine, queries the Repository when users submit searches for Content Items.

Figure 1: Logical architecture of the Content engine

The logical structure of the Content Editor engine consists of a set of business rules and a user interface.

The set of business rules includes a small set of built-in rules (for example, each Content Item must have a

title) and a larger set of configurable business rules. The business rules define such behavior as:

 the set of fields that comprise a Content Item;

 default values for fields when a new Content Item is created;

 processing of the Content Item when it is retrieved from the Repository or updated in the

Repository.

The query engine interacts with the Search engine, which provides a user interface for searches and which

performs additional processing on search results.

14 CM System Technical Reference Manual

Content Editor Configuration

Content Editor configuration defines the business rules for processing Content Items of a specific Content

Type. Configurations are defined at three levels:

 System definition

The system definition define a set of fields that are always shared across revisions. Some of

these fields are required on all Content Items (such as sys_title, and sys_contentid), but others

are optional. Note that the interface behavior of these fields can be overridden at the local

level, although the field properties cannot be modified at the local level.

 Shared definitions

Each shared definition configuration defines one or more sets of fields (shared field groups)

that are used by more than one Content Editor. An implementation may include any number

of shared definition configurations, or may contain no shared definition configurations. The

interface behavior of fields defined in a shared definition configuration can be overridden at

the local level, although the field properties cannot be modified at the local level.

 Local definition

The local definition defines the set of fields specific to a particular Content Type (each

Content Type must include at least one local field, even if that field is a hidden dummy field).

A specific subset of system fields are always included in a local definition, including:

 System title (sys_title)

 Community ID (sys_communityid)

 Locale (sys_lang)

 Current View (sys_currentview; hidden)

 Workflow ID (sys_workflowid)

 Hibernate Version (sys_hibernateVersion; hidden)

Other systems fields can also be included.

The local definition also specifies which shared fields are included in the Content Type. Note
that in practice, all the fields in a specific shared field group are included in the local

definition, and fields other than those specified are then excluded. In the Repository,

however, when a Content Item is created of a Content Type that includes a shared field, the

space allocated in the Repository for that Content Item includes space for all fields in the

Shared field group. For example, suppose a shared field group included ten fields, but a
Content Type included only one of those fields. Whenever a Content Item of that Content
Type is created, space will be allocated for all ten fields even though only one of them is

being used. Thus shared field groups should be defined as compactly as possible to minimize

the impact of unused fields.

Chapter 2 Content Reference 15

The local definition defines the Workflows available for Content Items of the Content Type,

as well as any item-level processing, such as item-level validation or data transformations.

Figure 2: Content Editor configuration

Regardless of whether a field is defined in the system, shared, or local definition, the same field

configuration options are available. For each field, a set of basic field properties must be defined, such as

the name of the field, the type of data stored in the field, and its size. Special processing, such as

validation and visibility rules, can also be defined for each field. Each field also requires a user-interface

(UI) definition. The UI definition must at least specify the control used to render the field (including the

sys_hidden control for fields that are never visible), but usually also specifies the label displayed for the

field and may define a label to display if the field contains errors.

16 CM System Technical Reference Manual

Content Processing

Content processing begins when a user submits a request for a Content Item to the server. If a new

Content Item is requested, a new Content Item instance is created with default values. If an existing

Content Item is requested, the Content Item data is retrieved from the Repository.

Once the Content Item data is available, any output Transforms or other pre-processing extensions are run

on the Content Item. The Content Item is then displayed to the user in a Content Editor interface.

When the user has made all changes, they submit the Content Item to the server. At this point, the server

runs any field validation processing for the Content Item. (Item-level validations are run when a user

performs a Workflow Transition on the Content Item.) If the Content Item fails any validations, it is

returned to the user in the Content Editor interface with error messages displayed.

If the Content Item passes all validations, any input transforms or post-processing extensions are run on it.

The server then sends the Content Item data to the Repository. The updated Content Item data is then

retrieved from the Repository and displayed to the user again.

Chapter 2 Content Reference 17

Figure 3: Content Engine Processing

When closing a Content Item, the user is given the option of saving the Content Item. If they choose to

save it, it is submitted to the server and the processing described above is executed from that point. If they

choose not to save it, the Content Editor is dismissed and any changes are lost.

18 CM System Technical Reference Manual

Search Processing

Search processing begins when a search request is issued, such as a user search for a Content Item or a

related content search. If the user issues the search request, a search interface is returned, in which the

user can enter the criteria for the search query. When the user has defined the criteria for the query, they

submit the query to the search engine. The search engine processes the query and returns a set of results.

CM System may perform some additional filtering on this results set (such as filtering out Content Items

not in the user's currently logged Community) before returning the final results set to the user.

Figure 4: Search processing

Chapter 2 Content Reference 19

Content Editor Extensions

This section documents extensions used in Content Editor processing, including:

 Item Validations (see below)

 Field Validations (see below)

 Field Transformers (see page 23)

 Item Transformers (see page 33)

 Document Pre-processors (see page 33)

 Result Document Processors (see page 33)

Item Validations

Item Validations are run when a Content Item is Transitioned from one Workflow State to another. Item

Validations operate on multiple fields in a Content Item. In most cases, Field Validations provide

adequate validation functionality, but Item Validations may provide improved performance in some

circumstances. For example, if a field value must be validated against the value of more than one other

field, multiple Field Validations could be implemented. Each of these validations would be run

individually, and could result in diminished performance. Using a single Item Validation instead could

alleviate the performance impact of the validation processing.

Item Validations must implement the interface IPSItemValidator. (NOTE: The implementation must be

thread safe; for details see General Requirements of Extensions on page 180.)

Field Validations

Field validations are the first set of extensions processed when a Content Item is submitted to the

Repository. Field validations process the data in a field to check whether it conforms to specified

validation parameters. If the value in the field does not match the specified validation parameters, an error

is returned. If the field passes the validation, processing continues to the next field. Once all Field

validations have been processed, processing continues to Field transforms.

A field validation validates the data only in the associated field, although it can validate against data in

other fields in the Content Item.

Field validations must implement the interface IPSFieldValidator. (NOTE: The implementation must be

thread safe; for details see General Requirements of Extensions on page 180.)

Note that the CM System Workbench includes a number of built-in Field Validation functions. In

the server, these functions are implemented as field validation extensions.

20 CM System Technical Reference Manual

sys_ValidateDateRange

Validates that the date in the field falls within the specified range.

Class Name

com.percussion.validate.PSValidateDate

Interface

com.percussion.extension.IPSFieldValidator

Context

global/percussion/content/

Parameters

Name

Data Type

Description

value Object The value to be validated. If the value is a string (java.lang.String), it is

converted to a date (java.util.Date); a value that is a date is evaluated

directly.

min Object The minimum date value. Can be either a java.util.Date or a

java.lang.String (which is converted to a date). This value is not

included in the range unless the includemin flag is set to true.

includemin Object If the value is true, the range includes the minimum value. Otherwise

the range does not include the minimum value. Can be either a

java.lang.Boolean or a java.lang.String (which will be converted to a

Boolean value; "true", "yes", or "t" [case-insensitive] convert to true, all

others convert to false).

max Object The maximum date value. Can be either a java.util.Date or a

java.lang.String (which is converted to a date). This value is not

included in the range unless the includemax flag is set to true.

includemax Object If the value is true, the range includes the maximum value. Otherwise

the range does not include the maximum value. Can be either a

java.lang.Boolean or a java.lang.String (which is converted to a Boolean

value; "true", "yes", or "t" [case-insensitive] convert to true, all others

convert to false).

sys_ValidateJexlFieldExpression

Validates that the value of the field falls within the specified range.

Class Name

com.percussion.validate.PSValidateJexlExpression

Interface

com.percussion.extension.IPSFieldValidator

Chapter 2 Content Reference 21

Context

global/percussion/content/

Parameters

Name

Data Type

Description

value Object The value to be validated, used without conversion, but extracted if a

replacement value.

expression String The Java Expression Language (JEXL) expression to use to validate the

value. The value must be bound as $value.

sys_ValidateNumberRange

Validates that the numeric value in the field falls within the specified range.

Class Name

com.percussion.validate.PSValidateNumber

Interface

com.percussion.extension.IPSFieldValidator

Context

global/percussion/content/

Parameters

Name

Data Type

Description

value Object The value to be validated. The value can be a java.lang.Number, a

replacement value, or a java.lang.String. Values of the type

java.lang.Number or replacement values are evaluated directly. Values

of the type java.lang.String are converted to Double before evaluation.

min Object The minimum date value. Can be either a java.lang.Number or a

java.lang.String (which will be converted to a Double). This value is

not included in the range unless the includemin flag is set to true.

includemin Object If the value is true, the range includes the minimum value. Otherwise

the range does not include the minimum value. Can be either a

java.lang.Boolean or a java.lang.String (which is converted to a Boolean

value; "true", "yes", or "t" [case-insensitive] converts to true, all others

convert to false).

max Object The maximum date value. Can be either a java.lang.Number or a

java.lang.String (which is converted to a Double). This value is not

included in the range unless the includemax flag is set to true.

22 CM System Technical Reference Manual

Name

Data Type

Description

includemax Object If the value is true, the range includes the maximum value. Otherwise

the range does not include the maximum value. Can be either a

java.lang.Boolean or a java.lang.String (which is converted to a Boolean

value; "true", "yes", or "t" [case-insensitive] will convert to true, all

others convert to false).

sys_ValidateRequiredField

Validates that field contains a value.

Class Name

com.percussion.validate.PSValidateRequired

Interface

com.percussion.extension.IPSFieldValidator

Context

global/percussion/content/

Parameters

Name

Data Type

Description

value Object The value to be validated; used without conversion, but is extracted if a

replacement value

sys_ValidateStringLength

Validates that the length of the string value in the field falls within the specified range.

Class Name

com.percussion.validate.PSValidateStringLength

Interface

com.percussion.extension.IPSFieldValidator

Context

global/percussion/content/

Parameters

Name

Data Type

Description

value Object The value to be validated; is extracted if a replacement value

Chapter 2 Content Reference 23

Name

Data Type

Description

min Object The minimum length for the string. Can be either a java.lang.Number

or a java.lang.String (which is converted to a Double).

max Object The maximum length for the string. Can be either a java.lang.Number

or a java.lang.String (which is converted to a Double).

sys_ValidateStringPattern

Validates that the value of the field matches the regular expression.

Class Name

com.percussion.validate.PSValidateStringPattern

Interface

com.percussion.extension.IPSFieldValidator

Context

global/percussion/content/

Parameters

Name

Data Type

Description

value String The value to be validated; should be a string or a replacement value.

regex String The string pattern to be compared with the value.

Field Transformers

When a Content Item is submitted to the Repository, Field Transformers are processed after Field

Validations and before Item Transforms. Field Transformers transform either the format or the content of

data in a Content Item field. Field Transformers fall into two categories:

 Field Input Transforms change the format or content of data before it is entered into the

CM System Repository.

 Field Output Transforms change the format or content of data after it is retrieved from the

CM System Repository before it is rendered in a Content Editor or assembled into a

Content Item.

Field transformers operate only on a specific field. If you need to manipulate multiple fields (for example

concatenating the values in multiple fields to generate the value updated to the Repository), you must use

an Item transformer.

Once all field transformers have been run, Item transformers are run.

24 CM System Technical Reference Manual

Field input transformers must implement the interface IPSFieldInputTransformer; field output

transformers must implement the interface IPSFieldOutputTransformer. (NOTE: The implementation

must be thread safe; for details see General Requirements of Extensions on page 180.)

Note that the Rhythmyx Workbench includes a number of built-in Field Transformer functions. In the

server, these functions are implemented as Field Transformer extensions.

Input Transformers

sys_MapInputValue
Maps an input value to a specified set of keys and values. Note that this extension has a defined interface

in the Workbench (when the Map option is selected for an input transformer.

Class Name

com.percussion.extensions.translations.PSMapInputValue

Interface

com.percussion.extension.IPSFieldInputTransformer

Context

global/percussion/content/

Parameters

Name

Data Type

Description

value String The value to be transformed.

map Object A map of values encoded as a URL query string. The name/value pairs

are separated by ampersands; within each pair, the name is separated

from the value by an equal sign. The actual name and value are URL

encoded.

sys_NormalizeDate
Normalizes input date to ISO standard format.

Class Name

com.percussion.validate.PSNormalizeDate

Interface

com.percussion.extension.IPSFieldInputTransformer

Chapter 2 Content Reference 25

Context

global/percussion/content/

Parameters

Name

Data Type

Description

value String The value to be transformed.

format String Simple date format template of the input value.

sys_OverrideLiteral

Context

Java/global/percussion/generic/

Description

This UDF converts the supplied 'default' parameter to a String and returns either that string or the value of

the overrideParameterName HTML parameter. If the HTML request includes this parameter, it is

removed from the request after it is used.

Class Name

com.percussion.extensions.general.PSSimpleJavaUdf_overrideLiteral

Interface

com.percussion.extension.IPSUdfProcessor

Parameters

Name

Data Type

Description

default java.lang.String The default object, which is returned as a string. Required.

overrideParameterName java.lang.String The name of the HTML parameter that stores the value which

which to override the default value. Optional.

sys_Replace

Context:

Java/global/percussion/generic/

Description:

Replaces each occurrence of search in source with replacement.

26 CM System Technical Reference Manual

Class name:

com.percussion.extensions.general.PSSimpleJavaUdf_replace

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

source java.lang.String The original string.

search java.lang.String The substring for which the exit searches.

replacement java.lang.String The replacement value for the search string.

sys_ToHash

Context:

Java/global/percussion/generic/

Description:

Converts supplied parameters to a hashcode by concatenating them with a delimiter.

Class name:

com.percussion.extensions.general.PSSimpleJavaUdf_toHash

Interface:

com.percussion.extension.IPSUdfProcessor, com.percussion.extension.IPSFieldInputTransformer,

com.percussion.extension.IPSFieldOuputTransformer

Parameters:

Name

Data Type

Description

source1 java.lang.String First string to include in the hash code.

source2 java.lang.String Second string to include in the hash code

source3 java.lang.String Third string to include in the hash code

source4 java.lang.String Fourth string to include in the hash code

Chapter 2 Content Reference 27

sys_ToLowerCase

Context:

Java/global/percussion/generic/

Description:

This exit converts a UDF-supplied string to lower case.

Class name:

com.percussion.extensions.general.PSSimpleJavaUdf_toLowerCase

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

source java.lang.String The string to convert.

sys_ToProperCase

Context:

Java/global/percussion/generic/

Description:

This exit capitalizes the first character of every word in the UDF-supplied string.

Class name:

com.percussion.extensions.general.PSSimpleJavaUdf_toProperCase

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

source java.lang.String The string to convert.

28 CM System Technical Reference Manual

sys_ToUpperCase

Context:

Java/global/percussion/generic/

Description:

This exit converts each character in the UDF-supplied string to upper case.

Class name:

com.percussion.extensions.general.PSSimpleJavaUdf_toUpperCase

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters

Name

Data Type

Description

source java.lang.String The string to convert.

sys_TranslateJexlExpressionValue
Evaluates a Java Expression Language (JEXL) expression and outputs the result for update to the

Repository. To use the input value of the field, use the variable $value, which is bound to the value of the

value parameter.

Class Name

com.percussion.extensions.translations.PSJexlInputTranslation

Interface

com.percussion.extension.IPSFieldInputTransformer

Context

global/percussion/content/

Parameters

Name

Data Type

Description

value Object The value to be transformed.

expression String The JEXL expression to evaluate. To use the input value of the field,

use the variable $value, which is bound to the value of the value

parameter.

Chapter 2 Content Reference 29

sys_Trim

Context:

Java/global/percussion/generic/

Description:

This exit strips leading and trailing white space from the supplied string. It does this by calling toString()

on the supplied object.

Class name:

com.percussion.extensions.general.PSStringTrimmerUdf

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

source java.lang.String The string to trim.

sys_TrimString
Trims whitespace in the input value. Whitespace can be trimmed before the input value, after, or both

before and after.

Class Name

com.percussion.extensions.translations.PSTrimStringValue

Interface

com.percussion.extension.IPSFieldInputTransformer

Context

global/percussion/content/

Category String

translation

Parameters

Name

Data Type

Description

value String The value to be transformed.

30 CM System Technical Reference Manual

Name

Data Type

Description

trim String Specifies how to trim the input value. Options are start (trims

whitespace at the start of the input string), end (trims whitespace at the

end of the input string, or both (default; trims whitespace both at the

start and at the end of the input string).

Output Transformers

sys_DateFormat

Context:

Java/global/percussion/generic/

Description:

This exit formats the supplied date using the UDF-supplied pattern. Any Java SimpleDateFormat patterns

(http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html) are acceptable. Before the exit

runs, the user must define two objects through the GUI.

The first object is a string representing a desired format. The second object is a string representing a

reference input date. The date string should be in a format recognizable by the CM System server's

PSDataConverter, otherwise the exit throws an exception that terminates the format procedure.

Class name:

com.percussion.extensions.general.PSSimpleJavaUdf_dateFormat

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters

Name

Data Type

Description

pattern java.lang.String The format pattern

date java.util.Date The date to format

returnNullForEmpty java.lang.String Defines the behavior if the value of the column is empty. Valid

values are true and false; default is false.

If the value of this parameter is true, a null is inserted into the XML

document if the database column is empty. If the value of this

parameter is false, the current date is inserted into the XML document

if the database column is empty. If this parameter has any other

value, or if the value is not specified, the system assumes the default

value of false.

http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html

Chapter 2 Content Reference 31

sys_DateFormatEx

Context:

Java/global/percussion/generic/

Description:

This exit formats the supplied date according to a user-supplied input pattern and saves it as a string using

the supplied output pattern. Any Java SimpleDateFormat patterns

(http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html) are acceptable for the input and

output patterns.

Class name:

com.percussion.extensions.general.PSSimpleJavaUdf_dateFormatEx

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

outputPattern java.lang.Object Optional. The output format pattern. If not provided, the

exit uses the default: yyyy/mm/dd hh:mm:ss

date java.lang.Object Optional. The date to format. The function accepts

java.util.Date and java.lang.String types. If not provided,

the exit uses the default of current date and time.

inputPattern java.lang.Object Optional. The input format pattern of the provided date. If

not provided, the exit tries to find the input pattern.

returnNullForEmpty java.lang.String Defines the behavior if the value of the column is empty.

Valid values are true and false; default is false.

If the value of this parameter is true, a null is inserted into

the XML document if the database column is empty. If the

value of this parameter is false, the current date is inserted

into the XML document if the database column is empty.

If this parameter has any other value, or if the value is not

specified, the system assumes the default value of false.

sys_FormatDate
Converts a date field value output from the Repository from ISO standard to another format.

Class Name

com.percussion.extensions.translations.PSFormatDate

http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html

32 CM System Technical Reference Manual

Interface

com.percussion.extension.IPSFieldOutputTransformer

Context

global/percussion/content/

Parameters

Name

Data Type

Description

value String The value to be transformed.

format String Simple date format template to which to convert the date extracted from

the Repository.

sys_MapOutputValue
Maps an input value to a specified set of keys and values. Note that this extension has a defined interface

in the Workbench (when the Map option is selected for an input transformer.

Class Name

com.percussion.extensions.translations.PSMapOutputValue

Interface

com.percussion.extension.IPSFieldOutputTransformer

Context

global/percussion/content/

Parameters

Name

Data Type

Description

value String The value to be transformed.

map Object A map of values encoded as a URL query string. The name/value pairs

are separated by ampersands; within each pair, the name is separated

from the value by an equal sign. The actual name and value are URL

encoded.

Chapter 2 Content Reference 33

Item Transformers

When a Content Item is submitted to the Repository, Item Transformers are processed after Field

Transformers but before generic post-processors. Item Transformers transform data in multiple fields,

such as combining the values in two or more fields to generate the value updated to the Repository. Item

transformers fall into two categories:

 Item Input Transformers change the format or content of data before it is entered into the

CM System

Repository.

 Item Output Transformers change the format or content of data after it is retrieved from the
CM System Repository and before it is rendered in a Content Editor or assembled into a

Content Item.

Item input transformers must implement the interface IPSItemInputTransformer; Item output transformers

must implement the interface IPSItemOutputTransformer. (NOTE: The implementation must be thread

safe; for details see General Requirements of Extensions on page 180.)

Note that no default Item output transformers are shipped with CM System.

Document Pre-processors

Document pre-processors are run when a Content Item is created or retrieved by CM System or before a

lookup document is generated. Document pre-processors can be used to modify any parameter submitted

with the request or to generate a default value.

NOTE: In common usage, document pre-processors are often referred to as "pre-exits", or collectively

with result document processors simply as "exits".

Document pre-processors must implement the interface IPSRequestPreprocessor. (NOTE: The

implementation must be thread safe; for details see General Requirements of Extensions on page 180.)

CM System is shipped with a number of legacy document preprocessor extensions for

backwards- compatibility. For details, see Legacy Extension Reference on page 190.

Result Document Processors

Result document processors are run when a Content Item is submitted to the Repository or after a lookup

document has been generated.

NOTE: In common usage, result document processors are often referred to as "post-exits", or collectively

with document pre-processors simply as "exits".

Result document processors must implement the interface IPSResultDocumentProcessor. (NOTE: The

implementation must be thread safe; for details see General Requirements of Extensions on page 180.)

CM System is shipped with a number of legacy result document processor extensions for

backwards- compatibility. For details, see Legacy Extension Reference on page 190.

34 CM System Technical Reference Manual

Writing Content Editor Extensions

Most of the manipulations performed on Content Item data by a Content Editor extension are equivalent to

standard actions performed in a Content Editor. This section describes the code that you can use to perform

these actions.

Complex child content must be handled separately from the parent Content Item. Therefore, this section

has two sub-sections, one devoted to manipulation of Content Items and one devoted to manipulation of

child content.

In the interest of clarity, error checking has been omitted from the code examples in this section. In most

cases, an exception will be returned if the object you request does not exist, but in some cases null values

or empty sets are returned instead. Review the JavaDoc of the cited methods for details about which

methods throw exceptions and which return null or empty values.

In some cases, default or hard-coded values have been provided for parameters. The JavaDoc describes

these parameters in detail.

Basic Editing Operations

This section illustrates simple examples of common operations on Content Items. Note that all methods

illustrated operate on lists of Content Items, while the simple examples in the code operate on one

example at a time. It is more efficient to build a list of Content Items and perform the operation on the

whole list rather than operating individually on each Content Item.

Creating New Content Items

Use IPSContentWs.createItems() to create a new Content Item:

public static PSCoreItem createBrief(String session, String user)

throws PSUnknownContentTypeException, PSErrorException

{

initServices();

String typeName = "rffBrief";

List<PSCoreItem> items = cws.createItems(typeName, 1, session,

user);

return items.get(0);

}

New Content Items do not have a Content ID until they are saved by calling the saveItems() method.

Thus, you cannot create complex child items or Relationships of any kind until the new Content Items
have been saved.

A new Content Item always has a Revision of "1".

When a new Content Item is created, it contains all local and shared fields defined for the Content Type.

If a default value is specified for any fields, the field will contain that default value.

Loading Existing Content Items

To load existing Content Items, use IPSContentWs.loadItems(). In most cases, before loading

Content Items, you will want to call IPSContentWs.prepareForEdit() on those Content Items

first.

public static PSCoreItem loadItem(String contentId, String session,

String user)

throws PSErrorResultsException

Chapter 2 Content Reference 35

{

initServices();

IPSGuid cid = gmgr.makeGuid(new PSLocator(contentId));

List<IPSGuid> glist = Collections.<IPSGuid>singletonList(cid);

List<PSItemStatus> statusList = cws.prepareForEdit(glist, user);

List<PSCoreItem> items = cws.loadItems(glist, true, false, false,

false, session, user);

return items.get(0);

}

Note that in this fragment, the binary fields are loaded, but child content, related Content Items, and
Folder paths are not loaded.

Managing Revisions
In the example code for loading existing Content Items, they were loaded without specifying a Revision.

Once the Content Items are loaded, the Revision can be obtained and a new GUID created for other

purposes:

int contentid = item.getContentId();

int revision = item.getRevision();

IPSGuid guid = gmgr.makeGuid(new PSLocator(contentid, revision));

On occasion, you may need to know the current or edit locator of a Content Item you do not have loaded.

Use PSComponentSummary to access this data. The PSO toolkit provides a

convenient static method for accessing PSComponentSummary.

PSComponentSummary summ = PSOItemSummaryFinder.getSummary(contentid);

PSLocator loc = PSOItemSummaryFinder.getCurrentOrEditLocator(contentid);

Use the getSummary() method to accessing information about the Content Item (such as who has it

checked out). The getCurrentOrEditLocator() method returns the edit locator if it exists;

otherwise, it returns the current locator.

Manipulating Fields
When Content Items are loaded or created, all of the defined fields are populated, except for binary fields,

which are optional.

Fields can be loaded using the method PSCoreItem.getFieldByName

PSItemField title = item.getFieldByName("sys_title");

String label = RxItemUtils.getFieldValue(item, "display_title");

Date someDate = RxItemUtils.getFieldDate(item, "some_date");

The PSO toolkit class RxItemUtils provides convenient static methods for retrieving and setting fields

by name:

RxItemUtils.setFieldValue(item, "myfield", "some value");

RxItemUtils.setFieldValue(item, "some_date", new Date());

Binary fields can handled in a similar fashion:

InputStream istream = new ByteArrayInputStream(buf);

RxItemUtils.setFieldValue(item, "binary_field", istream);

Saving Content Items

To save Content Items, use IPSContentWs.saveItem:

public static IPSGuid simpleSave(PSCoreItem item, String session, String

user) throws PSErrorResultsException

{

36 CM System Technical Reference Manual

List<PSCoreItem> items =

Collections.<PSCoreItem>singletonList(item);

List<IPSGuid> guids = cws.saveItems(items, false, false,

session,user);

return guids.get(0);

}

If any Content Items were opened using a sequence of prepareForEdit() followed by

loadItems() as described earlier, they must be released . If the Content Item is new, simply checking

it in is usually enough to release from edit.

public static void releaseItem(IPSGuid guid, PSItemStatus itemStatus,

String user) throws PSErrorsException

{

if(itemStatus != null)

{ //we got it from prepareForEdit

List<PSItemStatus> stats =

Collections.<PSItemStatus>singletonList(itemStatus);

cws.releaseFromEdit(stats, false);

}

else
{ //a new item, just check it in.

List<IPSGuid> glist = Collections.<IPSGuid>singletonList(guid);

cws.checkinItems(glist, "no comment", user);

}

}

Note, however, that releasing a Content Item from edit can occur much later than the save of the Content

Item.

Editing Complex Child Data

Complex child data is manipulated separately from the parent Content Item. Complex children require a

valid parent Content ID, so child entries cannot be created until the parent Content Item has been saved

(which creates the Content ID for the parent). A Content Type may have several different complex child

field sets. Each of these field sets has a unique name defined in the parent Content Type. The name is

used to retrieve child content records.

CM System includes two different APIs for working with complex children: an "inner API" on the

PSCoreItem itself and an "outer API on PSContentWs. You cannot mix the two APIs; for example you

cannot call loadItems with the includeChildren flag set to true, then use IPSContentWs.saveChildEntries

to save the children.

The example code provided in the following topics uses the "outer API". There is no substantial

performance difference between the two APIs, but the outer API is generally simpler for programmers

new to CM System.

Creating New Child Entries

Use the method IPSContentWs.createChildEntries() to create new child entries.

if(newChild)

{

List<PSItemChildEntry> newEntries = cws.createChildEntries(item,

childName, 1, session, user);

// update the child fields here

RxItemUtils.setFieldValue(newEntries.get(0), "child_field","some

textValue");

Chapter 2 Content Reference 37

toBeSaved.addAll(newEntries);

}

As with Content Items, the child entries are not persisted to the Repository at this time; the entries must be

saved. The newly created entries can be modified just as other fields.

Loading Existing Child Entries

To load existing child entries, use the method IPSContetnWs.loadChildEntries().

List<PSItemChildEntry> children = cws.loadChildEntries(item,

childName,false, session, user);

These entries can be modified in the same fashion as field son the parent Content Item.

Modifying Child Fields
Child fields are read and modified in the same way that fields are read and manipulated on the parent

Content Item. The fields have values and you can use the same convenience methods on child fields as

are used on fields in the parent Content Item.

PSItemField field = child.getFieldByName("child_field");

RxItemUtils.setFieldValue(child, "child_field", "some new value");

Saving Child Entries
After child entries have been modified, changes can be saved using the method
IPSContentWs.saveChildEntries

PSItemField field = child.getFieldByName("child_field");

RxItemUtils.setFieldValue(child, "child_field", "some new value");

Some child field sets support ordering (the field set is defined with a sortrank field). The

saveChildEntries method saves the entries, but does not set the order. The entries must be re-

ordered after being saved.

List<IPSGuid> toBeOrdered = new ArrayList<IPSGuid>();

for(PSItemChildEntry childEntry : children)

{

toBeOrdered.add(childEntry.getGUID());

}

cws.reorderChildEntries(item, childName, toBeOrdered, session, user);

Note that the re-order list is a list of GUIDs, not a list of PSItemChildEntry.

Removing Child Entries
To remove child entries, use IPSContentWs.deleteChildEntries. Note that the list of entries to delete is a

list of GUIDs, not a list of PSChildEntry objects.

List<IPSGuid> toBeDeleted = new ArrayList<IPSGuid>();

toBeDeleted.add(child.getGUID());

cws.deleteChildEntries(item, childName, toBeDeleted, session, user);

38 CM System Technical Reference Manual

Content Editor Control Reference

As with any interface, Content Editors require controls that allow the user to interact with the data. CM

System Content Editors use a set of controls similar to those commonly found on HTML pages. In CM

System, these controls are defined using XSL and JavaScript.

Writing Custom Controls

Content Editors use a set of controls defined in XSL stylesheets.

Standard controls are defined in <CMServerroot>/ sys_resources

/Stylesheets/sys_Templates.xsl.Customers should not modify controls defined in this file as

it is overwritten on upgrade and modifications will be lost. Customers should not modify controls defined
in this file as it is overwritten on upgrade and modifications will be lost. All controls provided by

Percussion Software begin with the string "sys_"; for example, sys_DatePicker. User-developed

controls should not begin with this prefix.

Custom controls can be defined in two ways.

Custom controls that can be included in a package must be defined in XSL files in the directory

<CMServerroot>/rx_resources/stylesheets/controls. Each custom control must have

a unique XSL file, and the XSL file should have the same name as the control; for example, if you wanted
to make a new calendar control named rff_newCalendar, the XSL file containing the control would be

rff_newCalendar.xsl.

Custom controls that will not be included in a package can be defined in the file

<CMServerroot>/rx_resources/Stylesheets/rx_Templates.xsl. If you want to

package a control that is already defined in this file, you must re-implement it as described in the previous
paragraph.

Control Header

The control header stores the metadata that defines the control, including the name and description of the

control, any parameters, associated files, or exits required for the control to function and process data

correctly. The formal definition of the controls is defined in the sys_LibraryControlDef.dtd.

The header must be added to the sys_template.xsl or rx_template.xsl immediately before the

first <xsl:template> block related to the control. CM System uses this header when selecting

controls. If the control header is missing or invalid, CM System cannot select the control. The control

will continue to work unless it requires external script files, however.

All control definitions exist in the "psxctl" namespace. The full declaration of this namespace is:

xmlns:psxctl="URM:percussion.com/control"

Any files required for the control to function must be listed in the AssociatedFiles element of the header.

The children of this element describe the file and specify its location.

Chapter 2 Content Reference 39

Any extensions required by the control must be specified in the Dependencies element. The attributes of

this element specify whether the extension requires additional setup and whether you must add additional

iterations of the exit for each appearance of the control. The child elements specify the exit to call and any

parameters you must specify for it. You must add these exits to the content editor resource in the content

editor application.

Control Template Standards

A control template must meet the following standards:

 The template must match on a <Control> element with a specific name. The main

templates must use the mode "psxcontrol". For example:

<xsl:template match="Control[@name='sys_DatePicker']"

mode="psxcontrol">

 Controls should be written to conform to the shape of the table, and should not contain fixed-

width formats.

 All controls use the same cascading stylesheet styles that are used in the editors.

 The datadisplay style will be used unless some special effects are required.

 The datacell1 and datacell2 styles can be used for alternating rows in complex

controls.

 The columnhead2 style will be used for labels.

 All controls must be capable of rendering both "read-only" and "writable" forms. The forms

do not have to resemble each other. The read-only form of the control must also be an HTML

form element that returns the current field value; for example, <input type="hidden"

name="sample" value="blank" />.

Control Events

Individual form elements do not have "load" and "submit" events, and therefore certain controls will need

JavaScript event code on the Form and Document level. To add JavaScript code to a control, build

another <xsl:template> with a mode that matches the event name.

The output of any event template should:

 be a single string;

 be well-formed;

 end with a semi-colon.

Multiple template events are concatenated together into a single onLoad or onSubmit attribute.

Control templates that do not implement these events can either provide an empty template (for example:

<xsl:template match = "Control[@name='sys_picker']" mode="psxcontrol –

body-onload"/>)

or no template at all. Providing an empty template can be faster because it shortcuts the search for a
template match.

To prevent events from being rendered as text items if the event is empty, the system control library

includes a default empty template for each defined event. For example:

<xsl:template match="Control" mode="psxcontrol –docload"/>

mailto:@name
mailto:@name

40 CM System Technical Reference Manual

Currently, the following events are defined within CM System:

HTML Event

Mode Name

document.load psxcontrol-body-onload

form.submit psxcontrol-form-onsubmit

Use the AssociatedFileList element to add the JavaScript file. The following example is from the
sys_CalendarSimple control

<psxctl:AssociatedFileList>

<psxctl:FileDescriptor name="calPopup.js" type="script"

mimetype="text/javascript">

<psxctl:FileLocation>../rx_resources/js/calPopup.js</psxctl:FileLocat

ion>

<psxctl:Timestamp></psxctl:Timestamp>

</psxctl:FileDescriptor>

</psxctl:AssociatedFileList>

Customizing Controls

Certain CM System controls allow customization short of implementing a new control. Controls that allow

customization include:

 sys_EditLive

 sys_WebImageFX

Customizing the EditLive! for Java Editor

You can customize both the parameters of the sys_EditLive control and the configuration files of the

EditLive! for Java editor itself.

Customizing the sys_EditLive control
The parameters of the sys_EditLive control define the height and width of the display of the editor and the

path to its configuration file (elj_config.xml) as well as other properties. You can customize these

parameters in the control definition (in the Control Properties dialog accessible from the CM System

Workbench). If you customize the configuration file for the ELJ editor, update the config_src_url

parameter of each instance of the sys_EditLive control to point to the correct configuration file.

See sys_EditLive Control (on page 52) for a list of the parameters that you can customize and instructions

on how to change them.

Custom versions of sys_EditLive control in rx_resources

If you have previously copied the control from sys_Templates.xsl to the rx_Templates.xsl file or

controls folder, updates to the Ephox version by patches or system updates may cause the editor to break

as these changes will not be reflected in your customized version. It is advised that you remove the

extension from rx_Templates.xsl or controls folder to revert use to the out of the box version. If a

modification is for some custom behavior not provided by the out of the box version, any update that

changes the sytem version of the control may require you to reapply the updated control by copying

back from sys_Templates.xsl file and reapply your customizations.

These changes may have previously been made to be able to dynamically select the configuration file.

If this is the case it is advised you only modify the value of the config_src_url in the custom version and

not directly change the url passed as the configuration file to EditLive. The URL of the configuration

needs to be passed to the sys_Ephox_support application. This is required to update licensing

information and to fix up old configurations to make them forward compatible with new versions

Chapter 2 Content Reference 41

Customizing EditLive! for Java Configuration
The EditLive! for Java (ELJ) editor is a robust and highly customizable HTML editor.

Most customizations of the ELJ editor involve modifications to the configuration file (elj_config.xml in

the CM System implementation). Do not modify the default configuration file, which is located in the

<Rhythmyxroot>/sys_resources/ephox directory. Instead, modify the copy in

<Rhythmyxroot>/rx_resources/ephox.

You may create multiple custom configuration files for the sys_EditLive control and give them different

names or store them in different directories.

42 CM System Technical Reference Manual

To customize the control, you may want to add javascript functions that extend its capabilities. See

Adding Custom Menu and Toolbar Actions (on page 42) for instructions on adding custom javascript

functions.

Several instances of the sys_EditLive control can use the same configuration XML file (shared

configuration file), or you can use a local configuration file for each instance of the editor; you can also

use a shared configuration file for some instances and a local configuration file for other instances. As a

best practice, store the files in the following manner:

 The default configuration file is stored in the directory sys_resources/ephox. This

configuration file should not be modified.

 Shared configuration files should be stored in a directory with the path

rx_resources/[path]/ephox, where [path] is the path to a subdirectory that

logically categorizes the file. For example, you might want to use the name of your project as

part of the path; for a project with the name sample, the path would be

rx_resources/sample/ephox.

 Local configuration files should be stored in rx_resources/ephox or a subdirectory

created under this directory. For example, if you have a local configuration file for a Press

Release content editor, you might want to store the configuration file in the subdirectory

rx_resources/ephox/pressrelease.

To define an instance of the sys_EditLive control to use a customized configuration file:

1 In the Rhythmyx Workbench, open the Content Type editor for the Content Type in which

you want to use the ELJ editor.

2 Select the field in which you want to use the ELJ editor or add a new field.

3 In the Control field, choose sys_EditLive.

4 Click the browse button (…) next to the Control field.

CM System displays the Control Properties dialog.

5 Click in the Name column and choose config_src_url.

6 Click in the Value column of the same row and enter the URL (relative to the Rhythmyx root)

of the configuration file you want to use for this instance of the control as a literal value.

7 On the Control Properties dialog, click [OK].

8 Save the changes to the Content Type.

To see your changes, log in to Rhythmyx, and activate the editor.

For guidance on customizing (and localizing) the ELJ editor, consult EditLive documentation at

http://liveworks.ephox.com/documentation/editlive/v60/.

http://liveworks.ephox.com/documentation/editlive/v60/

Chapter 2 Content Reference 43

Customizing the sys_EditLiveDynamic control
Note: This control is deprecated. Customers who installed CM System prior to Version 6.5.2 may

have fields that use it.

The parameters of the sys_EditLiveDynamic control define the control for any field that uses it in a

Content Editor. You can customize these parameters in the control definition (in the Control Properties

dialog). This should be changed to the sys_EditLive control in the Rhythmyx Workbench, and then

following the instructions in sys_EditLive Control (on page 52) to customize the parameters.

Adding Custom Menu and Toolbar Actions
CM System provides you with xml code that you can use to create custom actions for your

sys_EditLive controls. The xml code is located in <Rhythmyx

root>/rx_resources/ephox/rx_ephox_custom.xml.

To add the toolbar button and/or menu choice associated with the custom action, you must modify your

config file (elj_config.xml by default). To add the custom action, you must add a javascript function that

uses the EditLive Java API to the rx_ephox_custom.xml file.

CM System adds your modified code to the sys_EditLive template in sys_Templates.xsl,

which incorporates it into the control.

To create a custom sys_EditLive function:

This procedure uses the example of an action that opens a window showing the source code between the

body tags in the sys_EditLive control.

1 Modify your config file (elj_config.xml by default) to show the new menu item and/or toolbar

button. The EditLive JavaScript API defines the elements <customMenuItem> and

<customToolbarButton> which you configure as shown in this step to add the new Menu item

and/or Toolbar button.

a) Find the <menu> sub-element for the menu that you want to add the action to in the

<menubar> element in the configuration file and add a <customMenuItem> element for

the action. Below, the <customMenuItem> element is shown in bold. Copy the format of

this sample element.

<menu name="ephox_editmenu">

<menuItem name="Undo"/>

<menuItem name="Redo"/>

<menuSeparator/>

<menuItem name="Cut"/>

<menuItem name="Copy"/>

<menuItem name="Paste"/>

<menuItem name="PasteSpecial"/>

<menuSeparator/>

<menuItem name="Select"/>

<menuItem name="SelectAll"/>

<menuSeparator/>

<menuItem name="Find"/>

<menuSeparator/>

44 CM System Technical Reference Manual

<customMenuItem action="raiseEvent"
imageURL="../rx_resources/ephox/images/bSource.gif" name="ShowBodySource"
rxconfig="yes" text="Shows Body Source" value="RxEphoxShowBodySource"/>
</menu>

b) Find the <toolbar name="Command"> sub-element in the <tools> element in the

configuration file and add a <customToolbarButton> element for the action. Below, the

<customToolbarButton> element is in bold. Copy the format of this sample element.

<toolbar name="Command">

<toolbarButton name="Cut"/>

<toolbarButton name="Copy"/>

<toolbarButton name="Paste"/>

<toolbarSeparator/>

….

<customToolbarButton action="raiseEvent"
imageURL="../rx_resources/ephox/images/bSource.gif" name=" ShowBodySource "
rxconfig="yes" text=" Shows Body Source " value=" RxEphoxShowBodySource "/>
</toolbar>

2 Add the JavaScript function to rx_ephox_custom.xml. Replace RxEphoxDummyFunction

with your own. In our example, the custom JavaScriptFunction is:

<![CDATA[

function RxEphoxShowBodySource_]]><xsl:value-of select="$name"/><![CDATA[()
{

// Get EditLive editor instance
var EditorName = "]]><xsl:value-of select="@paramName" /><![CDATA[";
var editor = getEditor(EditorName);

//Get a reference to the EditLive applet
var ephox = editor.objectref;

var body = ephox.GetBody(‘rxShowBody_]]><xsl:value-of
select="$name"/><![CDATA[’, false); // call back function

}

function rxShowBody_]]><xsl:value-of select="$name"/><![CDATA[(body)

{
alert(body);

}

]]>

For additional information about adding custom functions, see the Ephox EditLive! for Java Developer's
Guide in <Rhythmyx root>/sys_resources/ephox/ephox_developerguide.pdf.

Customizing the WebImageFX Editor

You can customize both the parameters of the sys_WebImageFX control and the configuration files of the

WebImageFX editor itself.

mailto:@paramName

Chapter 2 Content Reference 45

Customizing the sys_WebImageFX Control
This control is deprecated and should only be used for backward compatibility. The parameters of the
sys_WebImageFX control define the height and width of the display of the editor,

the path to configuration file (ImageEditConfig.xml) and other characteristics. You can customize

these parameters in the control definition (either the Display Control Properties for <field> dialog or in the

PSXParam child nodes of the PSXControlRef node). If you customize the configuration file for the

WebImageFX editor, update the SRC parameter of each instance of the sys_WebImageFX control to

point to the correct configuration file.

For guidance on customizing (and localizing) the WebImageFX editor, consult the WebImageFX

Developer's Reference Guide, at http://www.ektron.com/webimagefx.aspx.

Most customizations of the WebImageFX editor involve modifications to the configuration file

(ImageEditConfig.xml). Do not modify the default configuration file, which is located in the

Rhythmyxroot/sys_resources/WebImageFX directory. Instead, customize shared or local definition

files. If you only use one customized configuration file, best practice is to use a shared configuration file.

In the default ImageEditConfig.xml used in CM System, the upload and exit options are disabled

because these actions cannot function in CM System; do not enable these options when you edit copies

of the ImageEditConfig.xml file.

Several instances of the control can use the same configuration XML file (shared configuration file), or

you can use a local configuration file for each instance of the editor; you can also use a shared

configuration file for some instances and a local configuration file for other instances. The files must be

stored in the following manner:

 The default configuration file is initially stored in the directories

sys_resources/WebImageFX rx_resources/WebImageFX. Do not modify the

configuration file in the directory sys_resources/WebImageFX.

 Shared configuration files should be stored in a directory with the path

rx_resources/[path]/WebImageFX, where [path] is the path to a subdirectory that

logically categorizes the file. For example, you might want to use the name of your project as

part of the path; for a project with the name sample, the path would be

rx_resources/sample/WebImageFX.

 Local configuration files should be stored in a subdirectory of the Content Editor application.

For example, if you have a local configuration file for a Press Release content editor, the

configuration file would be stored in the subdirectory

Rhythmyxroot/pressrelease/WebImageFX.

To define an instance of the sys_WebImageFX control to use a customized configuration file:

1 Open the Content Editor in the Rhythmyx Workbench and access the Content Editor

Properties dialog.

2 Select the field that uses the WebImageFX editor and click [Edit] to open the Field Properties

dialog.

3 Click the browse button (…) next to the Control field.

CM System displays the Display Control Properties for <field> dialog.

4 Click in the Param name column and choose config_src_url.

5 Click in the Value column of the same row and enter the relative URL of the configuration file

you want to use for this instance of the control as a literal value.

http://www.ektron.com/webimagefx.aspx

46 CM System Technical Reference Manual

6 On the Display Control Properties for <field> dialog, click [OK].

7 On the Field Properties dialog, click [OK].

8 On the Content Editor Properties dialog, click [OK].

The changes will take effect the next time you start your application. To see your changes, stop and

restart the application, log in to CM System, and activate the editor.

Best Practices: sys_WebImageFX
To simplify maintenance and promote effective technical support, observe the following Best Practices

when working with the WebImageFX editor and the sys_WebImageFX control:

 Keep shared configuration files (configuration files used by more than one instance of the

control) in directories with the name Rhythmyxroot/rx_resources/[path]/webimagefx,

where [path] defines a category (such as a the name of a project or customer). For example,

if you are working on a project named sample, the directory should be

Rhythmyxroot/rx_resources/sample/webimagefx.

 If only one editor is going to use a configuration file, store the file in a subdirectory of the

editor application directory. If you decide to use this configuration file for other editors, move

it to a shared directory and update the SRC parameters of the instances of the control that use

that configuration file.

 When disabling a command or parameters of a command (such as lists of fonts or font sizes),

hide the disabled elements first by commenting them out (<!-- text --!>), then test and refine

your development. Remove the disabled commands and parameters when testing is complete

to minimize clutter in the files and simplify future modification.

Standard CM System Controls

Several standard controls are provided with CM System.

Each control has a name and a dimension. The dimension describes the form of the data expected by the

control. Options are

Value

Description

single Data is zero or one value.

array Data is a sequence of 0 or more values.

table Data is a table of values.

Each control can take a series of parameters. Each parameter included has a name, a data type and a
parameter type. The data type defines the type of data expected for the parameter. Options include String,

Date, Datetime, and Number.

The parameter type can take one of three values: generic, img, and jscript. The parameter type is used

with the parametersToAttributes template. This template copies parameters into the HTML. The defaults

specified in the control metadata are used except where the content editor XML definition file overrides

the defaults. Only parameters that are listed in the control meta are copied. Multiple parameter types are

available because a control may need to configure more than one HTML tag.

Chapter 2 Content Reference 47

The description of the parameter describes the use of the parameter. A parameter may or may not include

a default value.

sys_CalendarSimple

Figure 5: sys_CalendarSimple control

The sys_CalendarSimple control is a combination of an editbox and a button (calendar icon). When a

user clicks the calendar icon, CM System displays a popup calendar control they can use to select a

date. Each date field has its own control. The dimension is single.

The text field allows for manual entry of a date. Data entered into this field must conform to standard date

patterns.

 "yyyy-MMMM-dd 'at' hh:mm:ss aaa",

 "yyyy-MMMM-dd HH:mm:ss",

 "yyyy.MMMM.dd 'at' hh:mm:ss aaa",

 "yyyy.MMMM.dd HH:mm:ss",

 "yyyyMMdd HH:mm:ss",

 "yyyy.MMMM.dd 'at' hh:mm aaa",

 "yyyy-MM-dd G 'at' HH:mm:ss",

 "yyyy-MM-dd HH:mm:ss.SSS",

 "yyyy-MM-dd HH:mm:ss",

 "yyyy.MM.dd G 'at' HH:mm:ss",

 "yyyy.MM.dd HH:mm:ss.SSS",

 "yyyy.MM.dd HH:mm:ss",

 "yyyy/MM/dd G 'at' HH:mm:ss",

 "yyyy/MM/dd HH:mm:ss.SSS",

 "yyyy/MM/dd HH:mm:ss",

 "yyyy/MM/dd HH:mm",

 "yyyy-MM-dd",

 "yyyy.MM.dd",

 "yyyy/MM/dd",

 "yyyy-MMMM-dd",

 "yyyy.MMMM.dd",

 "EEE, d MMM yyyy HH:mm:ss",

 "EEEE, MMM d, yyyy",

 "MMM d, yyyy",

 "MMM yyyy",

 "yyyy",

 "HH:mm:ss",

 "HH:mm"

If these patterns are not matched, we try Java's default for the locale of the server to match the date.

Patterns not matched result in a error. CM System uses the SimpleDateFormat
(http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html) class to format and parse dates.

Parameter

Data Type

Parameter
Type

Description

Default

id String Generic XHTML 1.0 attribute

applied input tag
None

class String Generic XHTML 1.0 attribute

applied input tag
None

style String Generic XHTML 1.0 attribute

applied input tag
None

tabindex Number Generic XHTML 1.0 attribute

applied input tag
None

http://java.sun.com/j2se/1.3/

48 CM System Technical Reference Manual

Parameter

Data Type

Parameter
Type

Description

Default

alt String Image Alt for the calendar

selector icon.
Calendar Pop-up

src String Image href for the calendar

selector icon
../rx_resources/images/cal.gif

height String Image Height of the calendar

selector icon
20

width String Image Width of the calendar

picker icon
20

formname String JavaScript Name of the form that

contains this control
EditForm

time String Generic Defines whether the

Calendar display

includes the time. If

the value is yes, the

time calendar displays

the time. If the value

is no, the calendar does

not display the time. If

the parameter has any

other value, it is treated

as though the value is

yes.

no

sys_CheckBoxGroup

The sys_CheckBoxGroup control displays a group of check boxes that give the end user the ability to

select multiple values at the same time. A checkbox group must be multidimensional, so the values for

the group should always be stored in a child table. The child table should consist of at least three columns:

one for contentid, one for revisionid and one for the value to be stored. You should only define the value

column in the field definition. The server will populate the contentid and revisionid fields automatically.

The dimension is array.

Figure 6: Example sys_CheckBoxGroup

When implementing this control, add the child table to the list of tables for the content editor:

<PSXTableSet>

<PSXTableLocator>

....

</PSXTableLocator>

<PSXTableRef name="RXBRIEF" alias="RXBRIEF"/>

Chapter 2 Content Reference 49

<PSXTableRef name="CHECKTABLE" alias="CHECKTABLE" />

</PSXTableSet>

Parameters

Parameter

Data Type

Parameter
Type

Description

Default

id String Generic XHTML 1.0 attribute None

class String Generic XHTML 1.0 attribute None

style String Generic XHTML 1.0 attribute None

columncount String Generic Defines the number of columns

in which the browser will

display the check boxes. If the

value of this parameter is 0 or 1,

the browser renders the

checkboxes in one column. If

the value of the parameter is

anything other than 0 or 1, the

browser renders the checkboxes

in the specified number of

columns.

1

columnwidth String Generic Specifies the width of the

column in pixels or percentage.
100%

sys_CheckBoxTree

This control renders a set of options as a "tree" of checkboxes that allows multiple boxes to be checked.

This control does not include any validation to control which options the user can and cannot check.

Figure 7: sys_CheckBoxTree control

The control is rendered using two XML files. The first file defines the structure of the tree and defines the

choices. The following code illustrates a simple example of the "tree" XML:

<tree label="products">

50 CM System Technical Reference Manual

<node id="s1" label="generic products" selectable="no">

<node id="prodx" label="product x" selectable="yes"/>

<node id="prody" label="product y" selectable="yes"/>

</node>

<node id="s2" label="special products" selectable="no">

<node id="s2a" label="extra special products" selectable="yes">

<node id="prodq" label="product q" selectable= "yes"/>

</node>

<node id="prodz" label="product z" selectable="yes"/>

</node>

</tree>

The <node> element has three attributes:

 id (required): specifies the value that will be stored in the Repository if the checkbox is

checked.

 label (required): specifies the value that will be displayed when the Content Editor is

rendered.

 selectable (optional): indicates whether the specified node can be checked or selected.

The default value of "no" indicates that the node cannot be selected; a value of "yes" specifies
that the node can be selected.

The second XML file is a dynamically-generated lookup used to support Content Editor validation. This

file has the same structure as the "tree" XML. The value of the id attributes of the <node> elements must

match. If these values do not match, validation will fail for nodes that do not match and no value will be

saved for those nodes. The lookup file can be generated either from a keyword or dynamically using an

internal lookup. For details on creating keywords, see "Creating Keywords" in the Rhythmyx Workbench

Help. For details on creating an internal lookup, see Creating an Internal Lookup Query (on page 68).

Parameters

Parameter

Data Type

Parameter Type

Description

Default

width String XHTML 1.0

attribute
Specifies the width of

the control, in either

pixels or a percentage of

available horizontal

space.

400 (pixels)

height String XHTML 1.0

attribute
Specifies the height of

the control, in either

pixels or a percentage of

available vertical space.

300 (pixels)

tree_src_url String XHTML 1.0

attribute
Specifies the relative

location of the xml that

defines the tree.

../rx_resources/treedef.xml

formname String XHTML 1.0

attribute
Internal parameter. Do

not modify.
EditForm

Chapter 2 Content Reference 51

sys_DropDownMultiple

The sys_DropDownMultiple is a combo box control that allows users to select multiple options from the

list of potential values. Hold the <CTRL> key while clicking on values to select multiple values; hold the

<SHIFT> key while selecting values to select the range between the selected values.

Figure 8: sys_DropDownMultiple control

Parameters

Parameter

Data Type

Parameter Type

Description

Default

id String Generic XHTML 1.0 attribute None

class String Generic XHTML 1.0 attribute None

style String Generic XHTML 1.0 attribute None

size Number Generic XHTML 1.0 attribute None

multiple String Generic XHTML 1.0 attribute None

tabindex Number Generic XHTML 1.0 attribute None

disabled String Generic XHTML 1.0 attribute None

sys_DropDownSingle

The sys_DropDownSingle is a basic drop down HTML control. When a user clicks on the control,

CM System displays a list of potential values for the field. The user can select one of these values

to populate the field. The dimension is single.

Figure 9: Example sys_DropDownSingle

Parameters

Parameter

Data Type

Parameter Type

Description

Default

id String Generic XHTML 1.0 attribute None

class String Generic XHTML 1.0 attribute None

style String Generic XHTML 1.0 attribute None

size Number Generic XHTML 1.0 attribute None

multiple String Generic XHTML 1.0 attribute None

tabindex Number Generic XHTML 1.0 attribute None

disabled String Generic XHTML 1.0 attribute None

52 CM System Technical Reference Manual

sys_EditBox

The sys_EditBox control is used to input data in a standard one-line edit box. This control corresponds to

a single, one-dimensional field. The dimension is single.

Figure 10: Example sys_EditBox

Parameters

Parameter

Data Type

Parameter Type

Description

Default

id String Generic XHTML 1.0

attribute
None

class String Generic XHTML 1.0

attribute
None

style String Generic XHTML 1.0

attribute
None

size String Generic XHTML 1.0

attribute
50

maxlength Number Generic XHTML 1.0

attribute
None

tabindex Number Generic XHTML 1.0

attribute
None

EditLive for Java Editor

Ephox’s EditLive for Java (ELJ) HTML editor is now the default HTML editor for CM System

content editors.

Figure 11: sys_EditLive Cotnrol

Chapter 2 Content Reference 53

Customers who are upgrading and have previously used the sys_eWebEditPro control may continue to use

it as a deprecated feature.

Note that you must be running JRE Version 1.4.207 or higher to run the sys_EditLive control (JRE

Version 1.4.207 or higher is required for CM System Version 5.7).

An XML configuration file (elj_config.xml) drives the functionality of

the<Rhythmyxroot>/rx_resources/ephox and <Rhythmyxroot>/sys_resources/ephox. Only customize the

file in <Rhythmyxroot>/rx_resources/ephox. On upgrade, Rhythmyx overwrites the file in

<Rhythmyxroot>/sys_resources/ephox. To take advantage of any upgrades, you must copy the

elj_config.xml file in sys_resources/ephox to rx_resources/ephox (or copy the changed portions of the file

to your file in the rx_resources/ephox folder). You may create multiple custom files, but when your control

runs, it can only reference one of them.

CM System installs the default configuration file to both <Rhythmyxroot>/rx_resources/ephox and

<Rhythmyxroot>/sys_resources/ephox. Percussion Software will provide instructions for modifying the

installation in sys_resources/ephox to take advantage of upgrades to the ELJ editor.

sys_EditLive Control
sys_EditLive is a multiple-line text entry control in which the user can type and edit text. It displays a

DHTML editor that allows a user to enter text and apply standard formatting, such as changing the font or

the alignment.

When more than one sys_EditLive controls are used in a Content Type, only one field in the content editor

can access the control at a time. When a user accesses the control for one field, the control closes in the

last field that displayed it.

The following graphic shows how the control works. When a user clicks the placeholder box for a field,

the control is visible, and the user can enter data. When the placeholder box is not clicked for a field, the

box displays the field's formatted text and graphics but they cannot be edited.

Figure 12: sys_EditLive control

54 CM System Technical Reference Manual

sys_EditLive also includes a feature that allows users to copy content from a Microsoft Word file and

paste it into sys_EditLive. The appearance of the content remains the same and sys_EditLive generates the

corresponding HTML markup.

The default CM System installation of this editor includes built-in support for inserting inline links and

images in addition to the standard features of the ELJ editor. (For details about the standard features and

CM System features of ELJ, click the help button in the control). This control works with all browsers

that CM System supports.

Parameters

Each sys_EditLive control includes the following parameters. The default values are set in the file

<Rhythmyx root>/sys_resources/stylesheets/sys_templates.xsl.

Parameter

Data
Type

Parameter
Type

Description

Default

Width String Generic This parameter

specifies the width of

the inline frame. This

parameter may be

either a pixel or a

percentage of the

available horizontal.

760

Height String Generic This parameter

specifies the height of

the inline frame. This

parameter may be

either a pixel or a

percentage of the

available vertical.

250

config_src_url String Generic This parameter

specifies the location of

the config.xml that the

control will use for

configuration.

../rx_resources/ephox/elj_config.xml

config_download String Generic This parameter

specifies the location of

the download directory.

../rx_resources/ephox/editlivejava

InlineLinkSlot String Generic This parameter

specifies the id of

inline link slot. The

search dialog for the

inline link slot shows

the content types that

have a variant

associated with the slot.

103

Chapter 2 Content Reference 55

Parameter

Data
Type

Parameter
Type

Description

Default

InlineImageSlot String Generic This parameter

specifies the id of

inline image slot. The

search dialog for the

inline image slot shows

the content types that

have a variant

associated with the slot.

104

InlineVariantSlot String Generic This parameter

specifies the id of

inline Template slot.

The search dialog for

the inline Template slot

shows the content types

that have a Template

associated with the

inline Template slot.

105

DebugLevel String Generic This parameter

specifies the debug

level for the EditLive

Applet. The allowed

levels are (fatal, error,

warn, info, debug, http)

info

You can change the values of sys_EditLive parameters for any individual Content Type field.

To change the value of a sys_EditLive parameter for a Content Type field:

1 In the Rhythmyx Workbench, open the Content Type editor for the Content Type containing

the field.

2 In the field, double-click on sys_EditLive to display the browse button (…) next to it.

3 Click the browse button (…).

CM System displays the Control Properties dialog. Parameters that take their default values

from the sys_templates.xsl file are not shown in the Parameters table, so the default table is

empty.

56 CM System Technical Reference Manual

Figure 13: Default Control Properties dialog for sys_EditLive

Chapter 2 Content Reference 57

4 Click in the Name column and choose the parameter whose value you want to change from the

drop list.

Figure 14: Changing a parameter value in the Control Properties dialog

58 CM System Technical Reference Manual

5 Click in the Value column of the same row and enter the value you want to use for this

instance of the control.

Figure 15: Parameter value changed in Control Properties dialog

6 On the Control Properties dialog, click [OK].

7 Save the changes to the Content Type.

8 When you open the Content Editor in Content Explorer, the field should reflect the change
made to the parameter. Note: You may have to choose View > Refresh in Content Explorer

before seeing the change.

sys_EditLiveDynamic Control
Note: This control is deprecated. Customers who installed CM System prior to Version 6.5.2 may

have fields that use it.

The sys_EditLiveDynamic control functions identically to the sys_EditLive control, except it offers fewer

features. Originally, it was intended for Content Editors that experienced slow load times because they

used multiple EditLive editors, but now the sys_EditLive control offers the same faster load time.

Therefore, the sys_EditLiveDynamic control is now deprecated.

You can mix the two controls within one Content Editor. Some fields can use sys_EditLive and others can

use sys_EditLiveDynamic.

The sys_EditLiveDynamic control includes the same parameters as those in the sys_EditLive control (see

page 52). The default values, which are the same as those for sys_EditLive, are set in the file <Rhythmyx

root>/sys_resources/stylesheets/sys_templates.xsl.

Chapter 2 Content Reference 59

To change parameters for a Content Editor field that uses the sys_EditLiveDynamic control, we

recommend first changing the control to the sys_EditLive control in the Rhythmyx Workbench and then

following the instructions for changing any of the parameters in a sys_EditLive control (see

"sys_EditLive Control" on page 52).

Adding the sys_EditLive Control to a Content Editor
To add the sys_EditLive control (see page 52) to a content editor, select sys_EditLive as the Control Name

for the field for which you want to use the ELJ editor. No additional implementation is required.

CM System automatically adds the sys_xdTextCleanup exit as a dependency of the control,

and automatically configures its required parameters.

Adding Form and Script Support to a sys_EditLive Control
If the field you plan to maintain using the sys_EditLive control will include form or script tags, you must

add special processing to the control.

 Add the sys_EditLiveFormDecode Input Translation extension. The value of the Field name

parameter should be PSXSingleHtmlParameter/fieldname, where fieldname is the name of the

field to which the control is assigned.

 Add the sys_EditLiveFormEncode Output Translation extension. The value of the Field name

parameter should be PSXSingleHtmlParameter/fieldname, where fieldname is the name of the

field to which the control is assigned.

Best Practices: sys_EditLive
To simplify maintenance and promote effective technical support, observe the following Best Practices

when working with the ELJ editor and the sys_EditLive control:

 Keep shared configuration files (configuration files used by more than one instance of the

control) in directories with the name Rhythmyxroot/rx_resources/[path]/ephox,

where [path] defines a category (such as a the name of a project or customer). For example,

if you are working on a project named sample, the directory should be

Rhythmyxroot/rx_resources/sample/ephox.

 If only one editor is going to use a configuration file, store it in

Rhythmyxroot/rx_resources/ephox or a subdirectory created under this directory.

For example, if you have a local configuration file for a Press Release content editor, you

might want to store the configuration file in the subdirectory

Rhythmyxroot/rx_resources/ephox/pressrelease.

If you decide to use this configuration file for other editors, move it to a shared directory and

update the config_src_url parameters of the instances of the control that use that

configuration file.

 When disabling a command or parameters of a command (such as lists of fonts or font sizes),

hide the disabled elements first by commenting them out (<!-- text --!>), then test and

refine your development. Remove the disabled commands and parameters when testing is

complete to minimize clutter in the files and simplify future modification.

60 CM System Technical Reference Manual

Upgrading from sys_eWebEditPro to sys_EditLive
If you upgrade from CM System 5.x to CM System 6.0 or higher, you receive the sys_EditLive control in

addition to the sys_eWebEditPro control. Both options appear in the Control drop list in the Content Type

Editor.

Content Editors fields that already use the sys_eWebEditPro control will continue to use it unless you

change them manually. When you change the control from sys_eWebEditPro to sys_EditLive,

sys_EditLive automatically adopts the field’s sys_eWebEditPro values for the following parameters (by

default, these parameters have the same values in sys_EditLive and sys_eWebEditPro):

 width

 height

 inlineLinkSlot

 inlineImageSlot

 inlineWidthSlot

For more information about the parameters, see sys_EditLive Control (on page 52).

To manually replace eWebEditPro with ELJ in a Content Type:

1 In the Rhythmyx Workbench, open the editor for the Content Type that you want to change.

In the row for the Content Type field whose control you want to change, double-click in the

control field to access the drop-list.

2 Click the drop list and choose sys_EditLive.

CM System automatically sets common parameters to the same values used for

the sys_eWebEditPro control that was used for the field.

3 If you want to use a customized configuration file, or modify other parameters:

c) Click the browse button next to the Control field.

CM System displays the Control Properties dialog.

d) Enter the parameters and associated values you want to assign to the control.

e) Click [OK] to save your edits.

4 Save the changes to the Content Type.

To see your changes, log into CM System, and activate the editor.

Chapter 2 Content Reference 61

NOTE:
You cannot mix use of the sys_eWebEditPro and sys_EditLive controls in a single Content Editor. If you

mix them, when you attempt to save the Content Editor, the following error dialog appears:

Figure 16: Warning when mixing controls

Click [OK], and change the fields to use the same controls.

sys_File

The sys_File control is a file upload element that allows the user to supply a file as the input. This control

corresponds to a single, one-dimensional field.

When you add a sys_file control to a field in a content editor, CM System adds sys_FileInfo (on page

238) as a dependency of the Content Editor for you automatically. The sys_FileInfo exit searches for

attached files in a content item’s HTML and returns values for file name, MIME type, character length

and file encoding. The exit returns the values to field names formed by combining the filename (the

<FieldRef> value) with descriptive suffixes.

In order for the sys_File control to correctly upload a file to a content editor field, it must have access to

the file's extension and mime type. The sys_FileInfo (on page 238) exit automatically extracts this

information and stores it in fields that you have created in the content editor. To enable the sys_File

control to use these fields, you must name them with the proper syntax. See sys_FileInfo (on page 238)

for information about naming these fields.

sys_File control Parameters

Parameter

Data Type

Parameter
Type

Description

Default

id String Generic XHTML 1.0

attribute
None

class String Generic XHTML 1.0

attribute
None

62 CM System Technical Reference Manual

Parameter

Data Type

Parameter
Type

Description

Default

style String Generic XHTML 1.0

attribute
None

size String Generic XHTML 1.0

attribute
50

maxlength Number Generic XHTML 1.0

attribute
None

tabindex Number Generic XHTML 1.0

attribute
None

Controlling Processing of XML files
When uploading XML files, you have the option of specifying that the server process them normally

(checking that the document is well-formed and that it conforms to a DTD), that it performs no validation

(only checking that the document is well-formed), or that it treats the file as text. The psxmldoc HTML

parameter controls this processing.

To use the psxmldoc parameter, include a hidden field to store the psxmldoc parameter (typically the

field is named "psxmldoc"), which is stored in a backend column (also typically called "PSXMLDOC").
This field must occur before the field where the file is stored.

The psxmldoc parameter is typically mapped to a literal value. Acceptable values are:

Value

Processing

useValidating (default) Server validates the document according to the

DTD specified in the document.

useNonValidating Sever confirms that the document is well-

formed, but does not validate it against a DTD.

treatAsText Server does not parse the document.

Document can be mapped as a single

parameter to a CLOB or text column.

If the MIME type of the request is text/xml or application/xml, the body content must be an

XML document. In this case, if the parameter value is treatAsText, the server ignores it and uses the

default value. If the request MIME type is multipart/form-data, the parameter can store multiple

values, each separated by a semicolon (";"). Only one of these values can specify parsing; the remaining

values must be treatAsText. If multiple parser values are specified, only the last is used.

sys_HashedFile

The sys_HashedFile control is a file upload element that allows the user to supply a file as the input. This

control corresponds to a single, one-dimensional field.

When you add a sys_HashedFile control to a field in a content editor, CM System adds

sys_HashedFileInfo as a dependency of the Content Editor for you automatically. The

sys_HashedFileInfo exit uses an underlying service to calculate a unique sha1 hash based upon the contents

of the file. If this binary based upon the hash has not already been stored it will store the binary into the

database. At the same time of storage metadata about the contents of the document are extracted including

the values used to populate the _size, _filename, _type, _height, and _width fields if provided. These fields

are no longer needed for assembly, due to the addition of jexl functions providing all metadata extracted for

any particular hash. Whether the item needed to be stored or not the hash is saved to the current field and

the supporting fields are updated if provided. This control also provides a link to pull up all metadata

Chapter 2 Content Reference 63

available for the current file. Currently all fields using this control must use _hash as a suffix.

Purging an item does not remove the storage of the binary as the same binary may be referenced by many

content items/version. See the CM System_Administration_Manual for information on admin tasks to

locate and purge binaries that are not longer referenced in the system.

sys_HashedFile control Parameters

Parameter

Data Type

Parameter
Type

Description

Default

id String Generic XHTML 1.0

attribute
None

class String Generic XHTML 1.0

attribute
None

64 CM System Technical Reference Manual

Parameter

Data Type

Parameter
Type

Description

Default

style String Generic XHTML 1.0

attribute
None

size String Generic XHTML 1.0

attribute
50

maxlength Number Generic XHTML 1.0

attribute
None

tabindex Number Generic XHTML 1.0

attribute
None

Controlling Processing of XML files
When uploading XML files, you have the option of specifying that the server process them normally

(checking that the document is well-formed and that it conforms to a DTD), that it performs no validation

(only checking that the document is well-formed), or that it treats the file as text. The psxmldoc HTML

parameter controls this processing.

To use the psxmldoc parameter, include a hidden field to store the psxmldoc parameter (typically the

field is named "psxmldoc"), which is stored in a backend column (also typically called "PSXMLDOC").
This field must occur before the field where the file is stored.

The psxmldoc parameter is typically mapped to a literal value. Acceptable values are:

Value

Processing

useValidating (default) Server validates the document according to the

DTD specified in the document.

useNonValidating Sever confirms that the document is well-

formed, but does not validate it against a DTD.

treatAsText Server does not parse the document.

Document can be mapped as a single

parameter to a CLOB or text column.

If the MIME type of the request is text/xml or application/xml, the body content must be an

XML document. In this case, if the parameter value is treatAsText, the server ignores it and uses the

default value. If the request MIME type is multipart/form-data, the parameter can store multiple

values, each separated by a semicolon (";"). Only one of these values can specify parsing; the remaining

values must be treatAsText. If multiple parser values are specified, only the last is used.

Chapter 2 Content Reference 65

66 CM System Technical Reference Manual

sys_HiddenInput

CM System does not display a field that uses the sys_HiddenInput control to the user, but it does include

the content of the field with the data submitted to the database. The value in the field can be set to a literal

value defined by the control itself, or a UDF or exit might populate it. Use this control to store

information that the system needs, but is unnecessary for the user to see, such as a file extension. The

dimension is single.

Parameters

Parameter

Data Type

Parameter
Type

Description

Default

id String Generic XHTML 1.0

attribute
None

class String Generic XHTML 1.0

attribute
None

style String Generic XHTML 1.0

attribute
None

sys_RadioButtons

The sys_RadioButtons control displays a set of radio buttons that allow the user to select one of a set of

values. A set of radio buttons must be multidimensional, so the values for the group should always be

stored in a child table. The child table should consist of at least three columns: one for contentid, one for

revisionid and one for the value to be stored. You should only define the value column in the field

definition. The server will populate the contentid and revisionid fields automatically. The dimension is

array.

Parameters

Parameter

Data Type

Parameter
Type

Description

Default

Class String Generic This parameter assigns a class name or set

of class names to an element. Any

number of elements may be assigned the

same class name or names. Multiple class

names must be separated by white space

characters.

datadisplay

Style String Generic This parameter specifies style information

for the current element. The syntax of the

value of the style attribute is determined

by the default style sheet language.

None

Tabindex Number Generic This parameter specifies the position of

the current element in the tabbing order

for the current document. This value must

be a number between 0 and 32767.

None

Chapter 2 Content Reference 67

Parameter

Data Type

Parameter
Type

Description

Default

Disabled String Generic If set, this boolean attribute disables the

control for user input.
None

sys_SingleCheckBox

A single checkbox, used to denote boolean (true/false) values.

Figure 17: sys_SingleCheckBox control

Parameters

Parameter

Data Type

Parameter
Type

Description

Default

id String Generic XHTML 1.0 attribute None

class String Generic XHTML 1.0 attribute None

style String Generic XHTML 1.0 attribute None

sys_Table

Figure 18: Example sys_Table

The sys_Table control creates a table to display multiple fields from a related database table. It is

multidimensional and may contain multiple fields. The graphic shows a table with three text fields and one

file upload control. Because this is a complex child, the user edits data on a different page, which they

access by clicking a button labeled 'Edit table' on the page. The content editor displays a summary view of

all rows in the table. The showInSummary attribute of each child element within the table controls the

visibility of these values. Note that the PSXFieldSet has a name, and each PSXField has its own name.

The dimension is table.

Parameters

Parameter

Data Type

Parameter Type

Description

Default

id String Generic XHTML 1.0 attribute None

class String Generic XHTML 1.0 attribute None

style String Generic XHTML 1.0 attribute None

68 CM System Technical Reference Manual

Parameter

Data Type

Parameter Type

Description

Default

summary String Generic XHTML 1.0 attribute None

width String Generic XHTML 1.0 attribute width 100%

cellspacing String Generic XHTML 1.0 attribute

cellspacing
0

cellpadding String Generic XHTML 1.0 attribute

cellpadding
5

border Number Generic XHTML 1.0 attribute tabindex 1

sys_TextArea

The sys_TextArea control is used to give the user the ability to enter multiple lines of plain text. The

dimension of this control is single.

Figure 19: Example sys_TextArea

Parameters

Parameter

Data Type

Parameter
Type

Description

Default

id String Generic XHTML 1.0

Attribute
None

class String Generic XHTML 1.0

Attribute
None

style String Generic XHTML 1.0

Attribute
None

rows Number Generic XHTML 1.0

Attribute
4

cols Number Generic XHTML 1.0

Attribute
80

tabindex Number Generic XHTML 1.0

Attribute
None

sys_WebImageFX and the WebImageFX Editor

Your CM System license may include Ektron's WebImageFX graphics editor which includes a variety of

tools for creating and editing graphics files. With the WebImageFX editor, CM System includes the

WebImageFX control. The control uploads a graphics file and displays it in a Content Editor using the

WebImageFX editor.

Chapter 2 Content Reference 69

An XML configuration file (ImageEditConfig.xml) defines the WebImageFX controls and styles available

to the end user. You can customize this configuration file to add new functionality or to remove existing

functionality. By default, the WebImageFX editor lets you upload, create, or paste (from Windows

clipboard) images to edit in its window.

During installation, CM System installs a copy of WebImageFX to

Rhythmyxroot/sys_resources/webimagefx and checks the version of WebImageFX in

Rhythmyxroot/rx_resources/webimagefx. If the version in rx_resources is earlier than the

current version (or there is no version file), CM System backs up the copy of WebImageFX in

rx_resources (by adding a time stamp to the directory name, for example, webimagefx 0301_1538, and

installs the current version into it.

The following Content Editor uses the sys_WebImageFX control to upload and display images.

Figure 20: Content Editor with sys_WebImageFX control

sys_WebImageFX Control
The sys_WebImageFX control functions almost identically to the sys_File control (see "sys_File" on page
60). It includes most of the same properties as the sys_File control, and like the sys_file control, it is a file

upload element that allows the user to supply a file as the input, and it corresponds to a single, one-

dimensional field. The main difference between the sys_WebImageFX control and the sys_File control is

that the sys_WebImageFX control appears in a Content Editor with the WebImageFX image editor.

When you add a field that uses a sys_WebImageFX control to a Content Type, CM System adds the

sys_FileInfo exit as a dependency for you automatically. The sys_FileInfo exit searches for attached files

in a content item’s HTML and returns values for file name, MIME type, character length and file

encoding. The exit returns the values to field names formed by combining the filename (the <FieldRef>

value) with descriptive suffixes.

70 CM System Technical Reference Manual

In order for the sys_WebImageFX control to correctly upload a file to a content editor field, the field that

holds the file must be named uploadfilephoto, and the control must have access to the file's mime type and

filename. The sys_FileInfo (on page 238) exit automatically extracts this information and stores it in

fields that you have created in the content editor. To enable the sys_File control to use these fields, you

must name them with the proper syntax. See sys_FileInfo (on page 238) for information about naming

these fields.

The sys_WebImageFX control displays a WebImageFX editor that allows a user to not only upload an

image, but also to create or modify an image. For details about the standard features of WebImageFX, see

the developer’s guide.

Parameters:

Parameter

Data
Type

Parameter
Type

Description

Default

id String Generic This parameter assigns a name

to an element. This name must

be unique in a document.

None

class String Generic This parameter assigns a class

name or set of class names to

an element. Any number of

elements may be assigned the

same class name or names.

Multiple class names must be

separated by white space

characters.

datadisplay

style String Generic This parameter specifies style

information for the current

element. The syntax of the

value of the style attribute is

determined by the default style

sheet language.

None

width Number Generic This parameter tells the user

agent the initial width of the

control. The width is given in

pixels.

800

height Number Generic This parameter tells the user

agent the initial width of the

control. The width is given in

pixels.

400

config_src_url String Generic This parameter specifies the

location of the config.xml that

will the control will use for

configuration.

../sys_resources/

webimagefx/

ImageEditConfig.xml

cleartext String custom This parameter determines the

text that will be displayed

along with a checkbox when

the field supports being

cleared.

Clear

Chapter 2 Content Reference 71

Adding the sys_WebImageFX Control to a Content Editor
To create a Content Editor that uses WebImageFX:

1 Follow the procedure in the document CM System Implementation Guide for creating a new

Content Editor.

2 Include a field with the Field Name uploadfilephoto and the Control Name sys_WebImageFX.

3 When you choose sys_WebImageFX as the Control Name, CM System automatically includes
the sys_FileInfo exit, which fills in the uploaded file’s name, mime type, extension, and size

into the proper Content Editor fields if you provide them. Add the following fields for storing

the filename and mime type. You must use the exact names specified.

 uploadfilephoto_filename

 uploadfilephoto_type

For each of these fields, do the following:

a) Click [All Properties].

The Field Properties dialog opens.

b) Click [Read Only].

The Field Editability dialog opens.

c) In Rule Type, choose Always.

d) Click [Add].

The rule is added to the Rules Table.

e) Click [OK].

The Field Editability dialog closes.

f) Click [OK].

The Field Properties dialog closes.

4 In Mime type mode, choose From Mime Type Field.

5 In Mime type value, choose uploadfilephoto_type.

6 Add any of the other fields that sys_FileInfo extracts to the Content Editor. Always use the

prefix uploadfilephoto. See sys_FileInfo (on page 238) for other required naming conventions

for these fields.

7 Complete the standard procedure for creating the Content Editor.

72 CM System Technical Reference Manual

The following limitations apply to all Content Types that use this control:

 The name of the field containing the sys_WebImageFX control must be uploadfilephoto.

 Because the name of a field containing the sys_WebImageFX control must be

uploadfilephoto, a Content Type cannot have more than one sys_WebImageFX control. If it

does, the additional controls will not be able to upload images.

 The names of fields in the Content Type that sys_FileInfo updates (filename, type, size, and

extension) must be prefixed with uploadfilephoto. For example, uploadfilephoto_filename,

uploadfilephoto_type, uploadfilephoto_size, uploadfilephoto_ext. A Content Editor that

contains a sys_WebImageFX control cannot also contain a sys_File control; if it does the

sys_File control will not be able to upload a file.

NOTE: The first time you open a Content Editor that uses the sys_WebImageFX control in your Web

browser, a dialog will prompt you to install WebImageFX. Follow the installation instructions in the

dialog. After you initially install WebImageFX, you will not have to install it again.

Creating an Internal Lookup Query

When you use the sys_DropDownSingle, sys_CheckBoxGroup, and sys_RadioButtons controls, or any

custom controls that require a list of entries, you may choose to derive the choices for the control from an

existing CM System table using a query. You should create a separate CM System application for these

internal lookup queries.

To create an internal lookup query:

1 In the Rhythmyx Workbench, go to the XML Server view and create a new application. For

details about creating a new application, see the topic "Creating a New Application" in the

Rhythmyx Workbench Help.

2 Drag the Rhythmyx/DTD/sys_Lookup.dtd file onto the application.

3 From the popup menu, choose Query.

4 Right-click on the sys_Lookup XML and select Properties to open the Resource Editor.

5 Add the table(s) containing the content that you want as list values.

6 Open the mapper and map table values to the sys_Lookup Value and PSXDisplayText

elements.

7 Optionally, add a Result Pager to sort the list results.

8 Right-click the sys_Lookup XML resource and choose Request Properties.

9 Change the name of the sys_Lookup.XML resource to the custom name you want to use to a

and click [OK].

10 Save and close the application.

Chapter 2 Content Reference 73

11 Go to the Content view and open the Content Type where you want to use this lookup.

12 Open the Control Properties dialog and on the Choices tab, specify the lookup resource you

just created.

13 Click the [OK] button to close the Control Properties dialog.

14 Save the Content Type.

74 CM System Technical Reference Manual

Content Editor System Definition Reference

The following table describes the fields defined in the Content Editor System Definition that are eligible

to be included in Content Editors. By default, all of these fields are defined with the following property

values:

Treat data as binary: No

Show in Preview: Yes

Allow this field to be searched: Yes

Name

Label

Mandatory

Comments

sys_communityid Community Id Yes Defined when the Content Item is

created and never modified afterwards.

By default, value is derived from the

currently logged Community of the

user that creates the Content Item.

Hidden by default.

If visible, options include all

Communities defined in the system.

sys_contentexpirydate Content expiration date No

sys_contentstartdate Content start date Yes Date format is yyyy-MM-dd

sys_currentview (None) Yes Hidden Input.

sys_hibernateVersion (None) Yes Hidden Input. Field only used

internally, but must be included on all

Content Editors.

sys_lang Locale ID Yes Defined when the Content Item is

created and never modified afterwards.

By default, value is derived from the

currently logged Locale of the user that

creates the Content Item.

Hidden by default.

If visible, options include all Locales

defined in the system.

sys_pathname Path name No

sys_pubdate Publication date No

sys_reminderdate Reminder date No

sys_suffix Suffix No Defaults to ".html".

Hidden by default.

sys_title System title Yes This field cannot be empty and must be

unique within the folder.

Chapter 2 Content Reference 75

Name

Label

Mandatory

Comments

sys_workflowid Workflow Yes Hidden by default.

The next table describes fields defined in the Content Editor System Definition that are not eligible to be

included in Content Editors. These fields are used mostly for processing of Content Items or to provide

human-readable information for ID fields defined in the system definition. The value of some of these

fields is computed at runtime. Those fields are not eligible to be searched, but, like all fields in the system

definition, can be included in Display Formats.

Name

Label

Searchable

Comments

sys_assignees Assignees No Computed.

sys_assignmenttype Assignment type No Computed.

Valid values include:

 None

 Reader

 Assignee

 Admin

sys_assignmenttypeid Assignment type ID No Computed.

sys_checkoutstatus Checkout status No Computed.

sys_communityname Community Name Yes

sys_contentcreatedby Created by Yes Defined when the Content Item is

created and never modified

afterwards

sys_contentcreateddate Created on Yes Defined when the Content Item is

created and never modified

afterwards.

sys_contentcheckoutusername Checked out user

name
Yes

sys_contentid Content id Yes Defined when the Content Item is

created and never modified

afterwards.

sys_contentlastmodifieddate Last modified date Yes

sys_contentlastmodifier Last modified by Yes

sys_contentstateid Workflow State ID Yes

sys_contenttypeid Content Type Yes Defined when the Content Item is

created and never modified

afterwards.

sys_contenttypename Content Type Name Yes

sys_folderid Folder Path Yes

sys_localename Locale Name Yes

76 CM System Technical Reference Manual

Name

Label

Searchable

Comments

sys_objecttype Object type No Defined when the Content Item is

created and never modified

afterwards.

sys_publishabletype Publishable status No Computed

sys_relevancy Rank Yes This field is used to provide the

relevancy ranking returned by the

external search engine. The field

value is overwritten by the search

engine at the time the search

results are processed. If no rank is

available, or if the search was

performed against the internal

engine, the value is left at -1.

sys_siteid Site Yes

sys_statename Workflow State Name Yes

sys_thumbnail Thumbnail Yes

sys_variantid Variant Yes

sys_variantname Variant Name Yes

sys_workflowname Workflow Name Yes

Chapter 2 Content Reference 77

Search Reference

This section explains what search indexing (see page 73) is, and how CM System performs indexing, as

well as defining some of the specialized plugins that CM System uses to index search terms.

CM System uses text extractors and text analyzers to perform search engine indexing. This section

explains the purpose of each type of java plugin, describes what CM System provides out of the box, and

discusses how administrators can override the out of the box plugins.

 Text Extractors (see below)

 Text Analyzers (see page 74)

Search Indexing

Search indexing in CM System is the process of extracting text from fields in content items, parsing the

text for search terms, and storing the search terms in files. Search indexing occurs when a content item is

created or when an administrator enters a console command to perform indexing.

The process of indexing involves a text extractor copying strings of text from content fields and a text

analyzer parsing the text to find words and phrases that CM System stores as search terms.

Text Extractors

A text extractor runs when CM System indexes content items for searching. CM System first identifies

each field's mime type, and then chooses the text extractor associated with that mime type.

Out of the box text extractors support the Mime types in the following table. The table lists the file types

or text formats associated with the supported Mime types.

Format or File Type

Mime Types

HTML text/html

Microsoft Excel application/vnd.ms-excel

application/vnd.ms-excel.sheet.macroEnabled.12

application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

Microsoft Power Point application/mspowerpoint

application/vnd.ms-powerpoint.presentation.macroEnabled.12

application/vnd.openxmlformats-officedocument.presentationml.presentation

Microsoft Word application/msword

application/vnd.ms-word.document.macroEnabled.12

application/vnd.openxmlformats-officedocument.wordprocessingml.document

PDF application/pdf

Plain Text text/plain

78 CM System Technical Reference Manual

Format or File Type

Mime Types

RTF application/rtf

application/x-rtf

text/richtext

XML text/xml

Administrators can write custom text extractors using the IPSLuceneTextConverter interface (see the

JavaDoc for help). Custom text extractors override out-of-the-box text extractors for the mime types that

the administrator specifies when adding them to the Server Administrator's Full-Text Search tab. For more

information, see the topic How to Override the Default Text Extractor in the Server Administrator online

help.

Text Analyzers

A text analyzer runs after text is extracted from content items. The text analyzer parses the extracted text

strings into search terms for indexing.

CM System determines which text analyzer to use by determining the language of the text from the

content item's Locale and choosing the text analyzer associated with that language.

Out of the box text analyzers support the following languages:

 English

 French

 German

 Italian

 Portuguese

 Spanish

 Danish

 Dutch

 Finnish

 Norwegian

 Russian

 Swedish

 Chinese

 Japanese

 Korean

Administrators can write custom text analyzers using the IPSLuceneAnalyzer interface (see the JavaDoc

for help). A custom text analyzer can be associated with one or more Locales, and the administrator must

register it separately for each Locale in the CM System Server Administrator. Once registered with a

Locale, a custom text analyzer overrides the out-of-the-box text analyzer for that Locale. For more

information, see the topic How to Override the Default Text Analyzer in the Server Administrator online

help.

75

C H A P T E R 3

Assembly Reference

The assembly process transforms the Content Items managed by the system into the published outputs:

page elements and pages. The assembly process is recursive, allowing any number of formatting and

merge transformations to take place before completing the final assembled output. The assembly process

can produce either a complete HTML page or partially-assembled page elements published to application

servers and databases.

The first section of this chapter outlines the logical architecture and processing of the Assembly engine.

The next section details how CM System uses the Velocity templating technology to produce text (i.e.,

HTML) outputs. A third section is reference to the extensions provided for assembly, while the fourth a

reference to the assembly API.

76 CM System Technical Reference Manual

Logical Architecture and Processing:
Assembly

This section is comprised of four subsections. This first details the logical architecture of the assembly

engine. A second section describes the assembly process for a specific Content Item. The recursive

nature of assembly is examined in the third part, while the final part describes how Managed Navigation is

assembled.

Logical Architecture: Assembly

The centerpiece of the assembly engine is the Assembly Service, which receives requests for assembled

output and produces a complete set of data for assembly. The actual assembly is performed by an

assembly plugin (see below for details).

The following graphic illustrates the logical architecture of the Assembly engine:

Figure 21: Logical architecture of the Assembly engine

Chapter 3 Assembly Reference 77

The Assembly services rests on a utility layer composed of:

 The Content Manager

 JEXL (Java Expression Language; for additional details, see Java Expression Language

(JEXL) on page 132).

 Hibernate

 Spring

 Other CM System services

In general, the interface to the Assembly Service is the Assembly Servlet, which receives requests and

passes them to the Assembly Service for processing. The Assembly Servlet is the preferred interface, but

it is possible to access the Assembly Service directly if necessary.

The Assembly Service also interacts with the following extensions:

 Assembly plugins

Assembly plugins receive the dataset produced by the Assembly Service and process it to

produce an assembled output. CM System ships with a complete set of Assembly plugins
that handle standard assembly cases. The following standard Assembly plugins are shipped

with CM System:

 Velocity

The Velocity Assembly plugin is the standard text assembly plugin shipped with CM

System. It produces arbitrary text outputs, including HTML and XML, by merging

Content Item data passed by the Assembly Services with formatting defined in a

Velocity Template.

 Legacy

The Legacy Assembly plugin is a wrapper that invokes a legacy XSLT assembly

application. This Assembly plugin is provided to ensure backwards-compatibility

with earlier versions of CM System for CM System Version 6.0 and later.

 Binary

The Binary Assembly plugin is the standard plugin used to produce binary outputs.

It produces the bound binary value (defined in the $sys.binary binding) as output.

The MIME type is output from the bound value of $sys.mimetype as well.

 Dispatch

The Dispatch Assembly plugin provides conditional Template processing using a

conditional binding. The Template select by the conditional processing produces an

output as if it had been called directly.

 Debug

The Debug Assembly plugin is used for debugging Templates. It is invoked by

adding the HTTP parameter sys_debug="true" to the assembly URL. This

plugin returns the results of all bindings and bound Slots. (NOTE: Debug works

differently in the Legacy Assembly plugin. Debug output of the Legacy Assembly

plugin is the plain text XML document produced by the assembly request handler.)

78 CM System Technical Reference Manual

 Database Publishing

The Database Publishing Assembly plugin generates XML output used to publish

content to databases.

 Slot Content Finders

Slot Content Finders are extensions that determine the list of Content Items that can

potentially be included in a Slot when assembling a Content Item. CM System ships with a

set of four standard Slot Content Finders:

 sys_RelationshipContentFinder

This Content Finder is the standard Content Finder used to retrieve a list of Content

Items manually assigned to a Slot.

 sys_AutoSlotContentFinder

This Content Finder automatically generates a list of related Content Items based on

a query defined when assigning the Content Finder to a Slot.

 sys_LegacyAutoSlotContentFinder

This Content Finder automatically generates a list of related Content Items using a

legacy XML query resource.

 sys_ManagedNavContentFinder

This Content Finder generates a Managed Navigation tree for us in Managed

Navigation Slots. For additional details about Managed Navigation, see "Managed

Navigation" in the CM System Implementation Guide.

 Item Filters and Filter Rules

While Slot Content Finders define a potential list of related Content Items to assemble, the

final list of related Content Items actually assembled is determined by the Item Filter that is

run on the list of related Content before executing the assembly. An Item Filter defines a set

of Filter Rules that will be applied to the list of related Content Items. Filter Rules are

extensions that define the rules to use to filter the list of related Content Items to determine

the final list of Content Items that will be processed. The following standard Filter Rules are

shipped with CM System:

 sys_filterByPublishableFlag

Filters based on value of the Publishable Flag of the State of the Content Item.

 sys_filterByFolderPaths

Filters based on the path of the Content Item.

 sys_filterBySitefolder

Used for cross-site linking.

Chapter 3 Assembly Reference 79

Assembly Processing

Assembly processing begins when an assembly request is submitted to the Assembly servlet. The

assembly request may originate in a variety of ways:

 a user requesting preview of a Content Item;

 a user requesting Active Assembly of a Content Item;

 a publishing request for an assembled page;

 a request to assemble Slot contents.

The Assembly Servlet creates an Assembly Item. At this point, the Assembly Item consists of the

following data:

 the Content ID and Folder ID;

 Context variables;

 the ID or Name (if derived from sys_template) of the Template to use when assembling the

Content Item;

 any HTTP parameters submitted with the request.

Next, the Template is loaded into memory.

Following loading of the Template, the Content Item data is loaded into the the Assembly Item as a Java

Content Repository (JCR) Node and Property Structure. The Content Item is loaded as a JSR-170 Node

containing one Property object per Content Item field. Simple children (children that are edited directly

within the parent Content Item) are loaded as multi-value Property objects of the JCR Node. Complex

children (children that are edited in a popup Detail Editor) are loaded as child Node objects of the parent

Node. Each child node is comprised of a set of Property objects containing the child field data.

After the Content Item data has been loaded, Variable bindings are calculated to produce final binding

values.

At this point, the Assembly plugin is invoked. An Assembly plugin takes one parameter (item), whose

value is the Assembly Item created by the earlier processing.

The resulting assembled Content Item is then returned to the requestor.

80 CM System Technical Reference Manual

The following flowchart illustrates the overall process:

Figure 22: Assembly Processing

Assembly Plugin Processing

In most cases, Assembly plugin processing is simple. The Binary plugin retrieves the binary data supplied

by the value of the $sys.binary binding. The Dispatch plugin calls the Template specified by the

conditional processing in the bindings. The Debug Assembler returns all content Item node properties and

the results of all binding calculations.

The Velocity plugin, which is used to assemble text content, is more complicated. When the Velocity

plugin receives an an Assembly Item, it invokes the Velocity engine to assemble the dynamic content into

the Template. When it encounters a Slot, the plugin invokes the Slot Content Finder extension specified

for that Slot to retrieve the list of related Content Items to add to that Slot. Slot Content Finder extensions

take the following parameters:

 the ID of the Content Item that owns the Slot;

 the Slot for which to find the related Content Items (as IPSTemplateSlot); and

Chapter 3 Assembly Reference 81

 a map of parameters (the specific parameters are defined by the individual Content Finder

extension).

The Content Finder uses these parameters to define a preliminary list of related Content Items to include

in the Slot. The Content Finder then invokes an Item Filter to filter the list. An Item Filter consists of a

set of Filter Rule extensions. Input parameters to Filter Rules include the list of Content Items to filter and

a map or parameters (the specific parameters are defined by individual Filter Rule extensions). Each Filter

Rule returns a list of Content Items that have passed the Filter Rule. Filter Rules are processed in the

order in which they are specified in the Item Filter. Thus Filter Rules specified later in the Item Filter are

only applied to the list Content Items that have been returned by the Filter Rules specified earlier.

82 CM System Technical Reference Manual

The final list of related Content Items is then submitted to the Assembly engine to be assembled.

The following flowchart illustrates the processing of the Velocity plugin:

Figure 23: Velocity assembly processing

Chapter 3 Assembly Reference 83

Recursive Content Roll-up

CM System assembles content into an output page by applying the fixed formatting to the local content of

the content item, then recursively rolling up any snippets into the slots. The snippets are in turn assembled

by applying the fixed formatting to the local content of the snippet, then recursively rolling up any child

snippets into their slots, and so on. Each level of recursion includes only its own local content and

templates and the data to identify the Content Items one level down. No level needs information about

any level deeper than the next one down.

When CM System assembles a page:

1 An assembly request is submitted to the Assembly engine.

2 The engine processes the request and invokes the Assembly plugin. Recursive rollup takes

place in either the Velocity plugin or the Database Publishing plugin.

3 When the plugin encounters a Slot, the Content Finder assigned to that Slot is invoked to

determine a list of related Content Items to assemble. The Content Finder invokes an Item

Filter to filter that list and output a final list of related Content Items.

4 Each related Content Item is itself submitted to the Assembly engine. Assembly processing

starts from the beginning for each submitted Content Item. Each of these Content Items will

be returned as a Snippet.

5 If any of the related Content Items themselves contain Slots, Step 3 is repeated for each Slot.

As assembly of each related Content Item is completed, the assembled Content Item is added

to the page.

6 When the recursive assembly of the Snippets is complete and all local content has been

formatted, CM System returns the Snippet or Page.

84 CM System Technical Reference Manual

The following graphic illustrates the process:

Figure 24: Recursive Rollup

Chapter 3 Assembly Reference 85

Velocity in CM System

Velocity is the standard text templating languages used in CM System to produce text output. CM

System supports all Velocity functionality.

CM System is shipped with a complete set of Velocity macros to handle standard assembly tasks, but

you can also define your own Velocity macros. Standard macros are defined in the file

<Rhythmyxroot>/sys_resources/vm/sys_assembly.vm. No customer macros should be

added to this file, as it will be overwritten on upgrade. Custom macros should be defined in the file

<Rhythmyxroot>/rx_resources/vm/rx_assembly.vm.

Note that there is no system of precedence in Velocity, so you cannot override a system macro with a

custom macro. Instead, you must define a custom macro and use that instead.

Best practice for defining a custom macro is to copy the system macro that most closely matches the

functionality you want from the sys_assembly.vm to rx_assembly.vm, change the name, then

modify it.

If you want to allow Active Assembly in a macro, you must include the #startAA<object> and

#endAA<object> macros appropriate to that type of object:

 Page

#startAAPage

#endAAPage

 Field

#startAAField

#endAAField

 Slot

#startAASlot

#endAASlot

 Snippet

#startAASnippet

#endAASnippet

Whenever you modify a macro, preview a Content Item, then add the HTTP parameter

sys_reinit=true to the URL and resubmit the URL. This parameter re-initializes the Velocity

engine, which reloads the macros. If you do not submit a request with this parameter, the cached macros
will be used, which will not include the changes you have made

For details about Velocity and implementing Velocity macros, consult one of the following references:

 Joseph D. Gradecki and Jim Cole, Mastering Apache Velocity

 Rob Harrop, Pro Jakarta Velocity

86 CM System Technical Reference Manual

Embedding Velocity Code in Templates

In addition to using macros, you can embed Velocity code directly into Template Markup. Use this option

when you want to produce a specific Velocity result in a single Template rather that across several

Templates. (If you use the same code in more than one Template, writing a macro instead makes more

sense.

When embedding Velocity code in a Template, follow the same rules as when writing a macro.

Specifically, when defining a CM System object in your Velocity code (a Field, a Slot, or a Snippet),

you must use the #startAA<object> and $endAA<object> macros within your Velocity markup (see

"Velocity in CM System" on page 85).

Standard Velocity Macros

Standard macros shipped with CM System can be found in the Snippet Drawer. (NOTE: You can also add

custom macros to the Snippet Drawer; for details see Adding Macros to the Snippet Drawer on page 94.)

Standard macros are classified into three categories:

 Field macros

The macros in this category are used to add Content Item field data to the Template.

 Slot macros

The macros in this category are used to add Slots to the Template.

 Slot Miscellaneous macros and prebuilds.

Miscellaneous macros do not fit in the other two categories. Prebuilds are prebuild examples

of pages and common Managed Navigation Templates. (NOTE: Only the miscellaneous

macros will be documented below. Prebuilds are provided as examples for the development

of your own Templates.)

NOTE: Macros that begin with a prefix of two underscores ("

and are not documented.

macroname") are internal system macros

Chapter 3 Assembly Reference 87

Field Macros

Field macros are used to add Content Item field data to a Template. They are found in the Rx Field

Macros section of the Snippet Drawer.

#field

#field(fieldname)

This is the standard macro used to add field data to a Template. When Active Assembly is invoked, fields

that are added to the Template using this macro will be displayed with Active Assembly decorations

(meaning the data in the field can be edited. If this field does not have a value, an error will be generated

when assembling the Template.

Parameters

Parameter

Description

fieldname Name of the field whose data will be added to the Template during assembly. If the specified

field does not have a value, an error will be returned when assembling the Template.

#field_if_set

#field_if_set(before,field,after)

This macro is used to add field data to the Template if the field is optional in the Content Editor (meaning
it may not contain data). If the field contains no data, when assembling the Template, it is simply omitted

from the assembled output.

The beforetext and aftertext parameters can be used to add formatting that will only be included in the

assembled output if the field is included.

If the field is included in the assembled output, it will include Active Assembly decorations in Active

Assembly mode.

Parameters

Parameter

Description

before Text that will be included in the assembled output before the field value. Generally used to add

HTML formatting that will be included in the assembled output only if the field is included.

fieldname Name of the field whose data will be added to the Template during assembly. If the specified

field does not have a value, it will be omitted from the assembled output.

after Text that will be included in the assembled output after the field value. Generally used to add

HTML formatting that will be included in the assembled output only if the field is included.

88 CM System Technical Reference Manual

#fieldLink

#fieldlink(fieldname,$pagelink)

This macro is used to add field data to the Template when:

 the field data will be the contents of an anchor tag (<a>) ; and

 you want users to be able to follow the link (users can follow the link by hold down the ALT

key while clicking on it; double-clicking on the link opens the field for editing).

If you use any other field macro for the contents of an anchor tag, users will not be able to follow the link;

clicking on the link will open the field for editing.

Parameter

Description

fieldname Name of the field whose data will be added to the Template during assembly. If the specified

field does not have a value, an error will be returned when assembling the Template.

$pagelink Required binding parameter. The value of this parameter must be $pagelink.

#displayfield

#displayfield(fieldname)

This macro is used to add field data to the Template when the field data is not intended to be eligible for
Active Assembly, such as when adding the title to the HTML header. When Active Assembly is invoked,

fields that are added to the Template using this macro will not be displayed with Active Assembly

decorations (in other words, the field is not eligible to be edited in Active Assembly). If this field does not

have a value, an error will be returned when assembling the Template.

Parameters

Parameter

Description

fieldname Name of the field whose data will be added to the Template during assembly. If the specified

field does not have a value, an error will be returned when assembling the Template.

#datefield

#datefield(fieldname,fieldformat)

This macro is used to add date fields to the Template. When assembled, the field data will be formatted
using the pattern specified in the format parameter. When Active Assembly is invoked, fields that are

added to the Template using this macro will be displayed with Active Assembly decorations (meaning the

data in the field can be edited). If this field does not have a value, an error will be generated when

assembling the Template.

Parameters

Parameter

Description

fieldname Name of the field whose data will be added to the Template during assembly. If the specified

field does not have a value, an error will be returned when assembling the Template.

fieldformat The format that will be applied to the field data when assembled into the output.

Chapter 3 Assembly Reference 89

#displaydatefield

#displaydatefield(fieldname,fieldformat)

This macro is used to add date fields to the Template, when the field data is not intended to be eligible for
Active Assembly. When assembled, the field data will be formatted using the pattern specified in the

format parameter. When Active Assembly is invoked, fields that are added to the Template using this

macro will not be displayed with Active Assembly decorations (in other words, the field is not eligible to

be edited in Active Assembly). If this field does not have a value, an error will be returned when

assembling the Template.

Parameters

Parameter

Description

fieldname Name of the field whose data will be added to the Template during assembly. If the specified

field does not have a value, an error will be returned when assembling the Template.

fieldformat The format that will be applied to the field data when assembled into the output.

#datefield_if_set

#datefield_if_set(before,field,format,after)

This macro is used to add date field data to the Template if the field is optional in the Content Editor

(meaning it may not contain data). If the field contains no data, when assembling the Template, it is

simply omitted from the assembled output.

The beforetext and aftertext parameters can be used to add formatting that will only be included in the

assembled output if the field is included.

When assembled, the field data will be formatted using the pattern specified in the format parameter.

If the field is included in the assembled output, it will include Active Assembly decorations in Active

Assembly mode.

Parameters

Parameter

Description

before Text that will be included in the assembled output before the field value. Generally used to add

HTML formatting that will be included in the assembled output only if the field is included.

field Name of the field whose data will be added to the Template during assembly. If the specified

field does not have a value, it will be omitted from the assembled output.

format The format that will be applied to the field data when assembled into the output.

aftter Text that will be included in the assembled output after the field value. Generally used to add

HTML formatting that will be included in the assembled output only if the field is included.

90 CM System Technical Reference Manual

Slot Macros

Slot macros are used to add Slots and their Contents to a Template. They are found in the Rx Slot Macros

section of the Snippet Drawer.

#slot_simple

#slot_simple(slotname)

The simplest Slot macro, #slot_simple inserts the Slot Contents with no additional formatting. If the Slot
contains no related Content Items, it is omitted from the assembled output.

Parameters

Parameter

Description

slotname Name of the Slot to add to the Template.

#slot_wrapped

#slot_wrapped(slotname,startslottext,endslottext)

This macro adds the contents of the Slot, with each related Content Item wrapped in the in the text

specified by the beforetext and aftertext parameters. If the Slot contains no related Content Items, it is

omitted from the assembled output.

Parameters

Parameter

Description

slotname Name of the Slot to add to the Template .

startslottext Text that will be included in the assembled output before each related Content Item in the Slot.

Generally used to add HTML formatting for each individual Content Item. (For users familiar

with earlier versions of CM System, the beforetext and aftertext parameters are equivalent to

the Snippet Wrapper.)

endslottext Text that will be included in the assembled output after each related Content Item in the Slot.

Generally used to add HTML formatting for each individual Content Item. (For users familiar

with earlier versions of CM System, the beforetext and aftertext parameters are equivalent to

the Snippet Wrapper.)

#slot

#slot(slotname,header,before,after,footer,params)

This macro adds the contents of the Slot to the Template, wrapped in HTML formatting. Each related
Content Item wrapped in the in the text specified by the beforetext and aftertext parameters. The Slot

contents as a whole are wrapped in the text specified by the header and footer parameters. If the Slot

contains no related Content Items, it is omitted from the assembled output.

Parameters

Parameter

Description

slotname Name of the Slot to add to the Template .

Chapter 3 Assembly Reference 91

Parameter

Description

header Text that will be included in the assembled output before the contents of the Slot. Generally

used to add HTML formatting to wrap the Slot as a whole. For users familiar with earlier

versions of CM System, the header and footer are equivalent to the Slot Wrapper.

before Text that will be included in the assembled output before each related Content Item in the Slot.

Generally used to add HTML formatting for each individual Content Item. (For users familiar

with earlier versions of CM System, the beforetext and aftertext parameters are equivalent to

the Snippet Wrapper.)

after Text that will be included in the assembled output after each related Content Item in the Slot.

Generally used to add HTML formatting for each individual Content Item. (For users familiar

with earlier versions of CM System, the beforetext and aftertext parameters are equivalent to

the Snippet Wrapper.)

footer Text that will be included in the assembled output after the contents of the Slot. Generally

used to add HTML formatting to wrap the Slot as a whole. For users familiar with earlier

versions of CM System, the header and footer are equivalent to the Slot Wrapper.

params The extra parameters to pass to the slot content finder. The parameters can either be a Java

java.util.Map object, or a string that is encoded as a URL query, i.e.

name=value&name2=value2&... Generally, using a Java Map object is preferable; it is

required if the values of the parameters you want to pass include the ampersand ["&"] or

equals sign ("=") characters.

#node_slot

#node_slot(node slotname, header, before, after, footer, params) This

macro is used when both Velocity Templates and XSL Variants co-exist on the same system, generally
to implement Managed Navigation. Works like the full slot macro, but uses the Content Item specified
in the node parameter to expand the list of related Content Items in the Slot. Contents of

#node_slot are not eligible to be modified using Active Assembly.

Parameters

Parameter

Description

node The Content Item used to expand the list of related Content Items in

the Slot.

slotname Name of the Slot to add to the Template .

header Text that will be included in the assembled output before the contents

of the Slot. Generally used to add HTML formatting to wrap the Slot

as a whole. For users familiar with earlier versions of CM System,

the header and footer are equivalent to the Slot Wrapper.

before Text that will be included in the assembled output before each related

Content Item in the Slot. Generally used to add HTML formatting for

each individual Content Item. (For users familiar with earlier

versions of CM System, the beforetext and aftertext parameters

are equivalent to the Snippet Wrapper.)

92 CM System Technical Reference Manual

Parameter

Description

after Text that will be included in the assembled output after each related

Content Item in the Slot. Generally used to add HTML formatting for

each individual Content Item. (For users familiar with earlier

versions of CM System, the beforetext and aftertext parameters

are equivalent to the Snippet Wrapper.)

footer Text that will be included in the assembled output after the contents

of the Slot. Generally used to add HTML formatting to wrap the Slot

as a whole. For users familiar with earlier versions of CM System,

the header and footer are equivalent to the Slot Wrapper

params The extra parameters to pass to the slot content finder. The parameters

can either be a Java java.util.Map object, or a string that is encoded as

a URL query, i.e. name=value&name2=value2&...

#slot_page

#slot_page(slotname,header,before,after,footer,params)

This macro adds the contents of the Slot to the Template, wrapped in HTML formatting. Each related
Content Item wrapped in the in the text specified by the beforetext and aftertext parameters. The Slot

contents as a whole are wrapped in the text specified by the header and footer parameters. If the Slot

contains no related Content Items, it is omitted from the assembled output.

Parameters

Parameter

Description

slotname Name of the Slot to add to the Template .

header Text that will be included in the assembled output before the contents of the Slot. Generally

used to add HTML formatting to wrap the Slot as a whole. For users familiar with earlier

versions of CM System, the header and footer are equivalent to the Slot Wrapper.

before Text that will be included in the assembled output before each related Content Item in the

Slot. Generally used to add HTML formatting for each individual Content Item. (For users

familiar with earlier versions of CM System, the beforetext and aftertext parameters are

equivalent to the Snippet Wrapper.)

after Text that will be included in the assembled output after each related Content Item in the Slot.

Generally used to add HTML formatting for each individual Content Item. (For users

familiar with earlier versions of CM System, the beforetext and aftertext parameters are

equivalent to the Snippet Wrapper.)

footer Text that will be included in the assembled output after the contents of the Slot. Generally

used to add HTML formatting to wrap the Slot as a whole. For users familiar with earlier

versions of CM System, the header and footer are equivalent to the Slot Wrapper.

params The extra parameters to pass to the slot content finder. The parameters can either be a Java

java.util.Map object, or a string that is encoded as a URL query, i.e.

name=value&name2=value2&...

itemsPerPage The number of Slot Content Items to include on each output HTML page

pageNumber The current page being rendered; generally $sys.page. For example, $pageNumber=if

($sys.page != null) {$sys.page;} else {1;}

Chapter 3 Assembly Reference 93

Miscellaneous Macros

The macros in this category do not fit in either of the other categories. The are located in the

Miscellaneous and Prebuild section of the Snippet Drawer.

#inner

#inner()

This macro is used with Global Templates to add the page content top the Global Template output. This
macro has no parameters.

#children

#children(childname,template,beforetext,aftertext,header,footer)

This macro is used on page Templates to add child editor data to the Page Template output. If the Content

Item has no child Content Items, the formatted results of this macro are omitted from the assembled

output.

Parameters

Parameter

Description

childname Name of the child Field Set to add to the Template .

template The Template used to format the content from the child editor.

beforetext Text that will be included in the assembled output before each child

Content Item in the Slot. Generally used to add HTML formatting for

each individual child Content Item.

aftertext Text that will be included in the assembled output after each child

Content Item in the Slot. Generally used to add HTML formatting for

each individual child Content Item.

header Text that will be included in the assembled output before the contents

of the Slot. Generally used to add HTML formatting to wrap the Slot

as a whole.

footer Text that will be included in the assembled output after the contents

of the Slot. Generally used to add HTML formatting to wrap the Slot

as a whole.

#pager

#pager($pagecount $pagenumber $previous_markup $pagetext

$next_markup)

This macro is used on page Templates to add child editor data to the Page Template output. If the Content

Item has no child Content Items, the formatted results of this macro are omitted from the assembled

output.

Parameters

Parameter

Description

$pagecount The total number of pages to be generated. Usually $sys.pagecount

94 CM System Technical Reference Manual

Parameter

Description

$pagenumber The current page being generated. Usually $sys.page

$previous_markup The markup to render in the previous link. The previous link is

rendered if the page number is greater than one. Anything valid for

an anchor tag is allowed in this parameter.

$pagetext Text to render that could, for example, indicate where the user is in

the sequence of pages. For example, “page 3” or “page 2 of 5”. The

string is usually defined in the bindings; for example: $pagetext

= “Page “ + $sys.page + “of” + $sys.pagecount.

$next_markup The markup to render in the next link. The next link is rendered if the

page number is less than the total count of pages. Anything valid for

an anchor tag is allowed in this parameter.

#linkback_head

#linkback_head()

This macro is used to add linkback functionality to HTML pages generated by Percussion CM Server.

Linkback allows a user to go directly from a published HTML page to the Percussion CM System Content

Item from which the page is generated. The macro adds the following linkback meta tag code to the

Template:

<meta name="perc_linkback" id="perc_linkback"

content="$rx.linkback.encode($sys.params)"/>

Percussion CM System uses this code to process linkback.

The macro should be added to the header of Global Templates or to the header of Page Templates that do

not use Global Templates.

This macro has no parameters

Adding Macros to the Snippet Drawer

If you define a custom macro, you may want to add it to the Snippet Drawer of your Rhythmyx

Workbench to make it easy to use. You can share the Snippet Drawer entry with other CM

System implementers in your organization.

Custom macros should be added to a new Category rather than to one of the standard Categories shipped

with CM System. To add a custom Category:

1 In the Rhythmyx Workbench, right-click in the Snippet Drawer and from the popup menu,
choose Customize. (Note: do not click on the "Snippets" tab. Clicking on the tab displays a

different popup menu that does not include the Customize option.

Chapter 3 Assembly Reference 95

The Rhythmyx Workbench displays the Customize Palette dialog.

Figure 25: Customize Palette dialog

2 In the Button bar, click the [New] button and choose New Category. (Note: You must add

custom Snippets to a unique category. They cannot be added to the categories shipped with
CM System.)

96 CM System Technical Reference Manual

The Rhythmyx Workbench adds a new Snippet category with the default name Unnamed

Category.

Figure 26: Customize Palette dialog with Unnamed Category

3 Enter a new Name for the Category.

4 Click the [OK] button to save your changes.

To add a a new macro

1 Open the Customize Palette dialog as described in Step 1 of adding a custom Category.

2 Select the custom Category to which you want to add the macro. Macros should not be added

to the standard Categories shipped with CM System.

3 In the Button bar, click the [New] button and choose New Item.

4 The Customize Palette dialog displays the Template panel with the default name Unnamed

Template.

5 Enter the Name of the macro and an optional Description.

6 To add macro parameters,

a) Click the [New] button next to the Variables table.

The Custom Palette dialog adds opens a new row with the value name_1 in the Name
column.

b) Change the default value of the Name to the name of the first parameter in your macro.

Chapter 3 Assembly Reference 97

c) Optionally, enter a Description.

d) Optionally, specify a Default value for the parameter. This value will be used when

processing the Template if no value is specified for the parameter in the Template markup.

e) Repeat Steps a-d for each parameter in the macro.

7 In the Template Pattern field, enter the macro as you want it added to the Template HTML

markup. You can use the [Insert Variable Placeholder] button to add macro parameters or add

them manually.

8 Click the [OK] button to save the macro entry.

To copy and modify an existing macro entry:

1 In the Snippet Drawer, right-click on the macro you want to copy and from the popup menu,

choose Copy.

2 Open the custom macro category to which you want to add the macro. Right-click and from

the popup menu, choose Paste.

3 Open the Customize Palette dialog as described in Step 1 of adding a custom Category.

4 Modify the macro data to match your custom macro.

5 Click the [OK] button to save the macro.

98 CM System Technical Reference Manual

Assembly Extensions

This section documents extension types used only in content assembly:

 Assembly Plugins (see below)

 Content Finders (see "Slot Content Finders" on page 102)

The following extension types, which are used in both assembly and publishing, are documented

elsewhere:

 JEXL functions (see "JEXL Extensions" on page 132)

 JSR-170 queries (see "Java Content Repository" on page 143)

 Item Filter rules (see "Item Filters and Filter Rules" on page 144)

 Location Scheme Generators (see "Location Scheme Generator Extensions" on page 147)

Assembly Plugins

Assembly plugins perform the actual assembly of content output, either directly by invoking an underlying

template engine such as Velocity.

The output produced by an assembly plugin depend on the configuration of the plugin and the parameters

defined for the Assembly Item input to the plugin.

Assembly plugins must implement the interface IPSAssembler They must also explicitly implement the

interface IPSExtension. (NOTE: The implementation must be thread safe; for details see General

Requirements of Extensions on page 180.)

Chapter 3 Assembly Reference 99

binaryAssembler

Passes binary Content Item data directory to the output.

Class Name

com.percussion.services.assembly.impl.plugin.PSBinaryAssembler

Interface

com.percussion.extension, com.percussion.services.assembly.IPSAssembler

Context

global/percussion/assembly/

Category String

assembly

Parameters

None

databaseAssembler

Generates an XML document to match the requirements of the database publisher handler.

Class Name

com.percussion.services.assembly.impl.plugin.PSDatabaseAssembler

Interface

com.percussion.extension, com.percussion.services.assembly.IPSAssembler

Context

global/percussion/assembly/

Category String

assembly

Parameters

None

100 CM System Technical Reference Manual

debugAssembler

Generates debug output regardless of the specified Template.

Class Name

com.percussion.services.assembly.impl.plugin.PSDebugAssembler

Interface

com.percussion.extension, com.percussion.services.assembly.IPSAssembler

Context

global/percussion/assembly/

Category String

assembly

Parameters

None

dispatchAssembler

Chooses a Template based on the defined bindings and invokes assembly of the result.

Class Name

com.percussion.services.assembly.impl.plugin.PSDispatchAssembler

Interface

com.percussion.extension, com.percussion.services.assembly.IPSAssembler

Context

global/percussion/assembly/

Category String

assembly

Parameters

None

Chapter 3 Assembly Reference 101

legacyAssembler

Assembles content using a legacy query application and stylesheet.

Class Name

com.percussion.services.assembly.impl.plugin.PSLegacyAssembler

Interface

com.percussion.extension, com.percussion.services.assembly.IPSAssembler

Context

global/percussion/assembly/

Category String

assembly

Parameters

None

velocityAssembler

Assembles the submitted Content Item using the using the Velocity engine and the submitted Template.

Class Name

com.percussion.services.assembly.impl.plugin.PSVelocityAssembler

Interface

com.percussion.extension, com.percussion.services.assembly.IPSAssembler

Context

global/percussion/assembly/

Category String

assembly

Parameters

None

102 CM System Technical Reference Manual

Slot Content Finders

Slot Content Finders generate a list of related Content Items to be added to a Slot during assembly.

Content Finders must also be able to invoke Item Filters to filter the initial list to a final list.

Slot Content Finders must implement the interface IPSSlotContentFinder. (NOTE: The implementation

must be thread safe; for details see General Requirements of Extensions on page 180.)

sys_AutoSlotContentFinder

Automatically generates a list of related Content Items for the associated Slot based on the specified Java

Content Repository query. This list if filtered by an Item Filter then submitted to be assembled using the

Template specified in the template parameter.

Class Name

com.percussion.services.assembly.impl.finder.PSAutoSlotContentFinder

Interface

com.percussion.services.assembly.IPSSlotContentFinder

Context

global/percussion/slotcontentfinder/

Parameters

Name

Data Type

Description

query String (Required) The JSR-170 "SQL" query to use to generate the base list of

Content Items for the slot.

type String The type of query. Options include sql and xpath (NOTE: Only

sql is currently supported). Defaults to sql if not specified.

template String (Required) The Template to use to format the Content Items returned.

Either the name or the ID may be specified.

max_results String The maximum number of items to return for the slot. Defaults to

unlimited.

mayHaveCrossS

iteLinks

String true/false. If the query is not restricted by path to the current site

this will allow links between sites to be created correctly.

sys_LegacyAutoSlotContentFinder

Uses a legacy query resource to automatically generate a list of related Content Items for the associated

Slot. When invoked, this Content Finder builds an internal request to the CM System resource specified in

the resource parameter. This request includes any parameters passed from the calling Template, as well as

the parameters of the ContentFinder itself. Note that if the calling Template specifies values for any

parameters of the Content Finder, the parameters passed from the Template override the parameters of the

Content Finder's association with the Slot.

Chapter 3 Assembly Reference 103

The returned XML document must conform to the sys_AssemblerInfo DTD. The document must consist

of a set of linkurl elements. Each linkurl element must include the attributes contentid and variantid. CM

System does not return an error if these attributes do not have a value, but the Slot will contain no content.

If a Slot using this Content Finder does not include any Content Items, check to be sure that the resource

is returning an XML document that meets the requirements.

Class Name

com.percussion.services.assembly.impl.finder.PSLegacyAutoSlotContentFinder

Interface

com.percussion.services.assembly.IPSSlotContentFinder

Context

global/percussion/slotcontentfinder/

Parameters

Name

Data Type

Description

resource String Specifies the CM System query resource to run to generate the list

of related Content Items. The query resource must conform to the

sys_AssemblerInfo DTD.

template String (Required) The Template to use to format the Content Items returned.

Either the name or the ID may be specified.

max_results String The maximum number of items to return for the slot. Defaults to

unlimited.

104 CM System Technical Reference Manual

sys_ManagedNavContentFinder

Returns the list of Content Items assigned to the Slot by users.

Class Name

com.percussion.services.assembly.impl.finder.PSNavSlotContentFinder

Interface

com.percussion.services.assembly.IPSSlotContentFinder

Context

global/percussion/slotcontentfinder/

Parameters

Name

Data Type

Description

node_to_return String If the value of this parameter is "self", the Navon associated with the

current Content Item is returned. If the value of this parameter is "root"

ot is not specified, then the Navtree is returned.

template String (Required) The Template to use to format the Content Items returned.

Either the name or the ID may be specified.

sys_RelationshipContentFinder

Returns the list of Content Items assigned to the Slot by users.

Class Name

com.percussion.services.assembly.impl.finder.PSRelationshipContentFinder

Interface

com.percussion.services.assembly.IPSSlotContentFinder

Context

global/percussion/slotcontentfinder/

Parameters

Name

Data Type

Description

template String (Required) The Template to use to format the Content Items returned.

Either the name or the ID may be specified.

max_results String The maximum number of items to return for the slot. Defaults to

unlimited.

Chapter 3 Assembly Reference 105

Name

Data Type

Description

order_by String Comma-separated list of fields to use to sort the list of related Content

Items. For each field specified, you can add either DESC to sort in

descending order or ASC to sort in ascending order (defaults to DESC if

neither is specified).

sys_TranslationContentFinder

Returns the list of Content Items associated in a Translation Relationship with the Content Item being

assembled.

Class Name

com.percussion.services.assembly.impl.finder.PSTranslationContentFinder

Interface

com.percussion.services.assembly.IPSSlotContentFinder

Context

global/percussion/slotcontentfinder/

Parameters

Name

Data Type

Description

template String (Required) The Template to use to format the Content Items returned.

Either the name or the ID may be specified.

max_results String The maximum number of items to return for the slot. Defaults to

unlimited.

order_by String Comma-separated list of fields to use to sort the list of related Content

Items. For each field specified, you can add either DESC to sort in

descending order or ASC to sort in ascending order (defaults to DESC if

neither is specified).

Writing Assembly Extensions

Use methods in the assembly service when performing assembly processing.

When writing a method that retrieves assembly design elements, the method should always call the

assembly service itself before calling any of its methods.

IPSAssemblyService asm = PSAssemblyServiceLocator.getAssemblyService();

106 CM System Technical Reference Manual

Obtaining Slots

To obtain a single Slot, use the findSlotByName method of the assembly service. Be sure you have called

the assembly service before attempting to use this method.

IPSTemplateSlot slot = asm.findSlotByName(slotName);

To obtain multiple Slots, use the findSlotsByNames method.

IPSTemplateSlot slots = asm.findSlotsByNames(slotNames);

Generating a List of Slot Contents

Once you have loaded a Slot, you can generate a list of the Content Items in that Slot:

String findername = slot.getFinderName(); IPSSlotContentFinder

finder = asm.loadFinder(findername); List<IPSAssemblyItem>

relitems = finder.find(item, slot, params); return relitems;

107

C H A P T E R 4

Workflow Reference

A Workflow is a business process that defines a sequence of processing stages in the content management

system. Workflows organize the content development and management process by defining the process,

controlling the progress of Content Items through the process, and controlling user access to Content

Items at particular points in the process. Each Content Item must exist in a Workflow, although a

particular Content Editor may provide a choice of Workflows.

Workflows exist separately from other elements of the content management system, but are fully

integrated into the system as whole. Content Editors require Workflows to function and the Publisher

must know the Workflow State of the Content Items to extract for publishing.

108 CM System Technical Reference Manual

Logical Architecture and Processing

This section is comprised of two subsections. The first details the logical architecture of the Workflow

engine. The second outlines how Content Items are processed by the Workflow engine.

Logical Architecture

The central architectural feature of the Workflow engine is the Workflow object itself, as illustrated in the

following graphic:

Figure 27: Logical architecture of the Workflow engine

Chapter 4 Workflow Reference 109

While the Workflow object itself does have some properties (namely the name of the Role assigned as the

Workflow Administrator and the name of the Initial State of the Workflow), it serves primarily as a

container for the other elements of the Workflow.

Three elements are defined at the Workflow level:

 A set of references to Roles defined on the CM System server.

Roles do not exist within Workflow. Roles exist on the CM System server, where they are

defined and their properties and list of Members are maintained. Each Workflow includes a
set of references to these Roles. A Workflow can only use Roles that have been associated

with the Workflow.

 A set of zero or more Notifications.

A Notification is an object that defines the subject and message contents for e-mail messages

that will be sent to users based on the occurrence of certain events within the Workflow.

 A set of one or more States

States define the stages in the Workflow. States must be ordered to provide sequence in the Workflow

(although Content Items can generally move from one State to another without reference to the sequence

of the Workflow). Each State includes the following data:

 The Sort Order of the State

The Sort Order defines the position of the State in relation to the other States in the Workflow.

 The Publishable flag

The Publishable flag is used by the Publishing engine to determine whether a Content Item is

eligible to be published.

 A set of assigned Roles

A Role must be assigned to a State before Members of that Role can act on Content in that

State. (Note that a Role must be associated with the Workflow before it can be assigned to a

State). Each Role associated with a Workflow can be assigned to multiple States in the

Workflow. The actions available to the Role depend on the data defined for its assignment to

the State:

 Assignment type

The Assignment type defines the visibility of the Content Item to Members of the

Role and the actions users in the Role can take on those Content Items. If the

Assignment type is Assignee, Members of the Role have full access to Content Items

in the State. If the Assignment type is Reader, Members of the Role can see Content

Items in the State and can view their content and properties, but cannot act on them

(such as to edit them or to Transition them to another State). If the Assignment type

is None, Members of the Role can neither see Content Items in that State nor act on

them.

 Ad Hoc Assignment enabled

If Ad Hoc Assignment is enabled, when a user Transitions a Content Item into the

State, they can assign the Content Item to a specific Member of a State-assigned Role

for action. Otherwise, the Content Item is available generally to any Member of any

State-assigned Role with an Assignment Type of Assignee.

110 CM System Technical Reference Manual

 Notification enabled

If Notification is enabled, Members of the Role can receive e-mail Notifications

when a Transition occurs.

 Show in Inbox

If Show in Inbox is enabled, Content Items in the State are listed in the Inbox of

users in State-assigned Roles.

A State also serves as a container for a set of Transitions. A Transition is a mechanism that moves a

Content Item from one State to another. Each Transition specifies the Target State, to which the Content

Item will move. A Transition also specifies:

 Approval data, such as whether a specific number of approvals is required or a specific set of

Roles is required to approve the Content Item before the Transition is actually executed. If

specific Roles are required to approve the Transition, these Roles must be associated with the

Transition.

 Whether comments are required when executing the Transition.

 Whether a Transition is the default Transition out of the State

 A Workflow Action extension to execute when making the Transition.

 A Notification to send when executing the Transition, including the set of users to whom to

send the Notification e-mail message.

Workflow Processing

When a Content Item is created, it is assigned to a Workflow and moves into the Initial State of that

Workflow. A user must be in a Role assigned to the current State of a Content Item to potentially have

access to that Content Item, depending on the Assignment type. Users in Roles with an Assignment type

of Assignee potentially have full access to Content Items in the State. Users in Roles with an Assignment

type of Reader can see the Content Item and can view its properties, but cannot act on Content Items in

the State (such as to modify its data or to Transition it to another State). Users in Roles with an

Assignment type of None can neither see nor act on Content Items in the State.

Note that the Assignment of a Role to a State is only one factor that determines whether a user has access

to a Content Item. Other factors affecting access are the Community of the Content Item and whether the

Content Item is checked out and to whom. If a user is in a Role that has access to a Content Item based on

its current State, but the user is logged in to a different Community than that of the Content Item, the user

will not be able to access the Content Item (although they may be able to see the Content Item for Active

Assembly). If a user is in a Role that has access to a Content Item based on its current State, and the

Content Item is in the user's logged Community, but the Content Item is checked out to another user, the

first user will be able to see the Content Item and view its properties and content, but will not be able to

modify it or Transition it.

The current State of a Content Item also determines how it will be processed for publishing. Item Filter

Rules can be defined to select Content Items for publishing based on the Publishable flag. For additional

details, see Item Filters and Filter Rules (on page 144).

Chapter 4 Workflow Reference 111

When the Content Item is ready to move to another State, a user executes a Transition on it. The approval

configuration of the Transition determines whether the Content Item actually makes the Transition to

another State. A Transition can be configured to require a specific number of approvals or to require

approvals from a specific set of Roles. If the Transition is configured to require a specific number of

approvals, the Content Item remains in its current State until the specified number of approvals have

occurred, at which point the Content Item Transitions to the State specified by that Transition. (Thus if

one approval is required for the Transition, the Transition is executed immediately.) Note that if another

Transition with fewer approvals is executed in the meantime, the Content Item will be Transitioned once

the lower number is achieved. For example, suppose the following Transition configurations have been

defined:

 An Approve to Public Transition that requires three approvals.

 A Return to Draft Transition that requires only one approval.

If the Approve to Public Transition has two approvals when another user executes the Return to Draft

Transition, the Return to Draft Transition is executed immediately. The previous approvals for the

Approve to Public Transition are deleted. Those users will have to approve the Content Item again after it

re-enters the State.

If a Transition is configured to require approvals from specified Roles, it remains in its current State until

each of the required Roles has approved the Transition. Again, if another Transition that has lower

requirements is executed in the meantime, that Transition occurs and all existing approvals are deleted.

If comments are required, the system displays a Comment dialog where the user must enter text before the

Transition will actually take place.

At this point, any Workflow Actions associated with the Transition are also triggered.

Finally, if any Notifications are associated with the Transition, e-mails are generated to the specified

recipients.

112 CM System Technical Reference Manual

Extending Publishable States

The values of the Publishable property for States are maintained in the Rhythmyx Keyword Editor of the

Rhythmyx Workbench. You can thus add more values to the Publishable property to extend it and make it

more flexible.

WARNING! Do not delete the default values of this Keyword. If you delete any of these default values,

Publishing will no longer work correctly.

These values are used in the Item Filters that filter Content Items during Publishing. Use the

sys_filterByPublishableFlag Item Filter and set the value of the sys_flagValue to the Keyword value for

your Publishable State.

For example, suppose you wanted to implement a staging area where you could evaluate content before

publishing it to your live web site. You could add a new value to the Publishable property, s (for staging).

You would also create a State in the Workflow (perhaps also called Staging) and would assign S as the

value of Publishable for this State. Finally, you would define a new Item Filter including the Filter Rule

sys_filterByPublishableFlag with the value of the sys_flagValues parameter set to s.

Set the Publishable value for a State using the Edit State Page. The default Publishable values are:

Value

Processing

N Default. Content in this State is not published, or will be unpublished the next time the

Publisher runs.

Y Content in this State is published when the Publisher runs.

I Publish the Last Public Revision of the Content Item.

Chapter 4 Workflow Reference 113

Workflow Actions

Only one extension type is associated with the Workflow engine, Workflow Actions. Workflow actions

process Content Items when triggered by a Transition. The specific processing is defined by the

extension.

Workflow Actions must implement the interface IPSWorkflowAction. (NOTE: The implementation must

be thread safe; for details see General Requirements of Extensions on page 180.)

sys_createTranslations

Name:

sys_createTranslations

Context:

global/percussion/workflow/

Description:

This action creates a Translation Content Item of the original Content Item in each Locale in which the
original Content Item does not already have a corresponding Translation Content Item. The action uses a

configuration file, sys_createTranslations.properties, which is located in the directory

<Rhythmyxroot>/rxconfig/i18n. This file defines the type of Translation Relationship to create between

the original Content Item and the Translation Content Item for each Locale. It also defines a list of

Locales for which Translation Content Items will not be generated.

Class Name;

com.percussion.workflow.PSCreateTranslations

Resource File:

rxconfig/I18n/sys_createTranslations.properties

Interface:

com.percussion.extension.IPSWorkflowAction

Parameters:

None

114 CM System Technical Reference Manual

sys_PublishContent

Name:

sys_PublishContent

Context:

global/percussion/workflow/

Description:

This extensions triggers the publication of a Edition when a Transition is executed. The action requires an

XML file (rxconfig/Workflow/publish.xml), which defines the following data. The XML

should conform to the following DTD:

<?xml encoding="UTF-8"?>

<!ELEMENT PSXConfig (PSXPublish+)>

<!ATTLIST PSXConfig

polling-time CDATA #IMPLIED>

<!ELEMENT PSXPublish (PSXWorkflowId, PSXTransitionId, PSXEdition)>

<!ELEMENT PSXWorkflowId PCDATA>

<!ELEMENT PSXTransitionId PCDATA>

<!ELEMENT PSXEdition PCDATA>

The root element of the document can have any name; we use PSXConfig for convenience. The

optional polling-time attribute of this element specifies the time interval (in milliseconds) between

successive attempts to publish a specific Edition when that Edition is already being published. A longer

interval results in fewer requests to the server but a longer lag between the Transition of the Content Item
and its publication.

The root element contains one or more PSXPublish elements. The PSXPublish element is a

container for a configuration defining

 a Workflow

The Workflow is specified by the PSXWorkflowId child element of PSXPublish. The

value of this element is the ID of the Workflow.

 a Workflow Transition

The Transition is specified by the PSXTransitionId child element of PSXPublish.

The value of this element is the ID of the Transition.

 an Edition

The Edition to run when a Content Item is Transitioned in the Workflow specified by the

PSXWorkflowId element using the Transition specified by the PSXTransitionId

element. The Edition is specified in the PSXEdition child element of PSXPublish. Any

Edition can be specified, but typically an Incremental Edition is used.

(specified by

For example:

<PSXConfig polling-time="1500">

<PSXPublish>

Chapter 4 Workflow Reference 115

<PSXWorkflowId>1</PSXWorkflowId>

<PSXTransitionId>5</PSXTransitionId>

<PSXEdition>301</PSXEdition>

</PSXPublish>

<PSXPublish>

<PSXWorkflowId>1</PSXWorkflowId>

<PSXTransitionId>9</PSXTransitionId>

<PSXEdition>301</PSXEdition>

</PSXPublish>

</PSXConfig>

This XML defines two configurations. The first configuration runs the Edition with the ID "301" when
the Transition with the ID "5" is performed in the Workflow with the ID "1". The second configuration

runs the Edition with the ID "301" when the Transition with the ID "9" is performed in the Workflow

with the ID "1". The system will attempt to publish the Editions every 1500 milliseconds (1.5 seconds).

Class Name;

com.percussion.workflow.PSPublishContent

Resource File:

rxconfig/Workflow/publish.properties

Interface:

com.percussion.extension.IPSWorkflowAction

Parameters:

None.

116 CM System Technical Reference Manual

sys_TouchParentItems

Name:

sys_TouchParentItems

Context:

Java/global/percussion/extensions/general/

Description:

This action touches all "parent" (Owner) items of the current item in Relationships whose Category is

Active Assembly. It finds all Ancestors of the Content Item in Active Assembly Relationships and updates

them by putting the current date/time and current user name in the CONTENTLASTMODIFIEDDATE

and CONTENTLASTMODIFIER columns of the CONTENTSTATUS table.

This exit uses the following resources in the sys_ceDependency application:

 parents.xml query - this resource must have a "pipe name" of parents.

 touchitem.xml - an update resource (with a pipe name of touchitem. this resource updates the

CONTENTSTATUS table. The only parameter of touchitem.xml is sys_contentid. This

parameter specifies a list of content IDs as a {link java.util.ArrayList ArrayList} object.

Class name:

com.percussion.extensions.general.PSTouchParentItems

Resource file:

classes

Interface:

com.percussion.extension.IPSWorkflowAction

Parameters:

None

117

C H A P T E R 5

Publishing Reference

Publishing is the final phase of the Content Management process. Publishing extracts Content Item data

from the Repository, merges it with formatting to produce a final output, and saves the final output to its

delivery location.

The first section of this chapter outlines the logical architecture and processing of the Publishing engine.

The second section is a reference to the extensions used in Publishing.

118 CM System Technical Reference Manual

Logical Architecture and Processing

This section is comprised of two topics. The first describes the logical architecture of the Publishing

engine. The second describes publishing processing.

Logical Architecture

At the highest level, the logical architecture of publishing consists of the publishing engine, which resides

within the CM System server; and a set of configurations that determine what content will be output and

the target location for the output content.

The publishing engine consists of publishing jobs and one or more instances of the Publishing Handler.

The publishing job communicates with the Publishing Handler via a publishing queue. The Publishing

handler returns results to the publishing job via a status queue.

The configurations include:

 A set of Site registrations.

A Site registration defines a location where output will be published when publishing to a file

system. The output location may be a directory location or an FTP site. (In Database

Publishing, the output location is defined in the Templates.) The Site registration also defines

the Delivery Handler that deliver the published output to the target location.

 A set of Content Lists

A Content List is a named configuration that is submitted to a servlet that generates the list of

Content Items to publish. The key data of the Content List are:

 The Content List Generator

A Content List Generator is an extension that actually generates the list of Content

Items to publish. In most cases, the sys_SearchGenerator is used. This generator

uses a Java Content Repository (JCR) query to generate the list of Content Items to

publish. The generator sys_SelectedItemsGenerator is used in Content Lists for on-

demand publishing.

Note that you can write your own Content List Generator extensions. For details, see

Content List Generators (on page 126).

 The Item Filter

An Item Filter is a set of Filter Rule extensions that filter the list of Content Items

generated by the Content List Generator to produce a final list of Content Items to be

published. CM System is shipped with a number of standard Item Filters and Filter

Rules.

Note that you can write your own Filter Rule extensions. For details, see Item

Filters and Filter Rules (on page 144).

Chapter 5 Publishing Reference 119

 The Template Expander

A Template Expander is an extension that generates the list of Templates to publish.

The sys_SiteTemplateExpander publishes all Templates associated with the Site

being published. The sys_ListTemplateExpander published only the Templates

specified.

Note that you can write your own Template Expander extensions. For details, see

Template Expanders (on page 127).

 A set of Editions

An Edition specifies a set of one or more Content Lists and the Site to which they will be

published.

 A set of Delivery Handlers

A Delivery Handler is an extension that delivers assembled content to an output location. CM

System includes a set of standard Delivery Handlers for common output targets (file system,

database, FTP, and secure FTP), but you can also write your own Delivery Handlers. For

details, see Delivery Types (see "Delivery Handlers" on page 129).

120 CM System Technical Reference Manual

The publishing process also invokes the Assembly engine.

The following graphic illustrates the logical architecture of the Publishing engine:

Figure 28: Publishing Architecture

Publishing Processing

Publishing processing begins when an Edition is submitted to be published. The request may be submitted

manually or it may be generated by the server as a scheduled task. When the CM System server receives
the publish Edition request, it generates a publishing job, which manages the remaining publishing

processing. Each publishing job is initiated with a priority. Publishing jobs with a higher priority will

interrupt jobs with a lower priority. Once processing of the higher-priority job is complete, the lower

priority job resumes.

Chapter 5 Publishing Reference 121

The publishing job first runs any Editions Tasks that are defined as pre-Publishing tasks in the order in

which they are specified. If any task fails, processing stops unless the task is flagged as "Continue on

failure", in which case processing continues. If processing stops at this point, no content is delivered.

The publishing job next invokes the Content Lists associated with the Edition to generate a list of Content

Items to publish. In most cases, the sys_SearchGenerator is used. This Content List generator uses a JCR

query to select the Content Items to publish. CM System also includes another Content List generator,

sys_SelectedItemsGenerator, which is used for on-demand publishing. If these Content Lists generators do

not provide the required functionality, implementers can write their own Content List generators. For

details, see Content List Generators (on page 126).

The initial list of Content Items is then submitted to an Item Filter. An Item Filter is an ordered set of

Filter Rule Extensions. The list of Content Items is submitted to each rule in turn, and the filtered set of

Content Items is then submitted to the next Filter Rule. CM System is shipped with a set of standard

Filter Rules, but you can also write your own Filter Rule extensions if you need different functionality.

For details, see Item Filters and Filter Rules (on page 144).

The final filtered list of Content Items is then submitted to the Template Expander. A Template Expander

is an extension that generates a list of Templates to publish for each Content Item. The result may include

one, several or even zero Templates for each Content Item. Two standard Template Expanders are

shipped with CM System:

 sys_SiteTemplateExpander (publishes all Templates associated with the Site)

 sys_ListTemplateExpander (Publishes only the listed Templates)

Note that you can also write you own Template Expanders if the default Template Expanders do not

provide the desired functionality. For details, see Template Expanders (on page 127).

The Content List generator then formats the final list of Content Items into an XML document and sends it

to the publishing job. The publishing job then sets up a queue of Content Items to be published by the

Publishing Handler. Several instances of the Publishing Handler are generated. The exact number of

instances depends on the number of CPUs CM System can use. If only one CPU is available, a handful of

Publishing Handler instances may be created; a more powerful system with eight or sixteen CPUs may

process dozens of instances of the Publishing Handler.

When the Publishing Handler receives a Content Item, it first submits the assembly URL to the assembly

engine. After receiving the assembled Content Item returned from the assembly engine, the Publishing

Handler sends the assembled Content Item to the Delivery Manager. The Delivery Manager sends the

Content Item to the correct Delivery Handler. A Delivery Handler is a CM System extension that

delivers assembled Content Item to the final output location. CM System is shipped with four standard

Delivery Handlers:

 File System

 FTP

 SFTP

 Database

If the standard Delivery Handles do not provide the needed functionality, you can write your own

Delivery Handler. For details, see Delivery Handlers (on page 129)..

122 CM System Technical Reference Manual

The Publishing Handler returns the results of the processing to the publishing job through the status queue.

At the highest level, three results are possible for any specific Content Item:

 The Content Item is published successfully (it is successfully assembled and delivered to the

specified output location).

 Assembly of the Content Item may fail.

 Delivery of the Content Item may fail.

Publishing jobs can be cancelled. A cancellation takes priority over all other processing. When a job is

cancelled, all outstanding processing for that job is halted. All successfully published Content Items are

held in memory until processing of the last Content Item in the job is complete, at which point all Content

Items are delivered. Thus, a cancelled job does not result in a partially published output.

Once processing of the last Content Item is complete and the published output is delivered to the target

location, the publishing job runs any Edition Tasks that are defined as post-Publishing Tasks. Like pre-

Publishing tasks, these tasks are run in the order specified, and if a task fails processing stops unless the

task is flagged as "Continue on Failure".

Chapter 5 Publishing Reference 123

Figure 29: Publishing Processing

124 CM System Technical Reference Manual

Demand Publishing

Demand Publishing processing is performed by a servlet designed specifically for that purpose. The

Publish Now Menu option sends its request to this servlet. The request must include either a Site ID or an

Edition ID. If an Edition ID is included, the specified Edition is run. If a Site ID is included, the servlet

searches the Editions associated with the specified Site to find an Edition that includes only one Content

List, which uses the sys_SelectedItemsGenerator. If multiple Editions are found that meet these criteria, a

warning is written to the log and an Edition is selected arbitrarily.

As installed, the Publish Now Menu Entry is configured to include the Site ID; the command

configuration includes the sys_siteid, with the value derived from the binding variable $sys_siteid.

If the sys_SelectedItemsGenerator does not provide functionality you want in your implementation, you

can implement and use a different Content List Generator for Demand Publishing. To use your custom

Content List Generator, add the HTML parameter sys_DemandPublishingGenerator to the Publish Now

Menu Entry. The value of this parameter should be the fully-qualified extension name of your custom

Content List Generator.

Chapter 5 Publishing Reference 125

Configuring Unpublish Flags

Unpublish flags specify the value of the Publishable field of a Workflow State that indicates the Content

Items in that State should be unpublished. These values are case-insensitive alphabetical characters that

match the Value of a Publishable Keyword Choice, as illustrated below:

Figure 30: Publishable Keyword

The default unpublish flag is u. which is the value of the Archive Publishable Keyword Choice.

To specify multiple flags, enter multiple characters, separated by commas.

When you add a new unpublishable flag, you should also add a new Choice to the Publishable Keyword,

whose value matches the character you specified. You should also define a Workflow State that uses that

Keyword Choice in the Publishable field.

126 CM System Technical Reference Manual

Publishing Extensions

This section documents extension types used only in publishing:

 Content List Generators

 Template Expanders

 Publishing plugins

The following extension types, which are used in both assembly and publishing, are documented

elsewhere:

 JEXL functions

 Item Filter rules

 Location Scheme Generators

Content List Generators

Content List Generators generate a list of IDs (GUIDs) of Content Items to publish.

Content List Generators must implement the interface IPSContentListGenerator. (NOTE: The

implementation must be thread safe; for details see General Requirements of Extensions on page 180.)

sys_PublishedSiteItems

This Content List Generator generates a list of all Content Items published on a Site. Must be used in

conjunction with the sys_SiteTemplateExpander. Usually used for unpublishing.

Class Name

com.percussion.services.publisher.impl.PSSiteItemsGenerator

Interface

com.percussion.services.publishing.IPSContentListGenerator

Context

global/percussion/system

Parameters

None

Chapter 5 Publishing Reference 127

sys_SelectedItemsGenerator

This Content List Generator generates a list of Content Items to publish based on a set of selected Content

Items. It is used in on-demand publishing.

Class Name

com.percussion.services.publisher.impl.PSSelectedItemsGenerator

Interface

com.percussion.services.publishing.IPSContentListGenerator

Context

global/percussion/system

Parameters

None

Template Expanders
Template Expanders generate a list of Templates to publish for each Content Item ID (GUID) input.

Template Expanders must implement the interface IPSTemplateExpander. (NOTE: The implementation

must be thread safe; for details see General Requirements of Extensions on page 180.)

NOTE: Percussion Software strongly recommends that you seek assistance from Percussion Professional

Services Organization before implementing a custom Template Expander.

sys_ListTemplateExpander

This Template Expander assigns the Templates specified in the template parameter to the Content Items

input. The specified Templates are assigned regardless of the Publish options specified for the Template

or of the visibility of the Template to the Site being published. If none of the specified Templates is valid

for an input Content Item ID, then no assembled output will be published for that Content Item.

Class Name

com.percussion.services.publisher.impl.PSListTemplateExpander

Interface

com.percussion.services.publishing.IPSTemplateExpander

128 CM System Technical Reference Manual

Context

global/percussion/system

Parameters

Name

Data Type

Description

template String (Required) Comma-separated list of Templates to publish.

sys_SearchGenerator

This Content List Generator generates a list of Content Items to publish based on a JCR query.

Class Name

com.percussion.services.publisher.impl.PSQueryContentListGenerator

Interface

com.percussion.services.publishing.IPSContentListGenerator

Context

global/percussion/system

Parameters

Name

Data Type

Description

query String (Required) The JSR-170 "SQL" query to use to generate the base list of

Content Items to be published.

Chapter 5 Publishing Reference 129

sys_SiteTemplateExpander

This Template Expander assigns the Page Templates of the target Site to the Content Items input.

Class Name

com.percussion.services.publisher.impl.PSSiteTemplateExpander

Interface

com.percussion.services.publishing.IPSTemplateExpander

Context

global/percussion/system

Parameters

Name

Data Type

Description

default_template String If the value is all or is unspecified, all default Templates of the specified

Site will be published. If the value is dispatch, only default Templates

that use the Dispatch Assembly plugin will be published. If the value is

none, no default Templates will be published.

Delivery Handlers

A Delivery Handler delivers assembled Content Items to the final output location. Implementation of a

Delivery Handler requires three steps:

1 Write the Delivery Handler code.

Delivery Handlers must implement the interface IPSDelivery Handler. (NOTE: The

implementation must be thread safe; for details see General Requirements of Extensions on

page 180.)

2 Register the Delivery Handler as a Spring bean.

For details about registering a Spring bean in Rhythmys, see Spring Configurations (on page

171).

3 Create a Delivery Type registration for the Delivery Handler.

A Delivery Type exposes the Delivery Handler extension to the Publishing engine. Multiple

Delivery Types can registered for the Delivery Handler. To register a Delivery type:

a) In Content Explorer, choose the Publishing Design tab.

b) Click the Delivery Types Link.

Content Explorer displays the Delivery Types list.

c) In the Menu bar, choose Action > Create Delivery Type.

Content Explorer display the Delivery Type editor in the View and Edit pane.

130 CM System Technical Reference Manual

d) Enter a Name for the Delivery Type. The name must begin with a letter, and can contain

any alphanumeric characters, underscores, hyphens, or dots (periods). Optionally, enter a

free-form Description of the Delivery Type.

e) Enter the Spring Bean Name of the bean that configures the Delivery Handler used by the

Delivery Type. This value will be validated when the Delivery Type registration is saved;

therefore, the bean must be configured before you create the Delivery Type registration.

f) If you want to assemble Content Items when unpublishing them, check the Assemble Item
for Unpublish checkbox.

g) Click the [Save] button to save the Delivery Type registration.

131

C H A P T E R 6

Shared Features

This chapter documents several CM System features that are shared by multiple CM System engines:

 Java Expression Language (JEXL)

 Java Content Repository (JCR) queries

 Item Filters and Filter Rules

 Location Schemes and Location Scheme Generators

 Scheduled Tasks

132 CM System Technical Reference Manual

Java Expression Language (JEXL)

CM System embeds the Java Expression Language (JEXL) engine to provide scripting functionality.

 In the Assembly engine, JEXL is used to define and process Bindings. For details, see

"Bindings" in the CM System Implementation Guide.

 In the Publishing Engine, JEXL is used to define locations for Location Scheme Generators.

For details, see Link Generation and Context (on page 147) and "Defining Contexts and
Location Schemes" in the CM System Implementation

Guide. For details about JEXL, see

http://jakarta.apache.org/commons/jexl/.

JEXL Extensions

Standard JEXL functions are available in CM System. For details about these functions, see the

Velocity tools documentation (http://jakarta.apache.org/velocity/tools/index.htm). CM System also

includes a number of JEXL function extensions to support both assembly and location scheme

generation.

If you need additional functionality, you can implement custom JEXL function extensions. JEXL function

extensions must implement the interface IPSJexlExpression. (NOTE: The implementation must be thread

safe; for details see General Requirements of Extensions on page 180.) They usually also extend the

PSJexlUtilBase class:

public class PSJexlExample extends PSJexlUtilBase implements

IPSJexlExpression

In addition to importing these two classes, you must also import IPSJexlMethod and IPSJexlParameter.

All JEXL extensions use Java 5 Annotation with the @IPSJexlMethod and @IPSJexlParam annotations:

@IPSJexlMethod(description="my method does something useful", params=

{@IPSJexlParam(name="part1",description= "the first part"),

@IPSJexlParam(name="part2", description="the second part")})

public String myMethod(String part1, String part)

Note that the @IPSJexlParam annotations are an Array; they must be enclosed in curly braces and

separated by commas.

http://jakarta.apache.org/commons/jexl/
http://jakarta.apache.org/velocity/tools/index.htm
mailto:@IPSJexlMethod
mailto:@IPSJexlParam
mailto:@IPSJexlMethod
mailto:@IPSJexlParam
mailto:@IPSJexlParam
mailto:@IPSJexlParam
mailto:@IPSJexlParam

Chapter 6 Shared Features 133

Assembly Utilities

The methods of this function provide data for use in assembly. The following methods are available:

 $rx.asmhelper.assemble

 $rx.asmhelper.isAASlot (slot)

 $rx.asmhelper.getPopupMenu

 $rx.asmhelper.getSingleParamValue

 $rx.asmhelper.getTidiedContent

 $rx.asmhelper.getTitle ($sys.item.guid)

 $rx.asmhelper.combine

 $rx.asmhelper.childValues

For details see "$rx.asmhelper" in the CM System Implementation Guide.

Class Name

com.percussion.services.assembly.jexl.PSAssemblerUtils

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

134 CM System Technical Reference Manual

Code and Decode Utilities

The methods of this function encode and decode data.

 $rx.codec.base64Decoder

 $rx.codec.base64Encoder

 $rx.codec.escapeForXml

 $rx.codec.decodeFromXml

For details see "$rx.codec" in the CM System Implementation Guide.

Class Name

com.percussion.services.assembly.jexl.PSCodecUtils

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

Chapter 6 Shared Features 135

Keyword Utilities

The methods of this function provide access to Keyword data.

 $rx.keyword.keywordSelectChoices

 $rx.keyword.keywordChoices

 $rx.keyword.getLabel

For details see "$rx.keyword" in the CM System Implementation Guide.

Class Name

com.percussion.services.assembly.jexl.PSKeywordUtils

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

Conditional Processing Utilities

NOTE: This function is deprecated. JEXL expressions that use this binding should be rewritten to use the

JEXL if...else conditional function instead.

The method of this function is used to evaluate conditional statements.

For details see "$rx.cond" in the CM System Implementation Guide.

Class Name

com.percussion.services.assembly.jexl.PSCondUtils

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

136 CM System Technical Reference Manual

Database Utilities

The method of this function is used in database publishing.

For details see "$rx.db" in the CM System Implementation Guide.

Class Name

com.percussion.services.assembly.jexl.PSDbUtils

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

Document Utilities

The methods of this function process XML and HTML documents.

 $rx.doc.getDocument(url)

 $rx.doc.getDocument(url,user,password)

 $rx.doc.extractBody

For details see "$rx.doc" in the CM System Implementation Guide.

Class Name

com.percussion.services.assembly.jexl.PSDocumentUtils

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

Chapter 6 Shared Features 137

Extension Utilities

The method of this function allows you to call an extension.

For details see "$rx.ext" in the CM System Implementation Guide.

Class Name

com.percussion.services.assembly.jexl.PSExtensionUtils

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

GUID Utilities

The method of this function allows you to retrieve GUIDs.

For details see "$rx.guid" in the CM System Implementation Guide.

Class Name

com.percussion.services.assembly.jexl.PSGuidUtils

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

138 CM System Technical Reference Manual

Internationalization Utilities

The method of this function is used to retrieve internationalized and localized data.

For details see "$rx.i18n" in the CM System Implementation Guide.

Class Name

com.percussion.services.assembly.jexl.PSI18nUtils

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

Link Utilities

The methods of this function allow you to manipulate links.

 $rx.link.addParams

 $rx.link.getAbsUrl

 $rx.link.getRelUrl

For details see "$rx.link" in the CM System Implementation Guide.

Class Name

com.percussion.services.assembly.jexl.PSLinkUtils

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

Chapter 6 Shared Features 139

Location Utilities

The methods of this function allow you to generate hypertext links.

 $rx.location.generate

 $rx.location.generateToPage

 $rx.location.getFirstDefined

 $rx.location.siteBase($sys.site)

For details see "$rx.location" in the CM System Implementation Guide.

Class Name

com.percussion.services.assembly.jexl.PSLocationUtils

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

140 CM System Technical Reference Manual

Navigation Utilities

The methods of this function are used in processing Managed Navigation. They are only valid when

applied to nodes returned from the Managed Navigation Slot Content Finder.

 $rx.nav.findProperty

 $rx.nav.findNode

For details see "$rx.nav" in the CM System Implementation Guide.

Class Name

com.percussion.services.assembly.jexl.PSManagedNavUtils

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

Chapter 6 Shared Features 141

Pagination Utilities

The methods of this function are used when paginating assembled Content Items. The following methods

are available:

 $rx.paginate.fieldContentPageCount

 $rx.paginate.getFieldPage

 $rx.paginate.getSlotPage

 $rx.paginate.slotContentPageCount

For details see "$rx.pagination" in the CM System Implementation Guide.

Class Name

com.percussion.services.assembly.jexl.PSPaginateUtils

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

142 CM System Technical Reference Manual

String Utilities

The methods of this function return session IDs that can be returned to CM System when calling CM

System applications or other URLs via HTTP.

 $rx.session.getJSessionID

 $rx.session.getSessionID

For details see "$rx.session" in the CM System Implementation Guide.

Class Name

com.percussion.services.assembly.jexl.PSSessionUtils

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

String Utilities

The methods of this function allow you to allow you to manipulate string values.

 $rx.string.stringTo Map

 $rx.string.equalNumbers

 $rx.string.extractNumber

For details see "$rx.string" in the CM System Implementation Guide.

Class Name

com.percussion.services.assembly.jexl.PSStringUtils

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

Hashed File Storage Utilities

The methods of this function allow you to allow you to retrieve binaries and metadata on binaries by a sha1

hash value.



Chapter 6 Shared Features 143

 $rx.filestorage.getFileFr

omHash

 $rx.filestorage.getMeta

For details see "$rx.filestorage" in the CM System Implementation Guide.

Class Name

com.percussion.services.filestorage.extensions.PSFileStorageTools

Interface

com.percussion.extension.IPSJexlExpression

Context

global/percussion/system/

Parameters

None

144 CM System Technical Reference Manual

Java Content Repository

CM System uses the Java Content Repository (JCR) to retrieve Content Item data from the Repository and

to represent it for assembly.

In Assembly, the Content Item data is submitted to the Assembly engine as a JCR Node and Property

object; for details see Assembly Processing (on page 79). JCR queries are also used to generate lists of

Content Items automatically when assembling Automated Slots. The JCR query generates the list of

Content Items to include in the Slot. For details, see the topics "Creating an Automated Slot" and

"Writing Automated Slot Queries" in the CM System Implementation Guide.

In publishing, JCR queries are used by the Query Content List Generator, which is the standard Content

List Generator.

CM System only supports the JCR functionality required to support assembly. Only Content Items can be

accessed as nodes; Folders cannot be accessed as JCR nodes. JCR data methods are supported to provide

read-only access to Nodes and properties. Behavioral and set methods are not supported. If called, these

methods throw either an UnsupportedOperationException or a JCR-specific exception, such as a

LockException.

A Content Item is represented as a JCR node. Use node methods to access or operate on a Content Item as

a whole., The fields in the Content Item are represented as properties of the Content Item node. Use

property methods to access and operate on Content Item fields. Simple child content (child content stored

in a separate table but edited within the Content Editor) are represented as multi-valued properties of the

Content Item node. Use multivalued Property methods to access and operate on these fields. Complex

child content (child content edited in a popup Detail Editor) are represented as child nodes of the parent

Content Item. Use standard node methods to access and operate on these fields.

Read access is available for NodeDefinition, Node Type, and Property Definition. UUIDs of nodes are

not globally unique.

Since a CM System Content Item can have multiple parents (in CM System terms, it can be the Dependent

in multiple Relationships), the methods getParent and getDepth cannot be supported. The only exception is

Managed Navigation nodes, which do support these methods.

Field and Content Type names are transformed by adding "rx:" as the namespace. Content Type names

are case-insensitive, but field names are case-sensitive. Space characters in field and Content Type names

are replaced with underscore characters ("_") because spaces are invalid in a JCR query.

The JCR Query Manager is partially implemented. Row, Query, and QueryResult are implemented, but

you cannot store queries. Only the SQL syntax is supported. The XPath syntax is implemented but not

supported. Full-text search queries are not implemented. To query all Content Types, use nt:base.

For complete details about the Java Content Repository, see the JSR-170 spec at

http://www.jcp.org/en/jsr/detail?id=170.

NOTE: JCR queries cannot be extended.

http://www.jcp.org/en/jsr/detail?id=170

Chapter 6 Shared Features 145

Item Filters and Filter Rules

Item Filters filter a list of Content Items to be published. An Item Filter is a named set of Filter Rules.

The Filter Rules are extensions that perform the actual filter processing. For example, the following

standard Filter Rules are shipped with CM System:

 Filter by Folder Paths

Filters based on the path of the Content Item.

 Filter by Publishable Flag

Filters based on value of the Publishable Flag of the State of the Content Item.

 Filter by Site Folder

Validates that the target Content Item for a link exists in the location specified.

Filter Rules are ordered within an Item Filter, and Filter Rules defined with a higher precedence are run

before those with a lower precedence. Each Filter Rule in an Item Filter operates only on Content Items

that have passed previous Filter Rules.

Item Filters perform two functions:

 Link filtering

When assembling a page, link filtering prevents the broken links that point from a Public

Content Item to related Content Items that are not public by preventing the assembly of these

links.

Link filtering also prevents Snippets of Content Items that are not public from being

assembled into a Public Content Item when assembling a published Page Template.

NOTE: In CM System Version 5.7 and earlier, this functionality was known as Authorization Type,

or Auth Type. Auth Type functionality has been subsumed into Item Filter functionality in CM

System Version 6.0.

 Content List filtering

During Publishing, after a Content List Generator generates the initial list of Content Items to

publish, an Item Filter filters the initial list to generate a final list of Content Items to publish.

For example, a standard Item Filter used during publishing is the Filter by Publishable Flag.

This filters the initial list of Content Items (usually all Content Items on a Site) to return only

those Content Items that are in a State flagged as Publishable.

Filter Rule Extensions

Filter Rule extensions perform the actual filtering processing. A Filter Rule takes a list of Content Items

as its input, applies the rules to that list and returns a list of Content Items that meet the specified criteria.

Filter Rule extensions must implement the interface IPSItemFilterRule. (NOTE: The implementation

must be thread safe; for details see General Requirements of Extensions on page 180.)

146 CM System Technical Reference Manual

sys_filterByFolderPaths

Filters the submitted list of Content Items based on the Folders specified. Only Content Items that exist in

the specified Folder pass the filter.

Class Name

com.percussion.services.filter.impl.PSFolderPathFilter

Interface

com.percussion.services.filter.IPSItemFilterRule

Context

global/percussion/itemfilter/

Parameters

Name

Data Type

Description

sys_folderPaths String One or more Folder paths (use semicolons to separate multiple

Folder paths). The paths may contain one or more wildcards (%)

which have the same semantics as in SQL. If the path does not

contain wildcards, the path must match exactly.

To return the contents of a Folder and all of its descendants, you

must specify the path twice, first without the wildcard, then with the

wildcard. For example, to return all of the contents of the

EnterpriseInvestments Site, you would have to specify

"//Sites/EnterpriseInvestments/,//Sites/EnterpriseInvestments/%".

Chapter 6 Shared Features 147

sys_filterByPublishableFlag

Filters the submitted list of Content Items based on value of the Publishable Flag of the State of the

Content Item.

Class Name

com.percussion.services.filter.impl.PSPublishableStateFilter

Interface

com.percussion.services.filter.IPSItemFilterRule

Context

global/percussion/itemfilter/

Parameters

Name

Data Type

Description

sys_flagValues String Content Valid values of the Content Item State to use when filtering the

list of Content Items. Use commas to separate multiple values.

sys_filterBySiteFolder

Used for cross-site linking. Checks the Folder specified to ensure that the target Content Item for the link

being published exists in that Folder, then checks to confirm that the Path to that Folder includes the Site

Root for the specified Site. If this test fails, checks whether the Content Item exists on the specified Site

at all. If the Content Item passes any of these tests, the matching path will be published. Otherwise, the

link is not published.

Class Name

com.percussion.services.filter.impl.PSSiteFolderFilter

Interface

com.percussion.services.filter.IPSItemFilterRule

Context

global/percussion/itemfilter/

Parameters

None

148 CM System Technical Reference Manual

Link Generation and Context

Since CM System decouples Content Management from delivery, a mechanism is required to generate links

(such as hypertext links between HTML pages, or links to image files and CSS files). Links that are valid

when previewing a Content Item on the CM System server will not be valid when viewing a final published

page from a Web server.

Location Schemes build these links. In CM System Version 6.0, links are generated based on Java

Expression Language (JEXL) expressions. (In earlier version, UDFs provided link generation

functionality. In both cases, a Location Scheme builds a path to use in a link.) The output of the JEXL

expression defines the path to the location.

Location Schemes are defined for different output environments, known in CM System as Contexts. Each

Context, which is identified using an integer, defines an output environment that has a different path for

links. For example, at its simplest, a CM System implementation will include two Contexts. The first,

Context 0, is the default Preview Context for CM System; it defines all links used when previewing CM

System Content Items in relation to the CM System installation Root. The second Context (in this case,

we will call it Context 1) is the Publish Context. It defines all links in relation to the root of the Web

application to which CM System page output is published.

In many cases, the links within published output use a different path than that to which the output is

published. In that case, you will need two Contexts, one to define the delivery location and one to define

the links within the published output. The FastForward implementation uses this technique.

Using Context also allows you to define different formatting for your outputs. You can choose to link to

different stylesheets to produce different output renderings in different output locations, or define Context

Variables that allow you to change the rendering of the output depending on Context.

Location Schemes are used during assembly to define the paths for hypertext links and links to images and

static site files such as CSS files. Location Schemes are used during publishing to define the location to

which the published output will be delivered.

Location Scheme Generator Extensions

The default Location Scheme Generator in CM System Version 6.0 is sys_JexlAssemblyLocation. This

extension builds a location path by evaluating a Java Expression Language (JEXL) expression. (NOTE:

Several legacy Location Scheme Generation Extensions are also shipped with CM System. For details

about these extensions, see Legacy Extension Reference on page 190.

If none of these extensions meet your needs, you can implement a new Location Scheme Generator

Extension. Location Scheme Generator extensions must implement the interface IPSAssemblyLocation.

(NOTE: The implementation must be thread safe; for details see General Requirements of Extensions on

page 180.)

Chapter 6 Shared Features 149

sys_JexlAssemblyLocation

Builds a delivery location by evaluating a Java Expression Language (JEXL) expression

Class Name

com.percussion.services.publisher.impl.PSJexlLocationGenerator

Interface

com.percussion.extension.IPSAssemblyLocation

Context

global/percussion/contentassembler/

Parameters

Name

Data Type

Description

expression String Required. The JEXL expression to be evaluated to create the

delivery location

150 CM System Technical Reference Manual

Scheduled Tasks

A scheduled task is processing run by CM System automatically according to a pre-defined schedule.

CM System uses the Quartz Enterprise Job Scheduler to provide scheduling processing. See

http://www.opensymphony.com/quartz/ for more details.

Scheduled Task extensions provide the task processing. The processing is defined by the extension, and

need not include only CM System processing. The sys_runCommand Scheduled Task extension, for

example, runs a native system command. Scheduled Task extensions use the interface IPSTask. (NOTE:

The implementation must be thread safe; for details see General Requirements of Extensions on page

180.) These extensions must return an IPSTaskResult object, which includes the following properties:

 wasCompleted

A boolean property that indicates whether task processing was completed successfully or

failed.

 getProblemDescription

A string property that describes the result of processing. The text should provide a description

of the result that will be meaningful to a non-technical user. May be null if extension

processing was completed successfully.

 getNotificationVariables

A map of the binding variables returned by the extension. The key for each map property

should be the name of the binding variable in the correct format ($variablename; for example,

$sys.editionName). The value of the property is the value of the variable.

http://www.opensymphony.com/quartz/

Chapter 6 Shared Features 151

sys_purgePublishingLog

Purges publishing logs created more than the specified number of days in the past. The extension can be

configured to archive logs before purging.

Class Name

com.percussion.services.schedule.impl.PSPurgePublishingLog

Interface

com.percussion.services.filter.IPSTask

Context

global/percussion/system/

Parameters

Name

Data Type

Description

numberOfDays String The number of days for which to preserve logs. Logs created more

than the specified number of days in the past will be purged.

Defaults to 30 if not specified. (Logs created more than thirty days

in the past will be purged.)

enableArchive String If the value is true, logs will be archived before being purged. If

the parameter is null or contains any other value, logs will not be

archived before being purged.

152 CM System Technical Reference Manual

sys_purgeScheduledTaskLog

Purges scheduled task logs created more than the specified number of days in the past.

Class Name

com.percussion.services.schedule.impl.PSPurgeScheduledTaskLog

Interface

com.percussion.services.filter.IPSTask

Context

global/percussion/system/

Parameters

Name

Data Type

Description

numberOfDays String The number of days for which to preserve logs. Logs created more

than the specified number of days in the past will be purged.

Defaults to 30 if not specified. (Logs created more than thirty days

in the past will be purged.)

sys_runCommand

Runs the specified native system command.

Class Name

com.percussion.services.schedule.impl.PSRunCommand

Interface

com.percussion.services.filter.IPSTask

Context

global/percussion/system/

Parameters

Name

Data Type

Description

command String The command to run.

Chapter 6 Shared Features 153

sys_runEdition

Publishes the specified CM System Edition.

Class Name

com.percussion.services.schedule.impl.PSRunEdition

Interface

com.percussion.services.filter.IPSTask

Context

global/percussion/system/

Parameters

Name

Data Type

Description

editionName String The name of the Edition to publish.

sys_purgeRevisions

 Purge Revisions according to criteria of number of revisions and age of revisions. Any revision
between current and public revisions are always kept and number of revision counts to remove and keep
in parameters start at the revision before the lowest value of these values.

Class Name

com.percussion.services.schedule.impl.PSPurgeRevisions

Interface

com.percussion.services.filter.IPSTask

Context

global/percussion/task/

154 CM System Technical Reference Manual

Parameters

Name

Data
Type

Description

alwaysKeepMinNumberOfRevs Number Always keep this minimum number of revisions. This is a

safeguard preventing removal of too many revisions by

deleteRevsOlderThanDays parameter. This will make sure we

keep a minimum number of revisions for a comparison when an

item is infrequently changed.

alwaysKeepRevsYoungerThanDays Number Keep all revisions younger than this number of days. This is a

safeguard preventing removal of too many revisions by

deleteRevsAboveCount parameter. This can be used to make sure

that all revisions are kept within a backup schedule even if there are

many revisions.

deleteRevsAboveCount Number Delete all revisions above this number of revisions unless revision

matches one of the alwaysKeep options.

deleteRevsOlderThanDays Number Delete all revisions older than this number of days unless revision

matches one of the alwaysKeep options

153

C H A P T E R 7

System Issues

This chapter addresses technical issues involving the underlying system (CM System server,

JBoss container, etc) rather than a specific engine of the Content Management System.

154 CM System Technical Reference Manual

Custom Implementations

CM System can be extended by adding custom JSPs or servlets.

Before attempting any custom implementation, familiarize yourself with the CM System container,

JBoss. A variety of resources are available for learning about JBoss, including the jboss.org Web site.

Implementing Custom Java Server Pages and Servlets

Customizations can be implemented as a separate web application from CM System, as a CM System

web application, or as a Web Services client application.

Implementing a separate web application should be reserved for applications that cannot be implemented

as a CM System web application, such as a third-party product. These web applications cannot use CM

System server APIs; they must use CM System Web Services to access CM System functionality.

If your customization needs a user interface and needs to authenticate in CM System, implement it as a

custom CM System Web application. These applications use CM System authentication and can access

CM System functionality and data (such as user session data) directly. If you do not need a user interface,

consider using Web Services to implement your customization as a Web Services client. For details about

implementing Web Services, see the CM System Services Development Kit.

Custom Java Server Pages (JSPs) should be added to the directory
<Rhythmyxroot/AppServer/server/rx/deploy/rxapp.ear/rx-

app.war/user/pages. Any subdirectory structure below this directory is allowed. None of the

contents of this directory are touched when the system is upgraded. JSPs in this directory require
authentication unless their security configuration specifically allows anonymous access. (See below for

details about security configuration.) These JSPs have access to session data and CM System server
APIs.

Custom servlets should be implemented as dispatched Spring MVC Controllers. These MVC Controllers

are configured in the file
<Rhythmyxroot/AppServer/server/rx/deploy/rxapp.ear/rx-app.war/WEB-

INF/config/user/spring/user-Dispatcher-servlet.xml. Specify any controller classes

and URL mappings. Optionally, you can also specify any initialization parameters for the servlet as well.

The configuration file includes example configurations. While you can update the mappings in the file
directly, recommended practice is to create a separate XML file in the Dispatch directory (one level below

the /rx-app.war/WEB-INF/config/spring/ directory), and add <include> tags to user-Dispatcher-
servlet.xml. When running several "applications" on the CM System server, this practice isolates them

from one another somewhat.

Recommended practice for adding Spring beans to the user dispatcher configuration is to define a bean

configuration file for each MVC Controller bean in a subdirectory of
<Rhythmyxroot/AppServer/server/rx/deploy/rxapp.ear/rx-app.war/WEB-

INF/config/user/spring/ and import these beans into the user dispatcher configuration. This

practice averts conflicts between beans defined in the user dispatcher configuration. If the name of the file
ends with the string -servlet.xml, it will be loaded into the dispatcher servlet application context and will

inherit the Spring application context constructed from all of the other files in that directory. Files that do
not end with the string -servlet.xml are loaded as user beans.

Chapter 7 System Issues 155

NOTE: You should not deploy a servlet by simply adding it to
<Rhythmyxroot/AppServer/server/rx/deploy/rxapp.ear/rx-app.war/WEB-

INF/web.xml because this file is a system resource that may be overwritten on upgrade and your

deployed servlet will be lost.

When implementing form-based applications, recommended practice is to extend Spring's

SimpleFormController. The form controller automates much of the routine processing, including creating

a model bean for your form and binding all submitted values to this bean. A variety of view technologies

is available, including Velocity templates. Recommended practice for most forms is to use simple JSP

pages (with or without JSTL) and placing these pages in the WEB-INF/pages directory where they cannot

be browsed outside of the form servlet.

Use the class PSDatasourceSessionFactoryBean to configure a Hibernate session factory based on a

datasource configured in the Rhythmyx Server Administrator. For details, see the Javadoc for this

method. Note that Hibernate mappings cannot be specified with wildcards. The Javadoc for

PSDatasourceSessionFactoryBean describes this issue, or see the jboss.org Web site for details.

Obtaining the User and Session

Custom applications often need the CM System session ID and the authenticated user

name. The authenticated user name can be obtained from the standard getRemoteUser()

method.

The CM System request is stored as an attribute on the ServletRequest. The CM System request contains

the session ID, which is the only data needed for access to the CM System API. The PSO Toolkit provides

a convenient method for obtaining the session ID:

public PSSessionUser(HttpServletRequest request)

{

String user = request.getRemoteUser();

String session = RxRequestUtils.getSessionId(request);

}

Handling PSItemStatus

A common issue encountered when writing Web applications in CM System is how to handle the call

to prepareForEdit().

In most form-based Web applications, the client performs a GET to retrieve the content information for

editing. Later, the user will submit the form to the server, usually with a POST.

If prepareForEdit() is not called until the form-submission request (the POST of modified data), it may be

too late. Another user may have already started to modify the same Content Item (or Content Items). If

you call prepareForEdit() when the user first opens the edit page (on the GET), the Content Item is

checked out for the duration of the edit session.

156 CM System Technical Reference Manual

In most applications, implementers opt to check out the Content Item on the GET rather than waiting for

the POST. This practice requires, however, that you store the PSItemStatus information that was returned

from prepareForEdit() until the the subsequent POST request. Two options are available for storing this

data:

 The simplest solution is to pass the PSItemStatus object to the Web layer and store it as an

attribute on the HttpSession. This approach works so long as session timeouts do not occur

while the form window is open. If a session timeout occurs, the form will be renewed, but the

checkout state will be lost.

 An alternative is to use EHCache, which is installed as part of the Hibernate Stack. Spring

has an adapter for EHCache. See the documentation for

org,springframework.cache.ehcache.EhCacheFactoryBean.

Implementing Transactional Services

In CM System, binary fields are always loaded when they are referenced, not when the Content Item is

opened. Programs that need to manipulate binary fields should do so inside the CM System transaction.

CM System uses Spring 2.0 and Hibernate 3.2 to maintain transactions, and you can take advantage of the

support they provide. Creating a new transactional service allows you to extend the CM System

transaction to include your own methods, which is the safest way to manipulate binary fields and other data

that might be lazily loaded.

To add a new service:

1 Define a new interface that contains your service methods.

2 Build a new class that extends HibernateDaoSupport and implements your interface.

3 Create an XML file that defines your implementation as a Spring bean.

4 Build a locator class that extends PSBaseServiceLocator.

An example code package illustrating this process is available from the Percussion Forum

(http://forum.percussion.com/).

Service Interface

The service interface methods should encapsulate all of the code that needs to be transactional. Processing

contained in objects returned by your service will not be inside the transaction. The only restriction on the

interface is that none of the methods can have the same name as any of the methods in

HibernateDaoSupport.

Service Implementation

The services class must:

 implement the service interface you created; and

 extend org.springframework.orm.hibernate3.support.HibernateDaoSupport (which contains

the support for the transaction manager.)

@Transactional

public class SampleServiceImpl extends HibernateDaoSupport

implements SampleService

http://forum.percussion.com/
mailto:@Transactional

Chapter 7 System Issues 157

Note the @Transactional annotation, which tells Spring to execute the class inside the

transaction.

Implementation class methods must be thread safe (they must contain appropriate synchronization

methods for access to shared data.

Spring Bean

The Spring bean is defined in an XML file that is added to the user configuration directory

(<Rhythmyxroot>/AppServer/server/rx/deploy/rxapp.ear/rxapp.war/WEB-INF/config/user/spring). The

Spring bean must contains a reference to a Hibernate session factory even if your service implementation

class does not use Hibernate. The session factory allows DAO support code to reference the transaction

manager.

<bean id="mySampleServiceBean" class=

"com.percussion.pso.service.xact.impl.SampleServiceImpl">

<property name="sessionFactory" ref="mySessionFactory" />

</bean>

You can include any additional properties required by your implementation class.

The beans file must also contain a Hibernate session factory. The standard way to include a Hibernate

session factory is to use PSDatasourceSessionFactoryBean. This class automatically references the

CM System internal session factory.

<bean id="mySessionFactory"

class= "com.percussion.services.datasource.PSDatasourceSessionFactoryB

ean">

<!-- if your service uses any hibernate mappings, you can add them

here-->

</bean>

If your implementation class uses Hibernate, you many need to add further mappings to the session

factory. Not that the ID used for this bean is not important, but it must match the reference in the

implementation bean. Bean IDs can follow any naming convention, except that they must not being with

the string "sys_"; that string is reserved for IDs of system objects.

Service Locator

The service locator allows classes outside of the server's Spring infrastructure (including JSP pages and

servlets defined in the User Dispatcher Servlet context) to find your service. Create a services locator by

extending PSBaseServiceLocator:

public class SampleServiceLocator extends PSBaseServiceLocator

{

public static SampleService getSampleService()

{

return (SampleService) getBean(SAMPLE_SERVICE_BEAN_

}

//this must match the ID of the bean in the xml file.

public static final String SAMPLE_SERVICE_BEAN_NAME

="mySampleServiceBean";

}

mailto:@Transactional

158 CM System Technical Reference Manual

The bean name constant can be any value, but it must match the ID of the bean in the XML file used to

configure the Spring bean.

The name of the static "get" method should match the name of the service.

Deploying a Transaction Service

The recommended method of deploying code in CM System is to build a JAR file and add it to

the directory <Rhythmyxroot/AppServer/server/rx/deploy/rxapp.ear/rx-

app.war/WEB-INF/lib. Beans files, as noted earlier, should be added to the directory
<Rhythmyxroot/AppServer/server/rx/deploy/rxapp.ear/rx-app.war/WEB-

INF/config/user/spring/.

When you restart the server, the server will automatically load these files. The first time you restart,

review the server log carefully for any references to the server bean and server implementation class.

Major errors may cause exceptions; if severe enough, these exceptions may prevent the server from

starting. More subtle errors may result in the service not being loaded.

To call the services, call the services locator:

SampleService sample = SampleServiceLocator.getSampleService();

The example code package includes a test JSP that illustrates a call to a transaction service.

Extending Java Server Faces Page Flows

CM System uses Apache MyFaces.

To add a new JSF page flow to CM System, add a new JSF configuration to the file
<Rhythmyxroot>/AppServer/server/rx/deploy/rxapp.ear.rxapp.war/WEB-

INF/config/user/faces/faces-config.xml. The file
<Rhythmyxroot>/AppServer/server/rx/deploy/rxapp.ear.rxapp.war/WEB-

INF/faces-config.xml should not be modified.

The names of system JSF beans begin with the prefix "sys_". This prefix should not be used when

naming custom JSF beans. However, best practice is to use a consistent naming convention for your

project beans. For information about naming conventions, see "Design Object Naming Conventions" in

the CM System Implementation Guide.

File Locations

Any classes required by a custom implementation should be added to the directory
<Rhythmyxroot>/AppServer/server/rx/deploy/rxapp.ear.rxapp.war/WEB-

INF/classes.

Any .jar files required by a custom implementation should added to the directory
<Rhythmyxroot>/AppServer/server/rx/deploy/rxapp.ear.rxapp.war/WEB-

INF/lib.

The working directory of the CM System server installation is the root directory, but the use of a specific

working directory in future versions of CM System is not guaranteed. Use the service IPSRhythmyxInfo to

determine the location of the root directory if your custom implementation needs to refer to files not

located in the directory rxapp.war.

Chapter 7 System Issues 159

NOTE for upgraded systems: Custom implementations in systems upgraded from CM System Version 5.7

and earlier should be updated to use the service IPSRhythmyxInfo to refer to files. Reliance on a working

directory is deprecated.

CM System Request Context

To access data in the CM System request context, use the methods of the interface IPSRequestContext. In

custom JSPs and servlets, you can access the request context by calling

ServletRequest.getAttribute("RX_REQUEST_CONTEXT"):

 for JSPs, ServletRequest is available from the implicit pageContext object;

 for servlets, the HttpServletRequest subclass is provided to the handleRequest()

method of the Controller interface.

The body of the request is not parsed.

If you need to access an XML document or HTML parameters within CM System (such as for a CM

System XML application), use the method IPSRequestContext.parseBody(). If the body of the

request is an XML document, it will then be available by calling

IPSRequestContext.getInputDocument. If the body of the request is a multi-part form, each

field is converted to an HTML parameter in the request context.

Query string parameters and non-multipart form parameters are automatically parsed by JBoss. You can

access them by calling either ServletRequest.getParameterMap() or

IPSRequestContext.getParameter().

CM System Server Information

Information about the CM System server can be accessed using the method

IPSRhythmyxInfo.getProperty(Key). The following keys can be specified:

Key Value

Returned Data

ROOT_DIRECTORY The root directory of the CM System server.

LISTENER_PORT The HTTP listener port of the CM System server (9992 by default).

LISTENER_SSL_PORT The HTTPS port of the CM System server.

VERSION The installed version of CM System, as a string.

Integrating Content Explorer Action Menu Entries

Action Menu entries define HTML requests that initiate processing. These HTML requests specify the
processing the server should perform (such as retrieving a Content Item, updating edits to it, or performing

a Workflow Transition on it). HTML requests are processed by servlets, JSPs, or CM System applications.

JSPs and servlets should be used to add custom user interfaces. Requests to servlets and JSPs use standard

URLs for those implementations, for example:

/Rhythmyx/user/apps/sampleapplication/sampleurl

/Rhythmyx/user/pages/samplepage.jsp

160 CM System Technical Reference Manual

CM System Content Editors are accessed as applications. Otherwise, CM System applications should

be used when specific CM System functionality is needed.

Requests to Applications

The general format of requests to CM System applications is:

http://server:port/rxroot/approot/resource.xml?parameters

Where:

server is the hostname or IP address of the machine where the CM System server is running.

port is the port number in which the CM System server listens for HTTP requests.

rxroot is the URL root of the CM System server; for example, the default root is /Rhythmyx.

approot is the name of the CM System application you want to use to process the request.

resource is the name of the resource you want to use to process the request (or a file in the

application directory

xml is the extension used for the request. In the majority of cases, these requests are internal and

should use the extension "xml".

parameters is a list of parameters used by the specified resource. The set of parameters used in a

request are determined by the parameters required by the resource, which falls into one of four
categories:

 query

 update

 Content Editor

 non-text

Query Request Parameters
The optional and required parameters of a query resource are determined by the parameters specified

when defining the resource itself.

http://server:port/rxroot/approot/resource.xml

Chapter 7 System Issues 161

Update Request Parameters

Parameter Name

Description

Allowed Values

DBActionType Specifies the database action.

If all entries in the submitted

XML document use the same

action, you can supply this

parameter as an HTML

parameter. Otherwise, you must

provide an ActionType for each

row.

Value

Description

INSERT Tells the

database

server to

create a new

row

UPDATE Tells the

database

server to

update an

existing row;

a key must be

provided.

Depending on

the settings of

the resource,

this command

may also

insert a row if

it does not

already exist.

DELETE Remove the

row specified

by the

supplied key

QUERY Not generally

useful for

Update

resources.

Others Other parameters as determined

by resource design.
Determined by resource
design.

Content Editor Request Parameters

The only parameter available for Content Editor resources is sys_command, which can take the

following values:

Value

Result

edit (see "Edit Command" on page 162) Opens the specified Content Item so a user can

change it.

preview (see "Preview Command" on page 164) Assembles the specified Content Item using the

specified Template.

162 CM System Technical Reference Manual

Value

Result

modify (see "Modify Command" on page 167) Adds a new Content Item to the Repository or

updates an existing Content Item in the Repository.

workflow (see "Workflow Command" on page 169) Changes the current State of the specified Content

Item.

binary (see "Binary Command" on page 169) Retrieves a non-text Content Item.

clone (see "Clone Command" on page 170) Creates a duplicate of the specified Content Item.

relate (see "Clone Command" on page 170) Creates or modifies a Relationship.

The value of the sys_command parameter determines the additional parameters required. Note that

some values of sys_command require subcommands in the format:

http://server:port/rxroot/approot/resource.xml?sys_command/subcommand?p

arameters

Edit Command

The edit command opens the specified Content Item so a user can change the Item. It takes the

following parameters:

Parameter
Name

Description

Allowed Values

sys_contentid The ID of the

Content Item to

be edited. If

this value is not

specified, the

server returns

an empty results

set.

Integers

sys_revision The ID of the

Revision of the

Content Item to

return.

Integers

http://server:port/rxroot/approot/resource.xml

Chapter 7 System Issues 163

Parameter
Name

Description

Allowed Values

sys_pageid Specifies

whether to

retrieve data for

all fields on the

Content Item or

for a specific

child table.

This parameter

is optional. If

not included,

the server

returns all fields

(as if the value

of the parameter

were 0).

Value

Description

0 Return all Content Item fields, including all child

table entries.

1 Return the summary of the first child table in the

Content Item (in the order the child tables are

specified in the Content Item definition); or all child

entries for the first child table.

2 Return the editing information for a specific row in

the first child table in the Content Item (in the order

the child tables are specified in the Content Item

definition). The row to return is specified by the

sys_childrowid parameter.

3 Return the summary of the second child table in the

Content Item (in the order the child tables are

specified in the Content Item definition); or all child

entries for the second child table.

4 Return the editing information for a specific row in

the second child table in the Content Item (in the

order the child tables are specified in the Content

Item definition). The row to return is specified by

the sys_childrowid parameter.

And so on. Odd values for this parameter specify to

return the summary or all child entries of a table (1 is the

first table, 3 is the second table, 5 is the third table, etc.).

Even values specify to return a specific row from a child

table (2 is the first table, 4 is the second table, 6 is the

third table). The rule essentially is to return a specific

row from a child table, use the value 2x, where x is the

count of the table for which you want to return the row; to

return the entire table, use the value 2x-1.

164 CM System Technical Reference Manual

Parameter
Name

Description

Allowed Values

sys_view Specifies the set

of fields to

display,

metadata,

content data, or

a single field.

Value

Description

sys_All Display all fields, including all

child entries.

sys_ItemMeta Displays only system fields.

For local and shared fields, the

server sets

displayType=”sys_hidden”.

sys_Content Displays only content fields

(fields defined in the local and

shared definition files). For

system fields, the server sets

displayType=”sys_hidden”.

sys_SingleField:<fieldname> Displays a single field,

specified by <fieldname>. For

all other fields in the Content

Type, the server sets

displayType=”sys_hidden”

sys_childrowid Specifies the

row in a child

table to display.

Used when the

value of

sys_pageid is an

even integer;

otherwise, omit.

Integers

The server returns all fields of the specified Content Item. If the extension is XML, the response result

must conform to the sys_ContentEditor.dtd (rxroot/DTD/sys_ContentEditor.dtd).

Preview Command

This command displays an assembled Content Item in preview mode. The value of the isReadOnly

parameter for all fields is always true when the command is preview.

Parameter
Name

Description

Allowed Values

sys_contentid The ID of the

Content Item to

be edited. If

this value is not

specified, the

server returns

an empty results

set.

Integers

Chapter 7 System Issues 165

Parameter
Name

Description

Allowed Values

sys_revision The ID of the

Revision of the

Content Item to

return.

Integers

sys_pageid Specifies

whether to

retrieve data for

all fields on the

Content Item or

for a specific

child table.

This parameter

is optional. If

not included,

the server
returns all fields

(as if the value

of the parameter

were 0).

Value

Description

0 Return all Content Item fields, including all child table

entries.

1 Return the summary of the first child table in the Content

Item (in the order the child tables are specified in the

Content Item definition); or all child entries for the first

child table.

2 Return the editing information for a specific row in the

first child table in the Content Item (in the order the child

tables are specified in the Content Item definition). The

row to return is specified by the sys_childrowid

parameter.

3 Return the summary of the second child table in the

Content Item (in the order the child tables are specified in

the Content Item definition); or all child entries for the

second child table.

4 Return the editing information for a specific row in the

second child table in the Content Item (in the order the

child tables are specified in the Content Item definition).

The row to return is specified by the sys_childrowid

parameter.

And so on. Odd values for this parameter specify to

return the summary or all child entries of a table (1 is the

first table, 3 is the second table, 5 is the third table, etc.).

Even values specify to return a specific row from a child

table (2 is the first table, 4 is the second table, 6 is the

third table). The rule essentially is to return a specific

row from a child table, use the value 2x, where x is the

count of the table for which you want to return the row; to

return the entire table, use the value 2x-1.

166 CM System Technical Reference Manual

Parameter
Name

Description

Allowed Values

sys_view Specifies the set

of fields to

display,

metadata,

content data, or

a single field.

Value

Description

sys_All Display all fields, including all

child entries.

sys_ItemMeta Displays only system fields.

For local and shared fields, the

server sets

displayType=”sys_hidden”.

sys_Content Displays only content fields

(fields defined in the local and

shared definition files). For

system fields, the server sets

displayType=”sys_hidden”.

sys_SingleField:<fieldname> Displays a single field,

specified by <fieldname>. For

all other fields in the Content

Type, the server sets

displayType=”sys_hidden”

sys_childrowid Specifies the

row in a child

table to display.

Used when the

value of

sys_pageid is an

even integer;

otherwise, omit.

Integers

The server returns all fields of the specified Content Item. If the extension is XML, the response result

must conform to the sys_ContentEditor.dtd (rxroot/DTD/sys_ContentEditor.dtd).

Chapter 7 System Issues 167

Modify Command
This command modifies a Content Item or one of its fields.

Parameter
Name

Description

Allowed Values

DBActionType Specifies the database action

to take.

NOTE: IF you specify a

value other than those listed

under “Allowed Values”, no

database operation occurs.

Value

Description

INSERT Inserts a new

Content Item with

the specified

values. Creates a

new contentid and

revision id.

UPDATE Modifies an

existing Content

Item. When using

this value, the

parameters

sys_contentid and

sys_revision are

required.

SEQUENCE_DECREMEN

T
Decrements the

sortrank of the

specified child row.

This Value is

ignored if the value

of the Allow user to
reorder entry field

for the Content

Editor is false.

SEQUENCE_INCREMENT Increments the

sortrank of the

specified child row.

This Value is

ignored if the value

of the Allow user to
reorder entry field

for the Content

Editor is false.

sys_contentid The ID of the Content Item to

be updated. Required if

DBActionType=UPDATE.

Integers

sys_revision The revision ID of the

Content Item to be updated.

Required if

DBActionType=UPDATE.

Integers

sys_childid The ID of the child table of

the Content Item to be

updated.

Integers

168 CM System Technical Reference Manual

Parameter
Name

Description

Allowed Values

sys_childrowid The row in the child table to

be updated.
Integers

fieldname The name of the field to be

updated.
Alphanumeric string of the updated value of the field.

fieldname_clear Used for binary fields.

Removes the existing value of

the field.

Simply leaving the upload

field (which specifies the path

to the binary object to

upload), does not clear the

binary object. You must use

the “_clear” suffix with the

field name to clear the binary

object.

This parameter does not take

a value. For example, to clear

a field called imgbody, you

would include this parameter

as imgbody_clear.

Does not take a value.

Chapter 7 System Issues 169

Workflow Command

The workflow command performs a Workflow Action on a Content Item. Workflow Actions fall into two

categories

 Transitional requests perform the stated Transition, changing the Workflow State of the

Content Item.

 Non-transitional requests check out or check in the Content Item, but do not change the Item’s

State.

Parameter
Name

Description

Allowed Values

WFAction Specifies the database action to

take.

Value

Description

checkout Non-Transitional action; checks

out the specified Content Item.

checkin Non-Transitional action; checks

in the specified Content Item.

forcecheckin Non-Transitional action; checks

in the specified Content Item,

even if the Item is currently

checked out by a user.

transition or

trigger name
Transitional action. Requires the

sys_transitionid parameter to

specify the Transition to

perform.

sys_contentid The ID of the Content Item on

which to perform the Workflow

Action.

Integers

sys_revision The revision ID of the Content

Item to be updated.
Integers

sys_transitionid The ID of the Transition to

perform. Not required for non-

transitional actions.

Integers

commenttext Comment for the Workflow

request. May be empty.
Alphabetic string of the comment on the Transition.

Binary Command
Equivalent to a non-text request. See the discussion of non-text requests for details.

Parameter Name

Description

Allowed Values

sys_submitname Name of the Binary field. Alphanumeric string.

sys_contentid ID of the Content Item. Integers

sys_revision ID of the Revision. Integers

170 CM System Technical Reference Manual

Parameter Name

Description

Allowed Values

sys_childrowid ID of the child row; required if

the binary object is stored in a

child table.

Integers

Clone Command

The clone command creates a duplicate of the specified Content Item. The response document contains

the same data as the cloned Item, which conforms to the sys_ContentEditor.dtd.

Parameter Name

Description

Allowed Values

sys_contentid ID of the Content Item. Integers

sys_revision ID of the Revision. Integers

sys_wfAction Workflow Action to perform on

the newly-created Content Item.

The only valid value for this

parameter is checkin. If this

parameter has any other value,

or if no value is specified for

the parameter, the checkin

action is not performed on the

newly-created Content Item.

checkin

Relate Command
The relate command constructs or modifies a Relationship. The relate command can take subcommands:

Subcommand

Description

create If the command specifies locators for both an Owner and a Dependent, this

subcommand creates a new Relationship of the specified type between the

specified Content Items if no Relationship of that type already exists between the

two Items. If a Relationship of the specified type already exists between the

specified Content Items, the Relationship is updated.

If no Dependent locator is specified and the Relationship configuration allows

cloning, the Owner is cloned and a Relationship of the specified type is created

between the owner and the new clone.

insert If the command specifies locators for both an Owner and a Dependent, this

subcommand creates a new Relationship of the specified type between the

specified Content Items if no Relationship of that type already exists between the

two Items.

If no Dependent locator is specified and the Relationship configuration allows

cloning, the Owner is cloned and a Relationship of the specified type is created

between the owner and the new clone.

query Retrieves the specified Relationships.

Chapter 7 System Issues 171

Note that you can use the relate command without a subcommand. The CM System server treats such

a request as if it included the create subcommand.

All subcommands use the same set of parameters.

Parameter Name

Description

Allowed Values

sys_relationshiptype Specifies the type of

relationship to create or

modify.

Any Relationship type (for example, Active

Assembly or Translation – Mandatory)

defined in the system

sys_contentid Specifies the ID of the Owner

Content Item in the

Relationship.

Integers

sys_revision Specifies the Revision of the

Owner Content Item in the

Relationship.

Integers

sys_dependentid Specifies the ID of the

Dependent Content Item in

the Relationship.

Integers

sys_dependentrevision Specifies the Revision of the

Dependent Content Item in

the Relationship.

Integers

Non-Text Request Parameters
The parameters of a non-text resource are determined by the design of the resource, but must include at

least the search key that specifies the row to return.

Spring Configurations

To add Spring beans to CM System, add Spring bean configuration files to the Spring

configuration directory:
<Rhythmyxroot>/AppServer/server/rx/deploy/rxapp.ear/rxapp.war/WEB-

INF/config/user/spring/. During initialization, the server loads any Spring beans configuration

files found in this directory.

Note that beans added to this configuration are added to the server's Spring context. The user dispatcher

servlet also has a separate Spring context. Beans added to one context are not available in the other

context.

The names of system Spring beans begin with the prefix "sys_". This prefix should not be used when

naming custom Spring beans. However, best practice is to use a consistent naming convention for your

project beans. For information about naming conventions, see "Design Object Naming Conventions" in

the CM System Implementation Guide.

172 CM System Technical Reference Manual

Alternate Hibernate Session Connections to the

CM System Datasource

CM System connects to the Repository using a default Hibernate session that uses the CM

System datasource. You can also configure custom connections to this datasource.

To connect to the CM System datasource programmatically, use the method

PSConnectionHelper.getHibernateInfo(PSConnectionInfo info)where info is the

name of the datasource connection for which you want to return properties. The object returned includes

the following properties:

Property

Description

hibernate.connection.datasource Name of JNDI datasource.

hibernate.default_catalog Database name, if specified.

hibernate.default_schema Schema or origin, if specified.

hibernate.dialect Hibernate dialect used to connect to the database, based on the driver

configured in the JNDI datasource.

Additional properties defined in the CM System datasource are also

returned. If you need to create a different Hibernate session for a Spring

bean, use

PSDatasourceSessionFactoryBean to create a new session factory for your bean. For details, see the
Javadoc for this method. Note that Hibernate mappings cannot be specified with wildcards. The Javadoc

for PSDatasourceSessionFactoryBean describes this issue, or see the jboss.org Web site for details.

Logging for Custom Implementations

Custom implementations should use the Apache commons logging interfaces to perform logging.

Logging output from this interface will automatically use the log4j configuration defined in the CM

System server. For additional details about logging, see Configuring Logging (see page 178).

Chapter 7 System Issues 173

Defining Non-CM System Datasources

If your implementation needs a datasource, you should configure it in the Rhythmyx Server Administrator

(see "Maintaining Datasources"). If you need to configure options in your datasource that are not

available in the CM System Server Administrator, you can create another JBoss datasource file and

deploy it to the directory <Rhythmyxroot/>/AppServer/server/rx/deploy and add the new

datasource to it. The new datasource will be picked up the next time the server is restarted. These

datasources are not available for use in CM System applications.

174 CM System Technical Reference Manual

Security

This section describes security issues in CM System.

CM System, JBoss, and JAAS

CM System implements the security model of its container, JBoss. Like many J2EE application servers,

JBoss uses Java Authentication and Authorization Service (JAAS). By default, CM System uses its own

login module, which uses the security providers shipped with CM System. JBoss includes a number of

login modules that you can use instead, or you can implement your own login module. (For details about

configuring these modules, see Rules for Custom Login Modules.)

Implementing Custom Authentication

If you need to implement a custom login module, you will need to configure it, and you may need to

implement customer Role Catalogers, Subject Catalogers, or both Role and Subject Catalogers. This

section describes how to configure custom login modules correctly and how to implement custom Role

and Subject catalogers.

Rules for Custom Login Modules

If you add a new login module, you must configure it in the file <Rhythmyxroot>/AppServer/

server/rx/conf/login-config.xml. Changes to this file require a server restart to take effect.

If the CM System entry in this file is removed or commented out, any security providers configured in

CM System will be disabled.

If you cannot use LDAP to return Role and Role Member data, and the data cannot be configured manually

in the Role or Member registration in the Rhythmyx Server Administrator, you will need to implement a

custom Role cataloger, a custom subject cataloger, or both. Role Catalogers return Role data, including

lists of Role Members and Role properties. Subject catalogers return data about the individual Members of

the Roles. For details about Role and Subject catalogers, see "Role and Subject Catalogers".

To return Roles correctly, the CM System login module should be configured last in the configuration file.

The value of the flag attribute of the CM System login module must be sufficient, while the value of this

attribute for all other modules must be optional.

If you want to return Role and subject data from all Role and Subject catalogers, do not configure any

custom login module to return a list of Roles to CM System. CM System will then query all Role and

subject catalogers once authentication processing is complete. (If any login modules is configured to

return Role and Subject data, CM System will return Role and Subject data from that login modules

and from the default rxmaster Backend Table Security Provider.)

If you use a <meta> tag to override the default content type, character encoding on the page must be UTF-

8.

Chapter 7 System Issues 175

Role and Subject Catalogers

You do not need to implement a custom Role cataloger or subject cataloger when you implement a custom

login module if you can use LDAP to retrieve Role and Member data, or if you can configure the data

manually for the Roles and Members in the Server Administrator. If neither of these cases is true, you

will need custom Role and subject catalogers.

Role catalogers are CM System extensions that return Role data, including the list of Role Members

and Role properties. These extensions implement the interface IPSRoleCataloger. Subject catalogers

are CM System extensions that return data for specific Members of Roles. These extensions implement

the interface IPSSubjectCataloger.

The cataloger class requires a no argument constructor. The names of any properties must begin with

lower-case letters. Properties require a setter method following Java Bean patterns. The name of the

setter method must be camel-cased.

The cataloger must be registered on the Rhythmyx Server Administrator (see "Maintaining Catalogers" in

the Rhythmyx Server Administrator Help) , with all properties specified. The server must be restarted to

initialize the cataloger extension.

Implementing Custom Login Pages

CM System provides a default login page, including both login and logout functionality, but you can

implement your own login page if you prefer. To implement a custom login page, add the following files

to <Rhythmyxroot>/AppServer/ server/rx/deploy/rxapp.ear/rxapp.war/:

 login.jsp

This file must include the following:

 A field called j_username, in which the user enters the login name. The value

should be defined with the

tag<%= request.getParameter("j_username") %> to allow the value to

be restored after a failed attempt.

 A field called j_password, in which the user enters the password. The value

should be defined with the tag

<%= request.getParameter("j_password") %> to allow the value to be
restored after a failed attempt.

The form should not specify an action so it is submitted for login again after an error.

 error.jsp

This file is optional. Include it if you want to display the error message from the server

explaining why login failed. To display this message, include the tag JSP tag

<%= request.getParameter("j_error") %> .

This file should also include a way to return to the login page (such as a a link to ../login or

or a form that posts back to the login servlet by not specifying an action.

Note that you can also display error messages on the login form by including the j_error

field.

176 CM System Technical Reference Manual

 logout.jsp

This file must make a request to /Rhythmyx/logout (or a relative path based on the

location from which /Rhythmyx/logout is called).

Security Extensions

CM System provides for three types of extensions for security:

 Role Catalogers

 Subject Catalogers

 Password Filters

For details about Role and Subject Catalogers, see Role and Subject Catalogers. Note that no Role or

Subject Cataloger extensions are shipped with CM System.

Password Filters

A Password Filter extension is used when passwords are stored in encrypted form. A Password Filter

encrypts the password entered by the user so it can be compared to the encrypted password stored in the

security provider.

A Password Filter extension must implement the interface IPSPasswordFilter.

IMPORTANT: A Password Filter extension must provide a meaningful no arguments constructor that

will produce a working filter.

sys_DefaultPasswordFilter

Context:

Java/global/percussion/filter/

Description:

This exit takes a plain text string (a password) and encrypts it for a CM System security provider.

Class name:

com.percussion.filter.DefaultPasswordFilter

Interface:

com.percussion.security.IPSPasswordFilter

Parameters:

No user-supplied parameters. The server automatically supplies the password to the extension.

Chapter 7 System Issues 177

Security for Custom Web Applications

Custom web applications implemented as CM System JSPs or dispatched Spring MVC Controllers use the

security configured for CM System. No additional security configuration is required for these

applications. For details about configuring these applications, see Implementing Custom Java Server Pages

and Servlets.

Security must be configured for non-CM System customizations. Configure security for each web

application in the file <Rhythmyxroot/AppServer/server/rx/deploy/rxapp.ear/rx-

app.war/WEB-INF/config/user/security/user-security-conf.xml. Entries in this

file define the authentication requirement for each custom web application. Each web application is

specified in a path node. The value of this node is the path to the web application for which you are

defining security. The authType attribute of the path node specifies the type of authentication used

for the web application. Options include form, basic, and anonymous.

The path nodes are nested in securityConfiguration nodes. The securityConfiguration

node specifies whether the web applications contained in the node require secure login using SSL. If the

value of the forceSecureLogin attribute is yes, authentication data will be transmitted using SSL,

otherwise it is transmitted unencrypted via HTTP. A default securityConfiguration node is

included with a forceSecureLogin attribute whose value is no.

178 CM System Technical Reference Manual

Configuring Logging

CM System uses Log4j to provide logging functionality. The Log4j configuration file is stored in the

directory <Rhythmyxroot>/AppServer/server/rx/conf/log4j.xml. This file includes

extensive comments describing the default configuration.

For additional details about Log4j, see http://logging.apache.org/log4j.

http://logging.apache.org/log4j

179

C H A P T E R 8

Extensions

CM System extensions allow you to modify or enhance the functionality available in the base product by

adding your own functionality. In many cases, CM System functionality is based on extensions, so you can

customize the system to produce the behavior you need for your implementation.

This chapter outlines the general requirements for all extensions and explains how to register them. Two

consolidated references to extensions are provided, one by type, the other alphabetical.

180 CM System Technical Reference Manual

General Requirements of Extensions

All extensions must implement an interface, either IPSExtension or, in most cases, a more specialized

interface. The interface required for each extension is documented with that extension type.

All extensions must be registered in the system so they can be initialized when the system starts. In most

cases, the server must be restarted to initialize an extension. For details about registering an extension, see

Registering an Extension (see page 181).

When designing and implementing an extension, evaluate its potential impact on performance. In most

cases, the simplest way to gauge this impact is to consider how frequently it will be called. For example, a

JEXL function extension is likely to be called whenever the associated Template is assembled, whether

for preview or when publishing; when publishing, the function could be called hundreds, even thousands

of times. A poorly designed and implemented extension can thus have a significant impact on

performance.

IMPORTANT: CM System extensions must be thread safe. For information about thread safety,

consult any standard Java reference.

Chapter 8 Extensions 181

Registering an Extension

A CM System extension can be implemented in either Java or JavaScript, but in CM System Version 6.0

and later, Java extensions are most common.

A Java extension usually has two sets of parameters:

 Initialization parameters are used to initialize the extension. You must specify both the name

and the value of initialization parameters when registering the extension.

 Runtime parameters define data input to the parameter when it is called. You must specify

the name and data type of these parameters. Ideally, when you register the extension you

should also include a description of the parameter to explain what it does, what values are

valid, and any default values.

The registration should also note any files (such as a properties file) or CM System applications needed to

support the processing of the extension. Note that these supporting resources must exist before you can

add them to the extension registration.

To register an extension:

1 In the Rhythmyx Workbench, go to the System view and select the Folder to which you want

to add the extension registration.

2 In the Menu bar, choose File > New.

182 CM System Technical Reference Manual

The Rhythmyx Workbench displays the New Extension wizard.

Figure 31: New Extension wizard

3 Enter the Extension name and, optionally, Description.

4 Leave Java selected in the Handler field.

5 To add a supported interface:

a) In the Supported interfaces drop list, select the interface required for your extension.

b) Click the [+] button next to the field to add the supported interface.

c) Repeat for each supported interface you want to add to the extension.

6 Enter the Class name.

7 Click the [Finish] button.

Chapter 8 Extensions 183

The Rhythmyx Workbench displays the Extension editor.

Figure 32: Extension Registration Editor

8 To add initialization parameters to the extension registration:

a) Click the [Additional Parameters] button.

184 CM System Technical Reference Manual

The Rhythmyx Workbench displays the Additional Parameters dialog.

Figure 33: Additional Parameters dialog

b) For each initialization parameter in your extension, enter the Name of the parameters and

its Value in the same row.

c) When you have entered all initialization parameters, click the [OK] button to save

initialization parameters.

9 Add runtime parameters to the Parameters table on the Extensions editor. For each parameter,

enter the Name and the data Type. Optionally, enter a Description.

10 In Required files, enter any number of files that the extension uses. Required files are
generally .class, .jar, or .zip files. A required file might, for example, specify acceptable

formats for dates or valid entries for a field.

a) Enter the path to the file in the Required files field, or use the browse button to find the

file.

b) Click the [+] button next to the Required files field to add the path to the list of required

files.

c) Repeat for each required file.

11 In Required applications, choose all of the applications that use the extension. If you fail to

choose an application that uses the extension, you will not effect the running of the extension;

however, the Rhythmyx Multi-Server Manager will not automatically package the extension

with the application. For more information see the Rhythmyx Multi-Server Management

document:

a) In the Required applications drop list, select the CM System application required for

your extension.

b) Click the [+] button next to the field to add the application.

c) Repeat for each application you want to add to the extension.

12 In the Button bar of the Rhythmyx Workbench, click the save button.

Chapter 8 Extensions 185

Extensions Reference by Type

Assembly Plugins

binaryAssembler (see page 99)

databaseAssembler (see page 99)

debugAssembler (see page 100)

dispatchAssembler (see page 100)

legacyAssembler (see page 101)

velocityAssembler (see page 101)

Content List Generators

sys_PublishedSiteItems (see page 126)

sys_SearchGenerator (see page 128)

sys_SelectedItemsGenerator (see page 127)

Field Validations sys_ValidateDateRange (see

page 20) sys_ValidateJexlFieldExpression (see

page 20) sys_ValidateNumberRange (see page

21) sys_ValidateRequiredField (see page 22)

sys_ValidateStringLength (see page 22)

sys_ValidateStringPattern (see page 23)

Field Input Transformers

sys_MapInputValue (see page 24)

sys_NormalizeDate (see page 24)

sys_OverrideLiteral (see page 25)

sys_Replace (see page 25)

sys_ToHash (see page 26)

sys_ToLowerCase (see page 27)

sys_ToProperCase (see page 27)

sys_ToUpperCase (see page 28)

sys_TranslateJexlExpressionValue (see page 28)

186 CM System Technical Reference Manual

sys_TrimString (see page 29)

Field Output Transformers

sys_DateFormat (see page 30)

sys_DateFormatEx (see page 31)

sys_FormatDate (see page 31)

sys_MapOutputValue (see page 32)

Item Filter Rules sys_filterByFolderPaths

(see page 145) sys_filterByPublishableFlag

(see page 146) sys_filterBySiteFolder (see

page 146)

Java Expression Language (JEXL) Functions

Assembly Utilities

Code and Decode Utilities (see page 134)

Conditional Processing Utilities (see page 135)

Database Utilities (see page 136)

Document Utilities (see page 136)

Extension Utilities (see page 137)

GUID Utilities (see page 137)

Internationalization Utilities (see page 138)

Keyword Utilities (see page 135)

Link Utilities (see page 138)

Location Utilities

Navigation Utilities (see page 140)

Session Utilities (see page 142)

String Utilities (see page 142)

Location Scheme Generators

sys_JexlAssemblyLocation (see page 148)

Slot Content Finders

sys_AutoSlotContentFinder (see page 102)

sys_LegacyAutoSlotContentFinder (see page 102)

sys_ManagedNavContentFinder (see page 104)

Chapter 8 Extensions 187

sys_RelationshipContentFinder (see page 104)

sys_TranslationContentFinder (see page 105)

Template Expanders

sys_ListTemplateExpander (see page 127)

sys_SiteTemplateExpander (see page 129)

Workflow Actions

sys_createTranslations (see page 113)

sys_PublishContent (see page 114)

sys_TouchParentItems (see page 116)

188 CM System Technical Reference Manual

Alphabetical Reference to CM System
Extensions

Assembly Utilities (see page 133)

binaryAssembler (see page 99)

Code and Decode Utilities (see page 134)

Conditional Processing Utilities (see page 135)

databaseAssembler (see page 99)

Database Utilities (see page 136)

debugAssembler (see page 100)

dispatchAssembler (see page 100)

Document Utilities (see page 136)

Extension Utilities (see page 137)

GUID Utilities (see page 137)

Internationalization Utilities (see page 138)

Keyword Utilities (see page 135)

legacyAssembler (see page 101)

Link Utilities (see page 138)

Location Utilities (see page 139)

Navigation Utilities (see page 140)

Session Utilities (see page 142)

String Utilities (see page 142)

sys_AutoSlotContentFinder (see page 102)

sys_createTranslations (see page 113)

sys_FormatDate (see page 31)

sys_filterByFolderPaths (see page 145)

sys_filterByPublishableFlag (see page 146)

sys_filterBySiteFolder (see page 146)

sys_JexlAssemblyLocation (see page 148)

sys_LegacyAutoSlotContentFinder (see page 102)

sys_ListTemplateExpander (see page 127)

sys_ManagedNavContentFinder (see page 104)

Chapter 8 Extensions 189

sys_MapInputValue (see page 24)

sys_MapOutputValue (see page 32)

sys_NormalizeDate (see page 24)

sys_PublishContent (see page 114)

sys_RelationshipContentFinder (see page 104)

sys_RelationshipContentFinder (see page 104)

sys_SearchGenerator (see page 128)

sys_SelectedItemsGenerator (see page 127)

sys_SiteTemplateExpander (see page 129)

sys_TouchParentItems (see page 116)

sys_TranslateJexlExpressionValue (see page 28)

sys_TranslationContentFinder (see page 105)

sys_TrimString (see page 29)

sys_ValidateDateRange (see page 20)

sys_ValidateJexlFieldExpression (see page 20)

sys_ValidateNumberRange (see page 21)

sys_ValidateRequiredField (see page 22)

sys_ValidateStringLength (see page 22)

sys_ValidateStringPattern (see page 23)

velocityAssembler (see page 101)

190 CM System Technical Reference Manual

Legacy Extension Reference

This section documents extensions that were shipped with earlier versions of CM System. These

extensions are installed to provide backward compatibility in upgraded systems. In general, when

implementing CM System Version 6.0, the newer extensions documented in Extensions Reference by

Type (see page 185) and Alphabetical Reference to Extensions (see page 188) should be used.

Result Document Processing

rxs_SiteFolderContentListBuilder

Name

rxs_SiteFolderContentListBuilder

Context

global/percussion/fastforward/sfp/

Description

This exit builds a Content List for Site Folder Publishing from Content Items in a Content Explorer Site

Folder tree. The exit’s parameters let users customize which Content Items are selected for publishing.

Class name

com.percussion.fastforward.sfp.PSSiteFolderContentListExit

Interface

com.percussion.extension.IPSResultDocumentProcessor

Parameters

Name

Data Type

Description

filenameContext string Delivery location for Content

Items. By default, takes the value

of the locationCtx parameter in

the Content List URL. If a

delivery location is not specified,

CM System delivers to the URL

in the Assembly Context.

deliveryType string Type of delivery. Options are

filesystem or ftp. Takes the value

of the delivery parameter in the

Content List URL if specified.

Default value is ftp.

Chapter 8 Extensions 191

Name

Data Type

Description

isIncremental string Incremental publishing flag.

Options are y or n. Takes the

value of the inc parameter in the

Content List URL if specified.

Default value is n.

contentValidValues string Indicates in which States it is

valid to publish this content. For

more information, see "Extending

Publishable States" and "Edit

State Page" in the online CMS

Help. Takes the value of the

valid parameter in the Content

List URL if specified.

MaxRowsPerPage String Specifies the maximum number

of Content Items to appear on a

single page of the Content List.

Default is –1 (unlimited number

of Content Items).

rxs_SiteFolderContentListBulkBuilder

Name

rxs_SiteFolderContentListBulkBuilder

Context

/global/percussion/fastforward/sfp/

Description

This exit builds a Content List for Site Folder Publishing from Content Items in a Content Explorer Site
Folder tree. The exit’s parameters let users customize which Content Items are selected for publishing.

Also flushes all caches on a Publishing Hub server.

Class Name

com.percussion.fastforward.sfp.PSSiteFolderContentListBulkExit

192 CM System Technical Reference Manual

Interface

com.percussion.extension.IPSResultDocumentProcessor

Parameters

Name

Data Type

Description

filenameContext String Delivery location for Content Items. By default, takes the

value of the locationCtx parameter in the Content List

URL. If a delivery location is not specified, CM System

delivers to the URL in the Assembly Context.

deliveryType String Type of delivery. Options are filesystem or ftp. Takes the

value of the delivery parameter in the Content List URL

if specified. Default value is ftp.

isIncremental String Incremental publishing flag. Options are y or n. Takes the

value of the inc parameter in the Content List URL if

specified. Default value is n.

contentValidValues String Indicates in which States it is valid to publish this

content. For more information, see "Extending

Publishable States" and "Edit State Page" in the online

CMS Help. Takes the value of the valid parameter in the

Content List URL if specified.

MaxRowsPerPage String Specifies the maximum number of Content Items to

appear on a single page of the Content List. Default is –1

(unlimited number of Content Items).

contentResourceName String Name of the resource that looks up Content Items and

their Variants for publishing. The

rxs_SiteFolderContentListBulkBuilder only processes the

SQL results set from this resource, it does not process the

XML result document. Therefore, if the resource

includes any post-exits, the

rxs_SiteFolderContentListBulkBuilder exit will ignore

them.

ParamListToPass String Comma separated list of all non standard HTML

parameters to pass from request to the content URL for

each item in the content list.

rxs_SiteFolderAssembly

Name:

rxs_SiteFolderAssembly

Context:

global/percussion/fastforward/sfp/

Chapter 8 Extensions 193

Description:

This extension retrieves a Site Folder path to build a Site Folder publishing location. You can use this as a

location scheme generator or as a UDF mapped to a path variable in an application resource that builds a

publishing location. For more information see the FastForward documentation.

Class name:

com.percussion.fastforward.sfp.PSSiteFolderAssembly

Interfaces:

com.percussion.extension.IPSAssemblyLocation

com.percussion.extension.IPSUdfProcessor

rxs_AutoSiteItemFilter

Name:

rxs_AutoSiteItemFilter

Context:

global/percussion/fastforward/sfp/

Description:

This exit removes Content Items that are not associated with sys_siteid from an autoindex.

Class name:

com.percussion.fastforward.sfp.PSAutoSiteItemFilter

Interfaces:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data
Type

Description

ItemSiteFolderURL string The url of a resource that retrieves the site folder root xml file. Default is

../rx_supportSiteFolderContentList/lookupSiteFolderRoot.xml

194 CM System Technical Reference Manual

rxs_NavAutoSlot

Name:

rxs_NavAutoSlot

Context:

global/percussion/fastforward/managednav/

Description:

This post-exit is attached to an assembler resource after the sys_casAddAssemblerInfo exit for any Content

Type that has navigation bars. It adds the correct links to the Navigation Slots on an assembled Page. The

exit finds Folders which contain the Content Item being assembled and a Navon. If one such Folder is

found, a Variant of the Navon is inserted into the appropriate navigation Slot on the page. If more than one

such Folder is found, the exit locates a Folder which is a descendent of the Site Folder root and inserts a

Variant of the Navon into the appropriate navigation Slot on the page. If users supply a value for

sys_folderid or rx_folder (as an HTML parameter to the assembler application), the exit finds this Folder

and inserts a Variant of the Navon into the Navigation Slot.

Class name:

com.percussion.fastforward.managednav.PSNavAutoSlotExtension

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters

None

rxs_NavAddAttribute

Name:

rxs_NavAddAttribute

Context:

global/percussion/fastforward/managednav/

Description:

This exit adds an attribute from a Navon to the Navon node in the Managed Navigation output XML. Add

this exit to Navon assembly applications when you want to add Navon fields that are not included in the

XML by default. In general, this exit is best used to avoid a degradation in performance that could occur

if you added the attributes using a document call.

Chapter 8 Extensions 195

Class name:

com.percussion.fastforward.managednav.PSNavAddAttribute

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data
Type

Description

attributeName string The name of the attribute to add to the output XML.

queryResource string The URL of the query resource that returns the attribute, usually in the form

of appname/queryresourcename.

index string The index of the column in the query resource, 1 based indexing

relativeLevelAttribute string The name of the relative level attribute. Optional.

rxs_NavFolderSelector Context:

global/percussion/fastforward/managednav/

Description:

Selects a given folder id by pathname and appends sys_folderid to the parent request. Useful in assemblers
of Content Types which should be part of a navigation hierarchy, but are not in Folders. Most commonly

used as a pre-exit of an assembler application.

Class name:

com.percussion.fastforward.managednav.PSNavFolderSelector

Interfaces:

com.percussion.extension.IPSResultDocumentProcessor

com.percussion.extension.IPSUdfProcessor

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data
Type

Description

pathname string Full path of the folder to select. Typically starts with //Sites

196 CM System Technical Reference Manual

rxs_NavTreeSlotMarker Context:

global/percussion/fastforward/managednav/

Description:

Use this exit with the rxs_NavTreeLink extension to generate a navigation tree for a specific navon. When

this extension processes after rxs_NavTreeLink, it walks down the navtree and checks the info-url for each

"ancestor" node. If it determines that the navon has content in a specified slot, it marks the navon element

with an attribute set to "yes". You can use this attribute as a conditional in XSLT processing.

The purpose of this extension is to propagate links in custom slots on navon Variants down the ancestor

tree and appear on each child navon. You can also use this extension for other logic in the XSL

stylesheets that process the result document.

Process this exit after the rxs_NavTreeLink. You can be use it multiple times to create a marker for more

than one slot.

Class name:

com.percussion.fastforward.managednav.PSNavTreeSlotMarker

Interfaces:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data
Type

Description

markerName string Name of the attribute that indicates that a navon has content in a specified

slot.

slotName string Name of the Slot that the exit checks for content.

rxs_NavReset

This extension is used in internal CM System applications.

rxs_NavTreeLink

This extension is used in internal CM System applications.

rxs_NavTreeBuilder

This extension is used in internal CM System applications.

Chapter 8 Extensions 197

sys_casAddAssemblerInfo

Name:

sys_casAddAssemblerInfo

Context:

Java/global/percussion/contentassembler/

Description:

This post-exit adds information needed in content assembler stylesheets to the result document. It creates

an XML document conforming to the DTD sys_AssemblerInfo.dtd and inserts it into the result document

as its first child. Then it creates (or modifies) a separate set of stylesheets adding extra links for editing the

related content in preview or WYSIWYG mode (active assembly mode). This exit should be added to

most assembly application resources.

Class name:

com.percussion.cas.PSAddAssemblerInfo

Resource file:

classes

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Example:

The following is an example of XML generated by this exit:

<sys_AssemblerInfo previewurl="/Rhythmyx/casArticle/casArticle.xml"

sys_siteid="0" pssessionid="1a52d1b40cc8716577d33ce255d51e65d0e0cfdb"

sys_command="editrc" sys_contentid="310" sys_variantid="1"

sys_revision="1" sys_context="0" sys_authtype="0">

<RelatedContent>

<slotrceditlink>http://127.0.0.1:9992/Rhythmyx/sys_ComponentSup

port/componentabslink.xml?pssessionid=1a52d1b40cc8716577d33ce255d51e65d0

e0cfdb&sys_componentname=rcsearch</slotrceditlink>

<linkurl rxcontext="0" slotid="" relateditemid="" contentid=""

variantid="" slotname=""

moveuplink="http://winkelried:9992/Rhythmyx/sys_rcSupport/updaterelatedi

tems.html?sys_command=moveup&sys_contentid=&sys_variantid=1&

sys_slotid=&sys_context=0&sys_revision=1&sys_authtype=0&

sysid="

movedownlink="http://winkelried:9992/Rhythmyx/sys_rcSupport/updaterelate

ditems.html?sys_command=movedown&sys_contentid=&sys_variantid=1&

amp;sys_slotid=&sys_context=0&sys_revision=1&sys_authtype=0&

amp;sysid="

http://127.0.0.1:9992/Rhythmyx/sys_ComponentSup
http://winkelried:9992/Rhythmyx/sys_rcSupport/updaterelatedi
http://winkelried:9992/Rhythmyx/sys_rcSupport/updaterelatedi
http://winkelried:9992/Rhythmyx/sys_rcSupport/updaterelate
http://winkelried:9992/Rhythmyx/sys_rcSupport/updaterelate

198 CM System Technical Reference Manual

deletelink="http://winkelried:9992/Rhythmyx/sys_rcSupport/updaterelatedi

tems.html?sys_command=delete&sys_contentid=&sys_variantid=1&

sys_slotid=&sys_revision=1&sys_context=0&sys_authtype=0&

sysid=" editlink=""

modifylink="http://winkelried:9992/Rhythmyx/sys_rcSupport/modifyslotitem

.html?sys_variantid=1&sys_context=0&sys_authtype=0&sysid=">

<Value current=""/>

</linkurl>

</RelatedContent>

<AssemblerProperties>

<Property name="rxcss">

<Value current="../web_resources/xroads/resources/css"/>

</Property>

<Property name="rxjavascript">

<Value current="../web_resources/xroads/resources/js"/>

</Property>

<Property name="rximage">

<Value current="../web_resources/xroads/resources/images"/>

</Property>

<Property name="rxflash">

<Value

current="../web_resources/xroads/resources/images/fla"/>

</Property>

</AssemblerProperties>

<InlineLink

url="http://winkelried:9992/Rhythmyx/sys_casSupport/PublicationUrl.xml?s

ys_context=0&pssessionid=1a52d1b40cc8716577d33ce255d51e65d0e0cfdb"/>

</sys_AssemblerInfo>

Parameters:

None

sys_casAddChildInfo

Context:

Java/global/percussion/contentassembler/

Description:

Queries the specified URL and appends the content of the returned doc to the current doc. Used in

Content Assemblers to add data from child tables to the assembled output. Attach this exit to Content

Assemblers for Content Types that store data in child tables when you need to include the data from the

child table in the formatted output. If the formatted output does not need data from the child table, the

assembly resource does not need this exit.

To use this exit, you must create a resource that queries data from the child table.

Class name:

com.percussion.cas.PSAddChildInfo

http://winkelried:9992/Rhythmyx/sys_rcSupport/updaterelatedi
http://winkelried:9992/Rhythmyx/sys_rcSupport/modifyslotitem
http://winkelried:9992/Rhythmyx/sys_rcSupport/modifyslotitem
http://winkelried:9992/Rhythmyx/sys_casSupport/PublicationUrl.xml
http://winkelried:9992/Rhythmyx/sys_casSupport/PublicationUrl.xml

Chapter 8 Extensions 199

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters

Name

Data Type

Description

resource java.lang.String (Required) URL of the resource (relative to the CM System root)
that queries the child table. It should be of the form

CM SystemApplication/ResourceName

sys_casAutoRelatedContent

Name:

sys_casAutoRelatedContent

Context:

Java/global/percussion/exit/

Description:

This Exit is added to the Assembly resource of Automated Index Assembler applications. It adds the

related content generated by the Automated Content Query to the Slots in the assembly template. This

Exit must be added AFTER the sys_casAddAssemblerInfo exit.

Class name:

com.percussion.cas.PSAutoRelatedContent

Resource:

file:classes

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters

Name

Data Type

Description

LinkURL java.lang.String Name of the linkURL attribute. This must be an attribute of

the root node

slotNameOverride java.lang.String Slot Name override (optional). Allows the caller to place the

results in any slot.

200 CM System Technical Reference Manual

Name

Data Type

Description

maxResults java.lang.Integer Optional. Defines the maximum number of related Content

Items that can be added to the target Slot.

sys_ceDependencyTree

Context:

Java/global/percussion/contenteditor/

Description:

This exit reformats the result document as an XML tree by appending all child and parent items of the

current content item to it. It makes repeated internal requests to expand the parents and children. The

dependency viewer in the content editors uses this exit.

Class name:

com.percussion.ce.PSDependencyTree

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

None

sys_cmpAddAllParamsToUrl

Context:

Java/global/percussion/extensions/general/

Description:

This pre-exit adds all HTML parameters in the request to the specified URLs. The URLs are specified as

the first children of the root element in the result document.

For example, if the request came with the HTML parameters param1 and param2, the result document:

<root>

<url1>/Rhythmyx/sampleApp/samplePage1.htm</url1>

<url2>/Rhythmyx/sampleApp/samplePage2.htm</url2>

</root>

becomes

<root>

<url1>/Rhythmyx/sampleApp/samplePage1.htm?param1=value1&param2=value

2</url1>

Chapter 8 Extensions 201

<url2>/Rhythmyx/sampleApp/samplePage2.htm?param1=value1&param2=value

2</url2>

</root>

The parameter pssessionid is always skipped.

Currently, this exit only modifies children and grandchildren of the root that have the element name

specified. Also, it does not modify the URLs if they are the attributes of an element.

Class name:

com.percussion.extensions.general.PSAddAllParamsToUrl

Resource file:

classes

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

UrlElementName String The name of the unique element name storing the URL value

sys_cmpMenuTree

Context:

Java/global/percussion/extensions/components/

Description:

This exit builds a cascaded menu item list XML document by making multiple internal requests to a CM

System resource. The resulting tree depends on the data in the backend tables RXSYSCOMPONENT and

RXSYSCOMPONENTRELATIONS.

The following is a sample of the XML document:

<menuitem name="ca_inbox" id="20" type="2">

<displaytext>Inbox</displaytext>

<description>Items assigned to me</description>

<url>

http://10.10.10.56:9992/Rhythmyx/sys_ca/camain.html?

sys_sortparam= title&sys_componentname= ca_inbox

</url>

<userrolesurl>

http://127.0.0.1:9992/Rhythmyx/sys_cmpUserStatus/

userstatus.xml?pssessionid=

8037ca1cbcc8bd31e3db8b392d4fff8c62c9dacc

</userrolesurl>

http://10.10.10.56:9992/Rhythmyx/sys_ca/camain.html
http://127.0.0.1:9992/Rhythmyx/sys_cmpUserStatus/
http://127.0.0.1:9992/Rhythmyx/sys_cmpUserStatus/

202 CM System Technical Reference Manual

<contexturl>

http://127.0.0.1:9992/Rhythmyx/sys_ComponentSupport/

componentcontext.xml?pssessionid=

8037ca1cbcc8bd31e3db8b392d4fff8c62c9dacc&sys_componentid= 20

</contexturl>

<componentname>ca_inbox</componentname>

<childitem id= "1"/>

<childitem id= "2"/>

<childitem id= "6"/>

<childitem id= "7"/>

</menuitem>

The exit makes multiple requests are made to expand each child item to menu item. Use it to generate the
navigation bars in the Content Explorer.

Class name:

com.percussion.extensions.components.PSMenuTree

Resource file:

classes

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

None

sys_CollapseHTMLParameter

Context:

Java/global/percussion/generic/

Description:

This exit collapses a multi-value (array) HTML parameter by taking the first value. In other words, it

replaces an entire array with the first value of the array.

The number of parameters is fixed at 8, but it can handle any number of parameters. This exit is not

required if you use the Single HTML parameter option in the Workbench.

Class name:

com.percussion.extensions.general.PSCollapseHtmlParameter

http://127.0.0.1:9992/Rhythmyx/sys_ComponentSupport/
http://127.0.0.1:9992/Rhythmyx/sys_ComponentSupport/

Chapter 8 Extensions 203

Interface:

com.percussion.extension.IPSResultDocumentProcessor,

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

p1 java.lang.String First array value

p2 java.lang.String Second array value

p3 java.lang.String Third array value

p4 java.lang.String Fourth array value

p5 java.lang.String Fifth array value

p6 java.lang.String Sixth array value

p7 java.lang.String Seventh array value

p8 java.lang.String Eighth array value

sys_DatabasePublisher

Context:

Java/global/percussion/contentassembler/

Description:

This exit is required on each database publisher parent table resource. This exit looks up the table

definition specified in the parent table mapper and produces the XML file that conforms to the

sys_DatabasePublisher.dtd.

Class name:

com.percussion.cas.PSDatabasePublisher

204 CM System Technical Reference Manual

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

action java.lang.String Action performed on the database:

r - (default) Inserts the row. Deletes it first if it already exists.

n - Inserts the row if it does not already exist.

u - Updates the row if it already exists.

d - Deletes the row if it already exists. Use d for unpublishing.

aliasmap java.lang.String Optional. Static XML file in the assembler application that contains

table and column name mappings to be used if the table or column

names contain characters that are not allowed in XML elements. The

exit creates XML files that use the aliases, and then reinserts the real

names in the output. Must conform to: ../dtd/aliasmap.dtd

sys_FormatFileTree

Context:

Java/global/percussion/generic

Description:

This exit reformats a list of file path names contained in an XML result tree into a true tree structure. Use

this extension to display file lists in the CM System CMS.

Class name:

com.percussion.extensions.general.PSFormatFileTree

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

inputListName java.lang.String Name of the input file list <filelist>

fileTreeName java.lang.String Optional. Name of the XML element that contains the output tree.

Defaults to <filetree>.

fileElementName java.lang.String Optional. Name of the XML file elements found in the input list.

Defaults to <file>.

Chapter 8 Extensions 205

Name

Data Type

Description

filePathName java.lang.String Optional. Name of the XML attribute that stores the full pathname.

Defaults to fullpath.

sys_ftUploadAppendFileAttributes

Context:

Java/global/percussion/filetracker

Description:

This exit appends the size and modified datetime stamps to the update statistics document. This exit

always goes with the sys_uploadFileAttributes (see "sys_DatabasePublisher" on page 203) preprocessor

exit. The result statistics document has two elements added as first children, size and modified.

Class name:

com.percussion.uploadexits.PSUploadAppendFileAttrs

Resource:

file:classes

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

FileSizeParam String The name of the HTML parameter that stores the file size. This

must be the same as the name given for the preprocessor exit

uploadFileAttributes. Always literal.

DateParam String The name of the HTML parameter that stores the modified

date. This must be the same as the name given for the

preprocessor exit uploadFileAttributes. Always literal.

206 CM System Technical Reference Manual

sys_IncrementalContentFilter

Context:

Java/global/percussion/generic

Description:

This extension filters a content list, removing items which have already been published or unpublished. It

performs an internal request to find the entry in the RXSITEITEMS table that corresponds to the current

content item. If a valid entry is found, it removes the item from the content list. If no valid entry is found,

it leaves the item in the content list.

This exit lets you use the same query resource for both full and incremental content lists. The second

parameter, switchparameter, is optional.

If you specify the switchparameter name as incremental in the extension registration and your

content list resource is rx_pubContentLists/contentlist_generic.xml:

 the resource returns a "filtered" content list if you include the parameter in the content list

URL and set it to yes, for example:
/Rhythmyx/rx_pubContentLists/contentlist_generic.xml?variantid=

101&incremental=yes

 the resource returns a "full" content list if you do not include the parameter in the content list

URL (or you include it but do not set it to yes), for example:
/Rhythmyx/rx_pubContentLists/contentlist_generic.xml?variantid=

101

If you do not specify the switchparameter name in the extension registration, the resource always

returns a “filtered” content list.

You must create the internal request that finds the item in RXSITEITEMS. Add it to the content list

application by performing the following steps:

1 Open the Content List application in the Rhythmyx Workbench.

2 Drag <Rhythmyx root>/DTD/contentlist.dtd onto the application window.

3 Rename the request itemstatus.

4 Open the Resource Editor and add the RXSITEITEMS table to the backend datatank.

Chapter 8 Extensions 207

5 Open the Selector and define the following conditions for the query:

Figure 34: Selector to retrieve Items from RXSITEITEMS table.

This selection returns a single row (one content item) from the RXSITEITEMS table.

REVISIONID is not required because only one revision of a Content Item should be present

on a site.

6 Open the mapper and map RXSITEITEMS columns to their equivalents in contentlist.dtd.

The mapping should resemble the following graphic, but exact mappings are not important,

because the exit only tests the presence or absence of a result document.

It is important that you check Return empty XML at the bottom of the mapper. If there is no

match on the query, the exit expects an empty document (which appears as

</contentitem>) , not a document with empty subnodes (such as <contentitem>

<title/> <contenturl/> . . . <contentitem/>). If it receives a document
with empty subnodes, it will attempt to process it, which will result in an error.

Figure 35: Mapping the support application for sys_IncrementalContentFilter

7 When you add the exit to a content list resource, set queryrequest equal to <application

name>/itemstatus and set switchparameter as specified above.

208 CM System Technical Reference Manual

Class name:

com.percussion.extensions.general.PSIncrementalContentFilter

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

queryrequest String Name of internal request for site item lookup

switchparameter String Optional. Name of the HTML parameter for switching

the filter on and off.

Any name is valid. If the parameter is included and set

to yes, the filter is turned on. If the parameter is

included but omitted from the content list URL or set to

any value other than yes, the filter is turned off.

If the parameter is not included, the exit always returns

a filtered content list.

sys_LoadChildData

Context:

Java/global/percussion/system/

Description:

This exit has a similar function as the sys_casAddChildInfo exit. Use it in Content Assemblers to add data

from child tables to the assembled output.

The exit performs the query specified by the queryAttribute and replaces the childElement of the

baseElement with the results of the query. Attach it to Content Assemblers for Content Types that store

data in child tables when you need to include the data from the child table in the formatted output. If the

formatted output does not need data from the child table, the assembly resource does not need this exit.

To use this exit, you must create a resource that queries data from the child table.

Class name:

com.percussion.cms.objectstore.server.PSLoadChildDataExit

Chapter 8 Extensions 209

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters

Name

Data Type

Description

baseElement java.lang.String Name of the element that will contain the child data.

childElement java.lang.String Name of the child element of the base element that will be replaced

with the results of the query.

queryAttribute java.lang.String Name of the attribute of the child element that specifies the query to

execute.

sys_ModifyXmlHierarchy

Context:

Java/global/percussion/generic

Description:

This extension is used to modify an XML documents hierarchy.

The concept of XML hierarchy modification is based on the need for setting up a discussion thread

system. Each discussion topic submission can be considered separately, thus having no relationship with

other submissions. However, most of the time, a submission is a "response" to a previously submitted

topic. This creates a new discussion "thread," with response submissions becoming children to a parent

submission topic. A relationship between the submissions is required to make this work.

To give a relationship to different submission topics, this exit uses a node-key pair comparison to provide

a hierarchical relationship between submission topics.

Example:

(Pay special attention to the relationship between parentid and id attributes.)

node = Discussion/Topic

response key = Discussion/Topic/@parentid

parent node = Discussion/Topic

parent key = Discussion/Topic/@id

Original XML Document:

<Discussion>

<Topic id="1" parentid="0">;

<body>This is the first thread in the discussion<;/body>

</Topic>

<Topic id="2" parentid= "0">;

<body>This is the second thread in the discussion</body>

</Topic>

<Topic id="3" parentid= "1">

mailto:@parentid
mailto:@id

210 CM System Technical Reference Manual

<body>;This is the first response to the first thread</body>

</Topic>

</Discussion>

After ModifyXmlHierarchyExtension exit:

<Discussion>

<Topic id="1" parentid="0">

<body>This is the first thread in the discussion</body>

<Topic id="3" parentid="1">

<body>This is the first response to the first thread</body>;

</Topic>

</Topic>;

<Topic id="2" parentid="0">

<body>This is the second thread in the discussion</body>

</Topic>

</Discussion>

Class name:

com.percussion.extension.PSModifyXmlHierarchyExtension

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

responseNode java.lang.String Required. The name of the XML node that contains the attribute, or

"response key", for looking up the parent node of this submission topic.

responseKey java.lang.String Required. The attribute owned by the "response node". This key defines

which node is this response node's parent by looking at the "parent key"

defined in the "parent node".

The value of the response key must be unique among all the response

nodes.

parentNode java.lang.String Required. The name of the XML node that contains the attribute, or

"parent key", for holding the key that response nodes use to look up to

find the parent.

parentKey java.lang.String Required. The attribute owned by the "parent node". The value that the

"response node" attempts to match with its "response key" to determine if

this "parent node" is the parent.

Chapter 8 Extensions 211

sys_pubCreatePublisherConfig

Context:

Java/global/percussion/cms/publisher

Description:

This exit creates default configuration settings for a new remote publisher during registration. The default

settings correspond to the records in the RXPUBLISHERCONFIG table for PUBLISHERID=0.

During registration of a new remote publisher, updating the RXPUBLISHER and

RXPUBLISHERCONFIG tables by inheriting configuration settings corresponding to publisherid=0 for

the new one requires complicated manual SQL. This exit replaces the manual SQL and simplifies

upgrading the CM System application for registering a new remote publisher.

Class name:

com.percussion.publisher.server.PSExitCreatePublisherConfig

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

htmlParamNewPublisherId String PublisherId of the new publisher being registered.

sys_PublishContent

Name:

sys_PublishContent

Context:

global/percussion/cms/publisher/

Description:

This extension publishes an Edition when a Content Item makes a Transition that is registered with

sys_PublishContent as the Workflow Action. One common example of this is when a user wants all

content to publish to a staging server immediately upon approval into a staging state.

The Workflow, Transition and Edition are specified in the file publish.xml. Before running the action,

create this file in <Rhythmyx root>/rxconfig/Workflow/ in the format:

<?xml version="1.0"?>

212 CM System Technical Reference Manual

<root>

<PSXPublish>

<PSXWorkflowId>5004</PSXWorkflowId>

<PSXTransitionId>1</PSXTransitionId>

<PSXEdition>5005</PSXEdition>

</PSXPublish>

</root>

The Transition Id is unique only within the Workflow, not across Workflows.

If there are many requests to publish the same edition, this extension publishes one edition in addition to

the one already running and ignores all other requests.

Class name:

com.percussion.extensions.publishing.PSPublishContent

Interface:

com.percussion.extension.IPSWorkflowAction

Parameters:

None

sys_PublishEditionForPreview

Name:

sys_PublishEditionForPreview

Context:

Java/global/percussion/cms/publisher/

Description:

This exit is used to in database publishing contexts when content is served using ASP/JSP, or similar
applications. This exit creates a temporary "Edition" in the database so the user can preview Content

Items in a live context. When the temporary "Edition" is published, the preview is displayed to the user,

and the "Edition" data is removed from the database.

For details about the use of this exit, contact Percussion Software Technical Support.

Class name:

com.percussion.extensions.publishing.PSPublishEditionForPreview

Chapter 8 Extensions 213

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters

Name

Data Type

Description

editionId java.lang.String ID of the Edition to Publish. This Edition must be a Manual Edition.

previewVariant java.lang.String ID of the Variant the user will specify to preview.

assemblyVariant java.lang.String ID of the Variant that actually generates the data.

support application java.lang.String (Optional) Name of the application that supports the exit for this instance.

Defaults to rx_pubPreviewEdition.

query resource java.lang.String (Optional) Name of the query resource in the support application. .

Defaults to queryEdition.

update resource java.lang.String (Optional) Name of the update resource in the support application.

Defaults to updateEdition.

sys_ReplaceResultDocument

Context:

Java/global/percussion/extensions/general

Description:

This exit enables an application to perform internal requests to different resources depending on the value

of a condition. When the condition is met, a corresponding resource document replaces the original

document. The CM System server does not support requests to resource names, but requires that you use

the pipe name (internal request name).

To use this exit, do the following:

1 Create one or more resources to be executed conditionally by copying the original resource

and modifying it and assigning pipe names in the Rhythmyx Workbench.

2 Place sys_ReplaceResultDocument as a post-exit on the original resource.

3 Assign the name of the conditional request document that you want to serve as a default to the

parameter DefaultRequestName.

4 Assign the condition for choosing a conditional resource (rather than using the original

document) to the parameter ConditionValue.

5 Assign conditions for choosing each conditional resource to FirstOptionValue,

SecondOptionalValue, and so on, depending on the number of conditional requests.

214 CM System Technical Reference Manual

6 Assign internal request names (pipe names of each resource) to FirstInternalRequestName,

SecondInternalRequestName, and so on, depending on the number of conditional requests.

FirstInternalRequestName should be the resource requested when FirstOptionValue is true,

SecondInternalRequestName should be the resource requested when SecondOptionValue is

true, and so on.

NOTE: If ConditionValue is not equal to any of the OptionValues, then DefaultRequestName is executed.

If the resource that corresponds to a condition is null, when the condition is met, the exit does not replace

the original document.

Class name:

com.percussion.extensions.general.PSReplaceResultDocument

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

DefaultRequestName String Default resource name - choose this resource if the

conditional statement is true, but none of the other

conditions is met.

ConditionValue String Condition for choosing one of the conditional

resources.

FirstOptionValue String First condition. (Condition for requesting

FirstInternalRequestName)

FirstInternalRequestName String First conditional request name.

SecondOptionValue String Second condition. (Condition for requesting

SecondInternalRequestName)

SecondInternalRequestName String Second conditional request name.

. . .

NthOptionValue String Nth condition. (Condition for requesting

NthInternalRequestName)

NthInternalRequestName String Nth conditional request name.

Chapter 8 Extensions 215

sys_ServerUserRoleSearch

Context:

Java/global/percussion/usersearch/

Description:

This exit can modify a result document by adding search results in the following cases:

1 Given the HTML parameter sys_command=GetRoles, it produces a list of server roles like:

<root>

<role>role1</role>

<role>role2</role>

</root>.

2 Given the HTML parameters sys_command=GetUsers and sys_role=roleName, it produces a

list of users that are members of the role roleName like:

<root>

<role>roleName

<user>user1</user>

<user>role2</user>

</role>

</root>.

The element <root> is any Document element of the result document.

Class name:

com.percussion.extensions.usersearch.PSServerUserSearch

Resource file:

classes

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

None

216 CM System Technical Reference Manual

sys_SetCookie

Context:

Java/global/percussion/generic/

Description:

This extension associates a cookie with the results to be returned to the requester in the HTML response

document.

Class name:

com.percussion.extension.PSSetCookieExtension

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Example:

name=MySessId2 value=1001

expires=12/31/1999 11:59 p

domain=www.percussion.com

path=/

isSecure=1

This associates the cookie named MySessId2 with all requests on the www.percussion.com

Web server. The cookie is only sent over secure (SSL) connections. It has a value of 1001 and

will expire on December 31, 1999 at 11:59:00 pm.

Parameters:

Name

Data Type

Description

name java.lang.String Required. The name of the cookie.

value java.lang.String Required. The value of the cookie.

expires java.lang.String Optional. The date the cookie expires. Use 'EEE, dd-MMM-yyyy hh:mm:ss z' as

the date format (date or time may be omitted). Use 'literal' as the value type.

domain java.lang.String Optional. The domain name of the host from which the URI is accessed. For

instance, to set a cookie for any Web server in the percussion.com domain, set the

domain name to <code>percussion.com</code> To set a cookie for

www.percussion.com, set the domain name to the full server name:

www.percussion.com.

path java.lang.String Optional. Causes the exit to only send the cookie when accessing a URI under the

specified path on the host. This includes the path and all descendents. For instance,

using \"/\" matches all URI specifications on the host.

http://www.percussion.com/
http://www.percussion.com/
http://www.percussion.com/
http://www.percussion.com/
http://www.percussion.com/
http://www.percussion.com/
http://www.percussion.com/

Chapter 8 Extensions 217

Name

Data Type

Description

isSecure java.lang.String Optional. A boolean value that determines the connection type. When set to \"1\",

the cookie is only sent when a secure (SSL) connection has been established.

When set to \"0\" or \"\", any connection type is acceptable.

sys_SetEmptyXmlStyleSheet

Context:

Java/global/percussion/generic/

Description:

This exit associates a style sheet with an empty XML document when there is no root node in the XML

document. It is used primarily to return a static page when no data is found for a request.

Class name:

com.percussion.extension.PSSetEmptyXmlStyleSheetExtension

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

styleSheet java.net.URL The URL of the stylesheet.

218 CM System Technical Reference Manual

sys_wfAddPossibleTransitions

Context:

Java/global/percussion/workflow

Description:

This exit adds a node to the result document that contains actions appropriate for this document, including

checkin/out, edit, preview and transitions.

Class name:

com.percussion.workflow.PSExitAddPossibleTransitionsEx

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

UserName java.lang.String Name of the current user.

StatusDocumentElementName java.lang.String Node name (XML field name like

root/document) of the status

document.

ContentIDNodeName java.lang.String Node name (e.g. contentid or

@contentid) of the content ID.

sys_wfAppendWorkflowActions

Context:

Java/global/percussion/workflow

Description:

This exit appends a list of all workflow actions registered by the server to the result XML document. It

makes the <workflowactionlist> element a child of the root element in the document, and each action in

the list a <workflowaction> element.

Class name:

com.percussion.workflow.PSGetWorkflowActionList

mailto:@contentid

Chapter 8 Extensions 219

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

None

sys_wfExecuteActions

Context:

Java/global/percussion/workflow

Description:

This exit executes the assigned workflow actions for the transition.

Class name:

com.percussion.workflow.PSExecuteWorkflowActions

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

None

sys_wfPreviewWorkflow

Context:

Java/global/percussion/workflow

Description:

This exit transforms the result document into another DTD that the style sheet uses to generate the

graphical view of the workflow. Use this exit in the workflow editor application.

Class name:

com.percussion.workflow.PreviewWorkflow

220 CM System Technical Reference Manual

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

None

sys_wfSendNotifications

Context:

Java/global/percussion/workflow

Description:

This exit sends notifications to roles/ad-hoc users about the transition.

Class name:

com.percussion.workflow.PSExitNotifyAssignees

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

ContentID java.lang.Integer Content ID.

UserName java.lang.String Name of the current user.

sys_wfUpdateHistory

Context:

Java/global/percussion/workflow

Description:

This exit updates content state history.

Class name:

com.percussion.workflow.PSExitUpdateHistory

Chapter 8 Extensions 221

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

ContentID java.lang.Integer Content ID.

UserName java.lang.String Name of the current user.

sys_xdCopyDom

Context:

Java/global/percussion/xmldom

Description:

This post-exit copies a DOM tree fragment into the result document. This is similar to
sys_xdDomToText, except that it copies a "fragment" of the source document under the root of the XML

result document. Use this in document assemblers if the output is to be processed with a stylesheet that is

aware of the XML document structure.

Class name:

com.percussion.xmldom.PSXdCopyDom

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

sourceObjectName java.lang.String Name of source object. Defaults to XMLDOM.

sourceNodeName java.lang.String Name of source node. Leave blank or set to "."

to copy the entire document

destNodeName java.lang.String Name of destination XML node. If the name is

"." the new tree is copied under the root node.

222 CM System Technical Reference Manual

sys_xdDomToText

Context:

Java/global/percussion/xmldom

Description:

Pre-exit or post-exit that transfers an XML document into a string for insertion as a single field either on

insert or update or as the result of a query.

Class name:

com.percussion.xmldom.PSXdDomToText

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

SourceObjectName java.lang.String Name of source document object

SourceNode java.lang.String Name of node within source document. Use

"InputDocument" if the source is an uploaded XML

document. To copy the entire document, leave blank or

set to "." Default is XMLDOM.

DestinationName java.lang.String Field or node where exit stores results. When this is

used as a pre-exit, an HTML parameter name; when

this is used as a post-exit, the name of an XML node

added beneath the "Document Element" of the result

document.

sys_xdRemoveElements

Context:

Java/global/percussion/xmldom

Description:

Post-exit that removes one or more XML elements from the result document. Use this to clean up the

result document by removing unnecessary nodes after transformation.

Chapter 8 Extensions 223

Class name:

com.percussion.xmldom.PSXdRemoveElements

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

element1 java.lang.String Optional. Name of element to remove.

element2 java.lang.String Optional. Name of element to remove.

element3 java.lang.String Optional. Name of element to remove.

element4 java.lang.String Optional. Name of element to remove.

element5 java.lang.String Optional. Name of element to remove.

element6 java.lang.String Optional. Name of element to remove.

element7 java.lang.String Optional. Name of element to remove.

element8 java.lang.String Optional. Name of element to remove.

element9 java.lang.String Optional. Name of element to remove.

element10 java.lang.String Optional. Name of element to remove.

224 CM System Technical Reference Manual

sys_xdTextToDom

Context:

Java/global/percussion/xmldom

Description:

Pre- or post-exit that parses an input text source and produces a DOM document.

Class name:

com.percussion.xmldom.PSXdTextToDom

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

sourceName java.lang.String For a pre-exit, the name of the HTML parameter or

attached file containing the source. For a post-exit, the

name of the node containing the source.

DOMName java.lang.String Name of Temporary DOM Object. Default is

"XMLDOM."

tidyProperties java.lang.String Optional. Name of Tidy Properties file.

serverPageTags java.lang.String Optional. Name of ServerPageTags file

encodingDefault java.lang.String Optional. Java name for character encoding of the

source text. The value only affects uploaded files and

overrides any value supplied by the browser.

sys_xdTextToTree

Context:

Java/global/percussion/xmldom/

Description:

Post-exit that parses source text and replaces it with a tree of XML nodes. The document element of the

newly parsed document is attached underneath the original node.

Chapter 8 Extensions 225

Class name:

com.percussion.xmldom.PSXdTextToTree

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

SourceNode java.lang.String Name of source node in the XML result

document.

TidyProperties java.lang.String Name of tidy properties file.

ServerPageTags java.lang.String Name of ServerPageTags file.

sys_xdMultiTextToTree

Context:

Java/global/percussion/xmldom/

Description:

Post-exit to use in place of sys_xdTextToTree when a field occurs multiple times. If a content editor has a

child editor with controls that require sys_xdTextToTree (e.g. <Rich_Text_Control_Name), use

sys_xdMultiTextToTree. sys_xdTextToTree will only pick up the first occurrence of a field, but

sys_xdMultiTextToTree will pick up all occurrences of the field.

Class name:

com.percussion.xmldom.PSXdMultiTextToTree

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name

Data Type

Description

SourceNode java.lang.String Name of source node in the XML result document.

TidyProperties java.lang.String Name of tidy properties file.

ServerPageTags java.lang.String Name of ServerPageTags file.

226 CM System Technical Reference Manual

sys_xdTransformDom

Context:

Java/global/percussion/xmldom

Description:

Pre-exit or post-exit that runs the source DOM through an XSL stylesheet. It parses the result with the

XML parser and stores it in the destination object. To ensure that the output is well-formed, use

<xsl:output method="xml">.

The XSL stylesheet must reside in the current application directory. To do this, attach it to a query in the

current application.

Class Name:

com.percussion.xmldom.PSXdTransformDom

Interface:

com.percussion.extension.IPSResultDocumentProcessor,

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

sourceObjectName java.lang.String Optional. Source object name. Default is "XMLDOM."

When used as a pre-exit, the special XML document name

InputDocument may be used to refer to the input XML

document (usually, this document is provided by the

PSXmlUploader).

When used as a post-exit, the special XML document

name ResultDocument may be used. This name refers to

the document passed as an argument to the exit (the

document created by the CM System mapper).

StyleSheet java.lang.String Stylesheet name within current application.

destObjectName java.lang.String Optional. Destination object name. Can be the same as the

source DOM name.

Chapter 8 Extensions 227

sys_xdTransformDomToText

Context:

Java/global/percussion/xmldom

Description:

Pre-exit or post-exit that transforms an XML document and stores the result as text. The output is not

parsed, and therefore does not have to be well-formed. The stylesheet may create XML, HTML or plain

text.

Class name:

com.percussion.xmldom.PSXdTransformDomToText

Interface:

com.percussion.extension.IPSResultDocumentProcessor,

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

sourceObjectName java.lang.String Name of source DOM object.

May be the special XML document name

InputDocument when used as a pre-exit. This name

refers to the input XML document. Usually, this

document is provided by the PSXmlUploader.

May be the special XML document name

ResultDocument when used as a post-exit. This name

refers to the document passed as an argument to the

exit (the document created by the CM System

mapper).

StyleSheet java.lang.String Stylesheet within the current application. This file

must be stored in the current application's directory.

destObjectName java.lang.String Name of destination parameter or node.

In a pre-exit, the value is always an HTML

parameter.

In a post-exit, the name of an XML node added

beneath the "Document Element" of the result

document. If you use a multiple-level name, only the

last node is replaced. For example, if you use the

name, category/firstnode, category must exist in the

document. The exit creates firstnode, or replaces its

first occurrence.

228 CM System Technical Reference Manual

Request Preprocessing

sys_AddCurrentDateTime

Context:

Java/global/percussion/generic/

Description:

This exit adds the current date and time (relative to the CM System server) as an HTML parameter to

the provided request. It formats the date and time according to the provided format pattern or to the

default (yyyy-MM-dd HH:mm:ss) if no format pattern provided. Any Java SimpleDateFormat patterns

(http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html) are acceptable.

Use this exit to add the date/time when building time dependent selection conditions (for example, during

incremental publishing of content.)

Class name:

com.percussion.extensions.general.PSAddCurrentDateTime

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

htmlParamName java.lang.String The name of the HTML parameter to be added to the provided

request. May be null or empty. If not provided, the default

name sys_NOW is used.

formatPattern java.lang.String The pattern to use to format the current date and time. May be

null or empty. If not provided, the exit uses the default of

yyyy-MM-dd HH:mm:ss

dateOffset java.lang.String A negative or positive integer that indicates the number of

days to offset the current date by. For example, if the current

date is 5/30/2002, and the offset is –2, the current date is

returned as 5/28/2002.

truncate java.lang.String Indicates whether or not to truncate the current time setting to

the hour. For example, if the current time is 12:36:01 and

truncate = yes, the current time is returned as 12:00:00

Values:

yes = truncate

no or null = do not truncate.

http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html

Chapter 8 Extensions 229

sys_caDeleteContent

Name:

sys_caDeleteContent

Context:

Java/global/percussion/ca/

Description:

This exit builds a content list for deletion by an update resource after deleting data from the content type

specific tables by making internal requests to the content editor's purge resource. If the attempt to delete

the data fails, the exit adds the content item to the skipped item list for deletion. Place this exit on an

update resource that deletes rows from all system tables.

The DTD for the document is:

<!ELEMENT deleterows (row*, skipped) >

<!ELEMENT row (#PCDATA) >

<!ATTLIST row pkey CDATA #IMPLIED >

<!ELEMENT skipped (row*) >

Class name:

com.percussion.extensions.ca.PSDeleteContent

Resource file:

classes

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

keyParameterName String Name of the html parameter that holds the primary key

from the backend table. Map keyParameterName to the

backend table's primary key.

230 CM System Technical Reference Manual

sys_casConcatAssemblyLocation

Name:

sys_casConcatAssemblyLocation

Context:

Java/global/percussion/contentassembler/

Description:

This exit concatenates all parameters in the RXLOCATIONSCHEMEPARAMS table to generate the

assembly location. If no parameters are specified, it returns an empty string. It makes no checks, and

transforms backslashes in parameters to forward slashes.

Use this as a generator exit.

Example:

params[0] + params[1] + . . . + params[n].

Class name:

com.percussion.cas.PSConcatAssemblyLocation

Interface:

com.percussion.extension.IPSAssemblyLocation

Parameters:

None

sys_casConcatWithIdAssemblyLocation

Name:

sys_casConcatWithIdAssemblyLocation

Context:

Java/global/percussion/contentassembler/

Description:

This exit concatenates values to generate an assembly location. It uses the first parameter as an index that

specifies where to append the second parameter (contentid) in a concatenated list made up of parameters

from the RXLOCATIONSCHEMEPARAMS table.

Chapter 8 Extensions 231

It requires at least 2 parameters from the table and handles as many parameters as provided. It checks that

the minimum number of parameters are provided and that the index is in the range of the provided

parameters. It transforms all backslashes in parameters to forward slashes. Use this as a generator exit.

Example:

If the index parameter = 1, a location string like this will be created:

params[1] + contentid + params[2] + . . . + params[n].

Class name:

com.percussion.cas.PSConcatWithIdAssemblyLocation

Interface:

com.percussion.extension.IPSAssemblyLocation

Parameters:

Name

Data Type

Description

index java.lang.Object Required. Number that specifies where, sequentially, to

append the contentid in the list of other parameters. This is a

string or an object which can be converted to a string using the

toString method. When toString parses the string as an integer

it must return a valid integer.

contentid java.lang.Object Optional. The contentid for which this extension creates the

location URL. If not provided, takes the contentid of the

current request.

sys_casDefaultAssemblyLocation

Name:

sys_casDefaultAssemblyLocation

Context:

Java/global/percussion/contentassembler/

Description:

This exit concatenates the specified parameters to generate the assembly location and adds the contentid

before the suffix. (root+path+contentid+suffix). Use this as a generator exit.

Class name:

com.percussion.cas.PSDefaultAssemblyLocation

232 CM System Technical Reference Manual

Interface:

com.percussion.extension.IPSAssemblyLocation

Parameters:

Name

Data Type

Description

root java.lang.Object Required. The root part of the location URL to be created.

Forward and backward slashes are permitted. If this

parameter does not end with a path delimiter, the exit adds

one.

path java.lang.Object Required. The resource path part of the location URL to be

created. Forward and backward slashes are permitted.

Acceptable with or without start and end path delimiters.

suffix java.lang.Object Required. The suffix part of the URL location to be created.

Acceptable with or without delimiter.

sys_casGenericAssemblyLocation

Name:

sys_casGenericAssemblyLocation

Context:

Java/global/percussion/contentassembler/

Description:

Builds a delivery location by concatenating all the text nodes of the XML document returned by the

specified resource.

Class name:

com.percussion.cas.PSGenericAssembly

Interface:

com.percussion.extension.IPSAssemblyLocation

Parameters:

Name

Data Type

Description

resource java.lang.String Required parameter. URL of the resource (relative to the CM System

root) that supplies the location. It should be of the form CM

SystemApplication/ResourceName

Chapter 8 Extensions 233

Name

Data Type

Description

contentid java.lang.String Optional parameter. It is the content id of the item. If specified, it will be

added as an html parameter (sys_contentid) when querying the specified

resource

revision java.lang.String Optional parameter. It is the revision id of the item. If specified, it will be

added as an html parameter (sys_revision) when querying the specified

resource

sys_casModifyRelatedContent

Name:

sys_casModifyRelatedContent

Context:

Java/global/percussion/contentassembler/

Description:

This exit handles all modification requests for related content items, including inserting items into a slot,

moving an item up in a slot, deleting an item from a slot, moving an item down in a slot, and moving the

item to another slot or changing the item variant within a slot. Creates an XML document that is input to

the update resource.

The exit sets the DBActionType parameter based on whether the modification is inserting new rows,

updating rows, or deleting existing row(s). It uses an internal query request to get the required information

about the slot items.

Class name:

com.percussion.cas.PSModifyRelatedContent

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

None

234 CM System Technical Reference Manual

sys_CollapseHTMLParameter

Context:

Java/global/percussion/generic/

Description:

This exit collapses a multi-value (array) HTML parameter by taking the first value. In other words, it

replaces an entire array with the first value of the array.

The number of parameters is fixed at 8, but it can handle any number of parameters. This exit is not

required if you use the Single HTML parameter option in the Workbench.

Class name:

com.percussion.extensions.general.PSCollapseHtmlParameter

Interface:

com.percussion.extension.IPSResultDocumentProcessor,

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

p1 java.lang.String First array value

p2 java.lang.String Second array value

p3 java.lang.String Third array value

p4 java.lang.String Fourth array value

p5 java.lang.String Fifth array value

p6 java.lang.String Sixth array value

p7 java.lang.String Seventh array value

p8 java.lang.String Eighth array value

sys_commAuthenticateUser

Name:

sys_commAuthenticateUser

Context:

Java/global/percussion/communities

Chapter 8 Extensions 235

Description:

This exit authenticates a user's community. Add sys_commAuthenticateUser to resources in applications

that produce HTML pages that compose the CMS interface, including all resources in the sys_ca

application and all resources that are attached to non-default stylesheets in the Publishing, Workflow and

System applications.

If the Communities feature is disabled (communities_enabled=no in the server.properties file), the exit

passes the authentication, sets the user's communityid to 0, and stores the Community as the user's session

object (sys_community).

If the Communities feature is enabled (communities_enabled=yes in the server.properties file) the exit

performs the following:

1 Tries to obtain the user Community from the session; if it cannot, tries to recover it from
Cookies. Recovering communityid from Cookies is required when a session times out while a

user is on a CM System page, because the server creates a new session, but the communityid

is not available in it.

2 If it cannot obtain a user Community, it assigns the system Community (communityid=1). In

this case, authentication automatically succeeds, and the exit goes to step 3.

3 After the exit obtains the user Community, if the user Community is not the system
Community, the exit makes an internal request that produces a list of all of the user's

Communities. If the list contains the user Community, authentication succeeds; otherwise, it

fails.

4 If the user Community is the system Community, authentication automatically succeeds.

5 If authentication succeeds, the exit stores the user's Community as the session object.

Class name:

com.percussion.community.PSAuthenticateUser

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

None

sys_ConvertCustomSearchOperator

Name:

sys_ConvertCustomSearchOperator

Context:

Java/global/percussion/cx/

236 CM System Technical Reference Manual

Description:

Converts the custom search operator sent by the Content Explorer applet to the proper backend SQL

operator. Can also convert the operator and value(s) sent to the appropriate SQL where clause syntax.

Class:

name:com.percussion.extensions.cx.PSConvertCustomSearchOperator

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters

Name

Data Type

Description

operatorParamName java.lang.String Required. Name of the HTML parameter containing

the operator to convert.

If the valueParamName parameter does not have a

value, the operator is converted and assigned to the

HTML parameter specified in this parameter. In that

case, only text operators are valid.

If the valueParamName does contain a value, the

HTML parameter specified in this parameter is not

modified. For additional behavior, see the

description of the valueParamName parameter.

valueParamName java.lang.String Optional Name of the HTML parameter containing

the value or values to convert.

If this parameter has a value, the operator specified

in the operatorNameParameter and the value of this

parameter are used to construct a SQL fragment that

can be used in a WHERE clause. This SQL

fragment is stored in the HTML parameter specified

sqlFragmentParamName parameter.

If the specified HTML parameter does not contain a

value, no processing occurs.

sqlFragmentParamName java.lang.String Required if a value is defined in the

valueParamName parameter. Name of the HTML

parameter used to store a generated SQL fragment.

For details about the SQL fragment, see the

description of the valueParamName

backendColumnName java.lang.String Required if a value is defined in the

valueParamName parameter. Specifies the backend

database table column to use in the SQL fragment.

Chapter 8 Extensions 237

Name

Data Type

Description

backendColumnDataType java.lang.String Required. Datatype of the backend table column

specified in the backendColumnName parameter.

Valid options include TEXT(default), NUMBER,

and DATE.

connectorOperator java.lang.String Optional. Specifies the operator or prepend to the

SQL fragment. Valid values are AND and OR. If

no value is specified in this parameter, no operator

value is prepended to the SQL fragment.

The value of this parameter is ignored if no value is

specified for the valueParamName parameter, or if

the HTML parameter specified in that parameter is

NULL or invalid.

dateFormatString java.lang.String Required. Format to use if the backend column type

is DATE. Must match the date format of the of your

RDBMS. Formats must conform to one of the

formats specified in the java.text.SimpleDateFormat.

Defaults to yyyy-MM-dd.

useHtmlParamDoc java.lang.String Required. Flag specifying where to derive the

HTML parameter values.

If the value of this flag is y, HTML parameter values

are derived from the submitted XML document.

This document must conform to the format expected

by PSHtmlParamDocument.fromXml(Element).

If the value of this flag is n, the parameter values are

derived from the HTML parameters in the submitted

request.

238 CM System Technical Reference Manual

sys_CopyParameter

Description:

This exit copies the request parameter named by the exit parameter "source" into the request parameter

named by the exit parameter "destination"

Class Name:

com.percussion.extensions.general.PSCopyParameter

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters

Name

Data Type

Description

source java.lang.String Request parameter name to be copied.

destination java.lang.String Request parameter name to receive copy.

sys_FileInfo

Context:

Java/global/percussion/generic/

Description:

This exit scans the server's HTML parameter map. For each file object it finds, it creates 0 or more

metadata parameters and adds them to the map. The information it attempts to add is: filepath, filename,

extension, MIME type, character encoding, and size. If it can find the information,it adds the parameter;

otherwise it adds nothing for that property. The naming convention for the additional parameters is

originalname_property. The corresponding property parameter suffixes are: _fullFilepath, _filename, _ext,

_type, _encoding, _size, respectively.

The following table lists the sys_FileInfo suffixes, sample field names formed using the suffixes, and the

fields' contents.

Suffix

Sample Field

Content

_fullFilepath imagebody_fullFilepath Original file path and name of the uploaded file.

_filename imagebody_filename The original filename of the uploaded file.

_ext imagebody_ext The file extension.

_type imagebody_type The MIME type and subtype.

_encoding imagebody_encoding The character encoding.

_size imagebody_size The length of the file, in bytes.

Chapter 8 Extensions 239

When you add a sys_File control or a sys_WebImageFX control to a field in a Content Type, CM

System automatically adds sys_FileInfo as a dependency of the Content Type.

The _ext and _type fields provide information that helps browsers display your uploaded files correctly

when you use the sys_file control.

The _filename and _type fields provide information that helps browsers display your uploaded files

correctly when you use the sys_WebImageFX control.

See sys_File control (see "sys_File" on page 60) or sys_WebImageFX control (on page 65) for

information.

Class name:

com.percussion.extensions.general.PSFileInfo

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

None

sys_FlushCache

Context

Java/global/percussion/system/

Description

On a server specified as a Publishing hub, flushes all caches (Assembler cache, Resource cache, and

Folder cache). On other servers, this exit is not activated.

This exit should be added to any Content List resource to ensure that all caches are flushed prior to

publishing content.

Class Name

com.percussion.server.cache.PSExitFlushCache

Interface

com.percussion.extension.IPSRequestPreProcessor

Parameters

None

240 CM System Technical Reference Manual

sys_FlushAssemblerCache

Context:

global/percussion/system/

Description:

Pre-exit that flushes all items from the server cache or flushes only the items specified by the parameters. If

caching is not enabled for the server, calling this exit has no effect, but does not produce an error. Add this

exit to any content list that includes an auto index to force the server to flush the variants of auto index

content items before publishing them.

Class name:

com.percussion.server.cache.PSExitFlushCache

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters

Name

Data Type

Description

htmlParamName java.lang.String The name of the application. The exit flushes items that match this

application name. To omit the parameter, set this value to an

empty string or null.

contentid java.lang.String A numeric content id. The exit flushes items that match this

content id. To omit the parameter, set this value to an empty string

or null.

revisionid java.lang.String A numeric revision id. The exit flushes items that match this

revision id. To omit the parameter, set this value to an empty

string or null. If contentvalue is null or empty, then this

parameter's value must be null or empty also.

variantid java.lang.String A numeric variant id. The exit flushes items that match this variant

id. To omit the parameter, set this value to an empty string or null.

Examples:

The following parameters cause the exit to flush all pages that the application casArticle assembles:

Parameter

Value

appname "casArticle"

contentid ""

revisionid ""

variantid ""

The following parameters cause the exit to flush pages that include any Variant of the content item with content ID

125, revision ID 1:

Chapter 8 Extensions 241

Parameter

Value

appname ""

contentid "125"

revisionid "1"

variantid ""

The following parameters cause the exit to flush pages that include any variant with the specified variant ID:

Parameter

Value

appname ""

contentid ""

revisionid ""

variantid "14"

sys_GetSessionVariable

Context:

Java/global/percussion/generic/

Description:

This pre-exit gets a variable from session object and populates an html parameter with it in response to a

query. Use this with sys_SetSessionVariable, which stores a variable from an html query parameter.

Class name:

com.percussion.extensions.general.PSGetSessionVariable

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

None

242 CM System Technical Reference Manual

sys_imageInfoExtractor

Name:

sys_imageInfoExtractor

Context:

Java/global/percussion/exit/

Description:

Automatically extracts Image height and width when uploaded using a sys_file control, in addition to the

filename, ext, type, and size parameters extracted by sys_FileInfo Exit.

Class name:

com.percussion.extensions.general.PSImageInfoExtractor

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters

None

sys_MakeDeleteTableRowsXMLDoc

Context:

Java/global/percussion/general/

Description:

This exit builds an XML document that consists of a list of content items for deletion by the CM

System update resource. The DTD for the document is:

<!ELEMENT deleterows (row*) >

<!ELEMENT row (#PCDATA)>

<!ATTLIST row pkey CDATA #IMPLIED>

Place this exit on a CM System update resource that deletes the rows from one or more backend

tables. Map the XML element pkey to the primary key in the backend table(s).

Class name:

com.percussion.extensions.general.PSMakeDeleteRowsXmlDoc

Chapter 8 Extensions 243

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters

Name

Data Type

Description

keyParameterName String Name of the html parameter that has the key parameter value(s)

sys_NullIf

Context:

Java/global/percussion/extensions/general

Description:

Sets the specified fields to null if their value matches the compareTo value. The comparison is case-

sensitive.

For example, if you import the table values “Title,” “Mr.,” “Mrs,” and “Ms,” into the field
Customer_Title in a drop list, you could use this exit to reset the field with value “Title,” which should not

be included in the drop list, to null. In this example, you would set compareTo to Title and p1 to

Customer_Title.

Class name:

com.percussion.extensions.general.PSNullIf

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters

Name

Data Type

Description

compareTo java.lang.String Value that will be converted to null.

p1 java.lang.String Name of first parameter to check.

p2 java.lang.String Name of second parameter to check.

p3 java.lang.String Name of third parameter to check.

. . .

pN java.lang.String Name of nth parameter to check.

244 CM System Technical Reference Manual

sys_ParameterTokenizer

Context:

Java/global/percussion/generic

Description:

This pre-exit splits input parameters with delimiters into a series of lists for input. This exit supports 3

delimiters: semicolon, period, and comma.

Example:

The related content search screen contains a series of checkboxes. The value of each checkbox contains

the contentid and variantid of the inserted child document separated by a delimiter. All of the checkboxes

have the same name. This results in a list of values in an ArrayList.

The function of this exit is to parse the delimited array into two or more other arrays. The number of

arrays parsed depends on the number of parameters passed.

There are N parameters:

CheckBoxArrayName

FirstOutputArrayName

SecondOutputArrayName

etc, etc.

Class name:

com.percussion.extensions.general.PSParameterTokenizer

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

InputListName java.lang.String Name of the input HTML parameter

FirstOutputName java.lang.String Name of the first output HTML parameter

SecondOutputName java.lang.String Name of the second output parameter

ThirdOutputName java.lang.String Name of the third output parameter

FourthOutputName java.lang.String Name of the fourth output parameter

FifthOutputName java.lang.String Name of the fifth output parameter

SixthOutputName java.lang.String Name of the sixth output parameter

SeventhOutputName java.lang.String Name of the seventh output parameter

Chapter 8 Extensions 245

sys_PrepareInClause

Context:

java/global/percussion/generic

Description:

This exit formats a string from all objects in a Collection that is a valid "IN" clause for a SQL query. It
stores the result in an HTML parameter, and it performs a toString() on each object in the Collection. The

result does not include the parentheses.

Example:

The sys_ca application uses this exit to convert the "RoleNames" object into an HTML parameter for use in

a select statement. As the following Exit Properties dialog shows, paramObject stores the object, and

baseName stores the HTML parameter created from paramObject. In this example, the list object has one

value, "RoleNames" and the select parameter created from the value is "sys_userrolenames." If

paramObject had no value, the HTML parameter would take the default value of "sys_noSuchRoleName."

246 CM System Technical Reference Manual

Chapter 8 Extensions 247

The select clause that uses the HTML parameter is the following:

Class name:

com.percussion.extensions.general.PSPrepareInClause

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

baseName java.lang.String The base name to use for the parameter created. May not be null or

empty.

paramObject java.lang.Object An object implementing the java.util.Collection interface containing

the values necessary for creating the values of the "IN" clause. May

not be null, but may be empty.

defaultValue java.lang.String A value to use in the event that the Collection is null or empty. If this

value is not null, it is used if the Collection does not have at least one

value that resolves to a non-empty string when toString() is called.

248 CM System Technical Reference Manual

sys_removeControlChars

Name:

sys_removeControlChars

Context:

Java/global/percussion/contenteditor/

Description:

This exit will remove control characters from all fields in a content editor. These characters are illegal in

XML and will cause an exception if they are left in.

This exit should be added to Content Editor resources that use third-party applications (such as Microsoft

Word) to edit text, and then only if the text edited in those applications contain control characters. If you

encounter “Invalid XML character” errors when editing Content Items, try adding this exit to the Content

Editor resource.

Class name:

com.percussion.ce.PSRemoveControlChars

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

None

sys_SetArrayHtmlParameter

Name:

sys_SetArrayHtmlParameter

Context:

global/percussion/extensions/general/

Description:

Sets an HTML Parameter to the request with an array list of values. Makes an internal request to the

request specified in the resourceName parameter and returns a list of values from the element specified in

the elementName parameter. The number of result values returned can be limited by specifying a value

for the maxNumber parameter in the exit, or by including the maxNumber parameter in the HTML

request. The maxNumber parameter in an HTML request has a higher precedence than the maxNumber

parameter in the exit..

Chapter 8 Extensions 249

Class:

com.percussion.extensions.general.PSSetArrayHtmlParameter

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

paramName java.lang.String Required. Name of the HTML parameter whose

value you want to set.

resourceName java.lang.String Required. Specifies the name of the resource from

which to request the data for the HTML parameter.

elementName java.lang.String Required. The name of the XML element from

which the values will be extracted.

maxNumber java.lang.String Optional. If specified, only the specified number of

values will be added to the HTML parameter defined

in the paramName parameter of the exit. If this

value is not specified, and if the HTML request does

not include a maxNumber parameter, the list of

values returned will be unrestricted.

To control whether the first or last values in the list

are returned, define a sort order in the CM System

request. This exit always takes the first n values in

the returned set.

sys_SetProviderTypeInstance

Context:

Java/global/percussion/system/

Description:

This pre-exit splits the security provider information into provider type and instance, thus creating 2

HTML parameters for queries.

This exit is necessary because the request gives the security provider type and instance as a single

parameter in the format 'providerType/instance,' but the backend treats them as separate fields.

Class name:

com.percussion.security.PSSetProviderTypeInstance

250 CM System Technical Reference Manual

Resource file:

classes

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

securityParameterName java.lang.String Optional. Security Provider Information. If null or

empty, defaults to sys_securityProvider.

separator java.lang.String Optional. Separator that splits the security provider

information. If null or empty, defaults to /.

providerTypeParamName java.lang.String Optional. HTML Parameter name for security

provider type query. If null or empty, defaults to

sys_spType.

securityInstanceParamName java.lang.String Optional. HTML Parameter name for security

provider instance query. If null or empty, defaults

to sys_spInstance.

sys_SetSessionVariable

Context:

Java/global/percussion/generic/

Description:

This pre-exit stores the value of a private session object based upon the value in an html request

parameter. Use this with sys_GetSessionVariable, which accesses the information requested by a query.

Class name:

com.percussion.extensions.general.PSSetSessionVariable

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

param_name java.lang.String Name of html parameter

Chapter 8 Extensions 251

sys_TextExtraction

Name:

sys_TextExtractor

Context:

Java/global/percussion/contenteditor/

Description:

This pre-exit extracts the text and metadata in a binary or HTML (XML files cannot be processed by Text

Extraction) file uploaded to a CM System Content Editor and inserts the extracted data into a Content

Editor field (or fields). The exit formats the extracted text as plain text.

An exit that uploads external files to CM System, either sys_fileInfo (on page 238) or

sys_imageInfoExtractor (on page 242) always precedes sys_TextExtractor.

For information about performing text extraction with this exit, see "Implementing Text Extraction" in the

document CM System Implementation Guide.

Class name:

com.percussion.content.PSFileConverterExit

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters

Name

Data Type

Description

Source java.lang.String Source file parameter. Enter the parameter that

holds the source file. Required.

Note: If a file upload control uploads the file, it

inserts the file object into the Content Editor field.

If Web Services upload the file (if you use

WebDAV), they insert the base64 encoded data

contained in the file into the Content Editor field.

Therefore, if the Content Editor field does not hold

a file object, the exit assumes it is base64 encoded

data and treats it as such.

OutputParam java.lang.String Name of a parameter or the Content Editor field that

stores the extracted data. Required.

FileTypeParam java.lang.String Name of a parameter or the Content Editor field that

stores the original file’s Mime type. Optional.

252 CM System Technical Reference Manual

Name

Data Type

Description

ErrorMessageParam java.lang.String Name of a parameter or the Content Editor field that

stores error messages. When used, the Content Item

is saved. Optional, but if not supplied, the extension

throws exceptions for errors and does not save the

Content Item.

Note: If you are updating a Content Item, and you

specify this field, if an error occurs, the exit saves

the changed Content Item and the originally

extracted text is lost.

OutputEncoding java.lang.String Encoding to use for output character set. Default is

WINDOWS-1252. If you are using a multi-byte

character type, you must specify the correct output

encoding. Valid values are:

WINDOWS-1252 – standard Windows encoding

Shift_JIS – encoding for Japanese characters

EUC_KR – encoding for Korean characters

GB2312 – Encoding for Simple Chinese characters

Big5 – Encoding for traditional Chinese characters

Note: Multi-byte characters are commonly used to

represent ideograms in Asian languages such as

Chinese.

If the implementer overrides any text extractors used for the full-text search, the new text extractors are

used in this exit. For more information about overriding the default text extractors, see the Search

Configuration section in the Rhythmyx Server Administrator online help.

sys_UploadFileAttributes

Context:

Java/global/percussion/generic/

Description:

This exit calculates the file size of an uploaded file in bytes and optionally gets the current date/time to be

used as a modified date. It appends the modified date using an HTML parameter. Use this exit on an

update resource that uploads a file to the database.

Class name:

com.percussion.extensions.general.PSUploadFileAttrs

Chapter 8 Extensions 253

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

FileNameParam String HTML Parameter name from the form that posts the

file to server.

For example, if FileNameParam is contentbody, the file

upload/download manager always uploads the file with

contentbody as a form field.

FileSizeParam String Name of the HTML parameter that stores the file size.

Always literal. This is used in the mapper to put the size

value into the database.

DateParam String Optional. Name of the HTML parameter that gets the

current datetime stamp. Always literal. This is used in

the mapper to put the file modified date in the database.

DateFormatString String Optional. Datetime format string. Always literal. For

example, yyyy/MM/dd hh:mm:ss. Note that this may

depend on the backend in which the file is saved.

Default is MM/dd/yyyy hh:mm:ss a

FileSizeMax String Optional. Maximum size limit for the file. If the file

exceeds this value, the exit throws an exception.

sys_wfAuthenticateUser

Context:

Java/global/percussion/workflow

Description:

This exit authenticates the current user for the user's role(s).

Class name:

com.percussion.workflow.PSExitAuthenticateUser

254 CM System Technical Reference Manual

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

ContentID java.lang.Integer Content ID.

UserName java.lang.String Name of the current user.

RoleNameList java.lang.String Comma separated list of roles for this

user.

CheckInOutCondition java.lang.String Whether or not to process. Continue

process if this condition is met. Valid

values are "ignore", "checkin" and

"checkout."

RequiredAccessLevel java.lang.Integer Minimum access level required to

authenticate the user. 1 - None, 2 -

Reader and above, 3 - Assignee and

above

sys_wfDisallowUpdatePublished

Context:

Java/global/percussion/workflow

Description:

This exit prevents updating of a document that is in the publish state.

Class name:

com.percussion.workflow.PSExitDisallowUpdatePublished

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

ContentID java.lang.Integer Content ID.

Chapter 8 Extensions 255

sys_wfNextNumber

Context:

Java/global/percussion/workflow

Description:

This exit gets the next number required for new unique IDs in the table inserts.

Class name:

com.percussion.workflow.PSExitNextNumber

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

htmlParamName java.lang.String Name of the html parameter to return the next number

value.

htmlParamKey java.lang.String Name of the key for which the number is attributed. For

example, the table name.

sys_wfNextNumberSecondary

Context:

Java/global/percussion/workflow

Description:

This exit the gets next number required for new unique IDs in the table inserts.

Class name:

com.percussion.workflow.PSExitNextNumber

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

htmlParamName java.lang.String Name of the html parameter to return next number value.

256 CM System Technical Reference Manual

Name

Data Type

Description

htmlParamKey java.lang.String Name of the key for which the number is attributed. For

example, the table name.

sys_wfPerformTransition

Context:

Java/global/percussion/workflow

Description:

This exit performs a valid transition and changes the content state accordingly.

Class name:

com.percussion.workflow.PSExitPerformTransition

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

ContentID java.lang.Integer Content ID.

UserName java.lang.String Name of the current user.

ActionTriggerName java.lang.String Unique action trigger (checkin, checkout or any

transition trigger).

sys_wfPrepareQueryFilter

Context:

Java/global/percussion/workflow

Description:

Prepares filter(s) for the query depending on the user's roles and stores the filter(s) in an HTML parameter.

Class name:

com.percussion.workflow.PSExitPrepareQueryFilters

Chapter 8 Extensions 257

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters

Name

Data Type

Description

UserName java.lang.String Name of the current user.

RoleNameList java.lang.String Comma separated list of user's roles.

sys_xdDomToFile

Context:

Java/global/percussion/xmldom

Description:

This pre-exit copies a temporary XML document as a text object into a temporary file. The user can map

this file to a backend column using the destination name. This exit differs from sys_xdDomToText

because it inserts the result in a temporary file. Use this exit if you have an XML file that you have

converted to a DOM object using sys_xdTextToDom, and want to store the DOM object in the database

as a file.

Class name:

com.percussion.xmldom.PSXdDomToFile

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters

Name

Data Type

Description

SourceObjectName java.lang.String Name of source document object (the temporary

XML document object). Use "InputDocument" to

insert an uploaded XML document. Default is

XMLDOM.

SourceNode java.lang.String Name of node within the source document to copy.

To copy the entire document, leave blank or set to

"." .

DestinationName java.lang.String The name of the HTML parameter name that stores

the reference to the temporary file. The exit stores

the object as a temporary binary file.

258 CM System Technical Reference Manual

Name

Data Type

Description

Encoding java.lang.String Java name of encoding the exit uses when writing

the file. If this is not specified, the exit uses the

default platform.

sys_xdDomToText

Context:

Java/global/percussion/xmldom

Description:

Pre-exit or post-exit that transfers an XML document into a string for insertion as a single field either on

insert or update or as the result of a query.

Class name:

com.percussion.xmldom.PSXdDomToText

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

SourceObjectName java.lang.String Name of source document object

SourceNode java.lang.String Name of node within source document. Use

"InputDocument" if the source is an uploaded XML

document. To copy the entire document, leave blank or

set to "." Default is XMLDOM.

DestinationName java.lang.String Field or node where exit stores results. When this is

used as a pre-exit, an HTML parameter name; when

this is used as a post-exit, the name of an XML node

added beneath the "Document Element" of the result

document.

Chapter 8 Extensions 259

sys_xdDomToParams

Context:

Java/global/percussion/xmldom

Description:

This pre-exit copies the children of <PSXParam> elements to HTML parameters. Use this exit to
simplify processing of multiple HTML parameters (instead of performing multiple calls to

sys_xdDomToText). The exit assumes the input document has the format:

<PSXParam>

<param1>value1</param1>

<param2>value2</param2>

<param3>value3</param3>

<PSXParam>

It creates an HTML parameter from each element in the source XML document using the element name as

the parameter name and the element value as the parameter value. The new parameters are then set into

the HTML parameter map.

If you include appendParameter and set it to "yes," the exit converts <PSXParam> elements with

repeating nodes by storing each repeating node value in an array; otherwise, the exit replaces the value of

the HTML parameter with each new value that it finds for it, so only the last repeating value is saved. For

example, if an application simulates checkboxes, and produces an input document formatted like:

<PSXParam>

<checkbox>value1</checkbox>

<checkbox>value2</checkbox>

<checkbox>value3</checkbox>

<PSXParam>

if you include appendParameter="yes" the checkbox parameter = [value1,value2,value3] (an array list).

Otherwise, the checkbox parameter = value3 (a string).

Class name:

com.percussion.xmldom.PSXdDomToParams

260 CM System Technical Reference Manual

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

sourceName java.lang.String Name of source XML document object. Use "InputDocument"

if the source is an uploaded XML document.

appendParameter java.lang.String Optional. If appendParameter is set to "yes," all values of

elements in the input doc are stored in an array. If

appendParameter is not included or set to "no," each value of

an element in the input doc replaces the previous value found

for the element.

sys_xdProcessRelatedLinks

Name:

sys_xdProcessRelatedLinks

Context:

Java/global/percussion/xmldom/

Description:

This pre-exit scans a DOM tree for inline related links and images. It processes related links that are in

the format:

<a href="http://RXServer:RxPort/Rhythmyx/AppName/Request.html?

sys_contentid= 123&sys_variantid= 1">

and adds extra parameters for sys_contentid and sys_variantid. It performs this processing

for all links and images, or any other <html> element that contains src= or href= attributes.

Class name:

com.percussion.xmldom.PSXdProcessRelatedLinks

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

SourceObject java.lang.String Name of XMLDOM private object. Use "InputDocument" if the

source is an uploaded XML document. Default is XMLDOM.

http://RXServer:RxPort/Rhythmyx/AppName/Request.html

Chapter 8 Extensions 261

sys_xdTextToDom

Context:

Java/global/percussion/xmldom

Description:

Pre- or post-exit that parses an input text source and produces a DOM document.

Class name:

com.percussion.xmldom.PSXdTextToDom

Interface:

com.percussion.extension.IPSResultDocumentProcessor

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

sourceName java.lang.String For a pre-exit, the name of the HTML parameter or

attached file containing the source. For a post-exit, the

name of the node containing the source.

DOMName java.lang.String Name of Temporary DOM Object. Default is

"XMLDOM."

tidyProperties java.lang.String Optional. Name of Tidy Properties file.

serverPageTags java.lang.String Optional. Name of ServerPageTags file

encodingDefault java.lang.String Optional. Java name for character encoding of the

source text. The value only affects uploaded files and

overrides any value supplied by the browser.

sys_xdTextCleanup

Name:

sys_xdTextCleanup

Context:

Java/global/percussion/xmldom/

262 CM System Technical Reference Manual

Description:

This pre-exit parses an input text source and produces a DOM document instead of a private object, then
turns the <body> field back into a text object, replacing the original text field. The input text source can

be an HTML parameter (for example, the DHTML editor) or an uploaded file. The exit scans the tree for

inline related links unless the InLineDisable parameter is set to "Y".

Class name:

com.percussion.xmldom.PSXdTextCleanup

Interface:

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

SourceName java.lang.String Name of source parameter. For a pre-exit, an HTML

parameter or an attached file. For a post-exit, a node.

TidyProperties java.lang.String Optional. Name of Tidy Properties file.

ServerPageTags java.lang.String Optional. Name of ServerPageTags file.

encodingDefault java.lang.String Java encoding name to use for files. The value only

affects uploaded files and overrides any value supplied

by the browser.

DisableInlineLink java.lang.String Flag for disabling scanning of inline links. Set to "Y" to

disable scanning of Inline Related Links.

AvoidTidyPrettyPrint java.lang.String Optional. Flag for using Document Builder's toString

function instead of tidy's pretty print. Set to "yes" to use

Document Builder's toString function; set to anything

else to use tidy's pretty print.

When you include sys_xdTextCleanup on a content

editor application that uses the editor, CM System

automatically sets this parameter to "yes" to avoid loss

of blank lines in the HTML editor.

sys_xdTransformDom

Context:

Java/global/percussion/xmldom

Description:

Pre-exit or post-exit that runs the source DOM through an XSL stylesheet. It parses the result with the

XML parser and stores it in the destination object. To ensure that the output is well-formed, use

<xsl:output method="xml">.

Chapter 8 Extensions 263

The XSL stylesheet must reside in the current application directory. To do this, attach it to a query in the

current application.

Class Name:

com.percussion.xmldom.PSXdTransformDom

Interface:

com.percussion.extension.IPSResultDocumentProcessor,

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

sourceObjectName java.lang.String Optional. Source object name. Default is "XMLDOM."

When used as a pre-exit, the special XML document name

InputDocument may be used to refer to the input XML

document (usually, this document is provided by the

PSXmlUploader).

When used as a post-exit, the special XML document

name ResultDocument may be used. This name refers to

the document passed as an argument to the exit (the

document created by the CM System mapper).

StyleSheet java.lang.String Stylesheet name within current application.

destObjectName java.lang.String Optional. Destination object name. Can be the same as the

source DOM name.

sys_xdTransformDomToText

Context:

Java/global/percussion/xmldom

Description:

Pre-exit or post-exit that transforms an XML document and stores the result as text. The output is not
parsed, and therefore does not have to be well-formed. The stylesheet may create XML, HTML or plain

text.

Class name:

com.percussion.xmldom.PSXdTransformDomToText

264 CM System Technical Reference Manual

Interface:

com.percussion.extension.IPSResultDocumentProcessor,

com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name

Data Type

Description

sourceObjectName java.lang.String Name of source DOM object.

May be the special XML document name

InputDocument when used as a pre-exit. This name

refers to the input XML document. Usually, this

document is provided by the PSXmlUploader.

May be the special XML document name

ResultDocument when used as a post-exit. This name

refers to the document passed as an argument to the

exit (the document created by the CM System

mapper).

StyleSheet java.lang.String Stylesheet within the current application. This file

must be stored in the current application's directory.

destObjectName java.lang.String Name of destination parameter or node.

In a pre-exit, the value is always an HTML

parameter.

In a post-exit, the name of an XML node added

beneath the "Document Element" of the result

document. If you use a multiple-level name, only the

last node is replaced. For example, if you use the

name, category/firstnode, category must exist in the

document. The exit creates firstnode, or replaces its

first occurrence.

User Defined Function Processing

sys_Add

Context:

Java/global/percussion/generic/

Description:

This exit adds 2 UDF-supplied operands and returns the result.

Class name:

com.percussion.extensions.general.PSSimpleJavaUdf_add

Chapter 8 Extensions 265

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

leftOp java.lang.Number Left hand operator

rightOp java.lang.Number Right hand operator

sys_casGenerateAssemblerLink

Name:

sys_casGenerateAssemblerLink

Context:

Java/global/percussion/assemblers/

Description:

Generates an internal URL to the assembler for the specified variant that includes the parameters

sys_contentid, sys_revision, sys_context, sys_variantid, sys_authtype, and pssessionid.

Class name:

com.percussion.cas.PSGenerateAssemblerLink

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters

Name

Data Type

Description

variantid java.lang.String Variant id of the desired assembler (required)

contentid java.lang.String Optional override of sys_contentid

revision java.lang.String Optional override of sys_revision

authtype java.lang.String Optional override of sys_authtype

266 CM System Technical Reference Manual

sys_casGeneratePubLocation

Name:

sys_casGeneratePubLocation

Context:

Java/global/percussion/contentassembler/

Description:

This exit generates the public location for context sensitive data in a CM System resource. The

preview generator is hardcoded. The exit obtains the generator for all other contexts from the table

RXLOCATIONSCHEME.

Class name:

com.percussion.cas.PSGeneratePubLocation

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

variantid java.lang.Object Required. The variantid for which this exit creates location

URLs.

contentid java.lang.Object Optional. The contentid for which this exit creates location

URLs. If not provided the exit uses the contentid of the

current request.

revision java.lang.Object Optional. The revision for which this exit creates location

URLs. If not provided the exit uses the revision of the current

request.

context java.lang.Object Optional. If supplied, the exit uses this context instead of the

context specified by the sys_context parameter.

siteid java.lang.Object Optional If supplied, the specified target siteid is used

instead of the default value specified by the HTML parameter

sys_siteid.

siteFolderid java.lang.Object Optional. If supplied, the specified folderid is used instead of

the default value specified by the HTML parameter

sys_folderid.

authtype java.lang.Object Optional. If supplied, the specified authtype overrides the

value specified by the HTML parameter sys_authtype.

Chapter 8 Extensions 267

sys_DefaultPasswordFilter

Context:

Java/global/percussion/filter/

Description:

This exit takes a plain text string (a password) and encrypts it for a CM System security provider.

Class name:

com.percussion.filter.DefaultPasswordFilter

Interface:

com.percussion.security.IPSPasswordFilter

Parameters:

No user-supplied parameters. The server automatically supplies the password to the extension.

sys_Base64Decoder

Context:

Java/global/percussion/generic/

Description:

This exit decodes a base64 string to a string, and optionally character encodes the return string.

Class name:

com.percussion.extensions.general.Base64Decoder

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

encodedText java.lang.String The text to decode.

charEncoding java.lang.String The character encoding to use when creating the return string.

268 CM System Technical Reference Manual

sys_Base64Encoder

Context:

Java/global/percussion/generic/

Description:

This exit encodes a normal text string to base64 string, and optionally character encodes the return string.

Use this to encrypt passwords.

Class name:

com.percussion.extensions.general.Base64Encoder

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

encodedText java.lang.String The text to encode.

charEncoding java.lang.String The character encoding to use when creating the return

string.

sys_Concat

Context:

Java/global/percussion/generic/

Description:

This exit concatenates up to 5 text strings.

Class name:

com.percussion.extensions.general.PSSuperConcat

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters

Name

Data Type

Description

p1 java.lang.String First text string

Chapter 8 Extensions 269

Name

Data Type

Description

p2 java.lang.String Second text string

p3 java.lang.String Third text string

p4 java.lang.String Fourth text string

p5 java.lang.String Fifth text string

sys_DateAdjust

Context:

Java/global/percussion/generic/

Description:

This exit updates the date according to the command of a corresponding user defined function (UDF) call.

There are up to six calendar fields which can be adjusted: year, month, day, hour, minute, and second.

These fields are integers; non-integers will be truncated. (Users are responsible for making these fields

integers.)

Prior to the exit running, the user must define seven objects through the GUI. The first object is a string

representing a date. The other six objects are numbers representing the quantity by which to adjust the

date. The date string should be in a format recognizable by the CM System server's PSDataConverter,

otherwise the exit throws an exception.

Class name:

com.percussion.extensions.general.PSSimpleJavaUdf_dateAdjust

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

date java.util.Date The date to modify

years java.lang.Number The number of years to adjust date

months java.lang.Number The number of months to adjust date

days java.lang.Number The number of days to adjust date

hours java.lang.Number The number of hours to adjust date

minutes java.lang.Number The number of minutes to adjust date

seconds java.lang.Number The number of seconds to adjust date

270 CM System Technical Reference Manual

sys_Divide

Context:

Java/global/percussion/generic/

Description:

This exit divides operand 1 by operand 2 and returns the result as a float. operand 1 and operand 2 are

supplied by a UDF.

Class name:

com.percussion.extensions.general.PSSimpleJavaUdf_divide

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters

Name

Data Type

Description

leftOp java.lang.Number Operand 1 (dividend)

rightOp java.lang.Number Operand 2 (divisor)

sys_GetBase64EncodedBody

Context:

Java/global/percussion/generic

Description:

This exit retrieves the HTML document specified by the URL parameter, extracts the information between

the <BODY> tags, base64 encodes it, and returns it as a String.

This enables users to publish partial pages, such as snippets or SSIs to a database during database

publishing.

Class name:

com.percussion.extensions.general.PSGetBase64EncodedBody

Chapter 8 Extensions 271

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters

Name

Data Type

Description

resource Java.lang.String The resource URI. Full, partial and relative

URI's are supported and can have parameters.

The supplied parameters are appended to the

end. The pssessionid is always appended. Only

HTTP requests are made, even if the fully

qualified URI uses HTTPS. Relative URI's

must be relative from the application root

directory.

paramName1 java.lang.String Optional. Name of the first HTML parameter.

paramValue1 java.lang.String Optional. Value of the first HTML parameter.

ParamName2 java.lang.String Optional. Name of the second HTML

parameter.

ParamValue2 java.lang.String Optional. Value of the second HTML

parameter.

ParamName3 java.lang.String Optional. Name of the third HTML parameter.

ParamValue3 java.lang.String Optional. Value of the third HTML parameter.

ParamName4 java.lang.String Optional. Name of the fourth HTML

parameter.

ParamValue4 java.lang.String Optional. Value of the fourth HTML

parameter.

ParamName5 java.lang.String Optional. Name of the fifth HTML parameter.

ParamValue5 java.lang.String Optional. Value of the fifth HTML parameter.

ParamName6 java.lang.String Optional. Name of the sixth HTML parameter.

ParamValue6 java.lang.String Optional. Value of the sixth HTML parameter.

ParamName7 java.lang.String Optional. Name of the seventh HTML

parameter.

ParamValue7 java.lang.String Optional. Value of the seventh HTML

parameter.

ParamName8 java.lang.String Optional. Name of the eighth HTML

parameter.

ParamValue8 java.lang.String Optional. Value of the eighth HTML

parameter.

ParamName9 java.lang.String Optional. Name of the ninth HTML parameter.

ParamValue9 java.lang.String Optional. Value of the ninth HTML parameter.

272 CM System Technical Reference Manual

Name

Data Type

Description

ParamName10 java.lang.String Optional. Name of the tenth HTML parameter.

ParamValue10 java.lang.String Optional. Value of the tenth HTML parameter.

sys_GetBase64Encoded

Context:

Java/global/percussion/generic/

Description:

This exit takes the same parameters as the exit sys_MakeIntLink, but instead of returning the URL string,

it gets the contents with the built URL, and returns it as a base64 encoded string.

Class name:

com.percussion.extensions.general.PSGetBase64Encoded

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

resource Java.lang.String The resource which will be looked up through an internal

request and its base64 encoded response will be returned.

paramName1 java.lang.String Optional. Name of the first HTML parameter.

paramValue1 java.lang.String Optional. Value of the first HTML parameter.

ParamName2 java.lang.String Optional. Name of the second HTML parameter.

ParamValue2 java.lang.String Optional. Value of the second HTML parameter.

ParamName3 java.lang.String Optional. Name of the third HTML parameter.

ParamValue3 java.lang.String Optional. Value of the third HTML parameter.

ParamName4 java.lang.String Optional. Name of the fourth HTML parameter.

ParamValue4 java.lang.String Optional. Value of the fourth HTML parameter.

ParamName5 java.lang.String Optional. Name of the fifth HTML parameter.

ParamValue5 java.lang.String Optional. Value of the fifth HTML parameter.

ParamName6 java.lang.String Optional. Name of the sixth HTML parameter.

ParamValue6 java.lang.String Optional. Value of the sixth HTML parameter.

ParamName7 java.lang.String Optional. Name of the seventh HTML parameter.

ParamValue7 java.lang.String Optional. Value of the seventh HTML parameter.

Chapter 8 Extensions 273

Name

Data Type

Description

ParamName8 java.lang.String Optional. Name of the eighth HTML parameter.

ParamValue8 java.lang.String Optional. Value of the eighth HTML parameter.

ParamName9 java.lang.String Optional. Name of the ninth HTML parameter.

ParamValue9 java.lang.String Optional. Value of the ninth HTML parameter.

ParamName10 java.lang.String Optional. Name of the tenth HTML parameter.

ParamValue10 java.lang.String Optional. Value of the tenth HTML parameter.

sys_GetFileSize

Context:

Java/global/percussion/extensions/general

Description:

This exit is required for the BEA accelerator. If you want to publish to the standard BEA setup, you need

the size of the document (it is a non-nullable column in their DOCUMENT table).

Class Name:

com.percussion.extensions.general.PSGetFileSize

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

resource Java.lang.String The resource which will be looked up through an internal

request and its size will be returned.

paramName1 java.lang.String Optional. Name of the first HTML parameter.

paramValue1 java.lang.String Optional. Value of the first HTML parameter.

ParamName2 java.lang.String Optional. Name of the second HTML parameter.

ParamValue2 java.lang.String Optional. Value of the second HTML parameter.

ParamName3 java.lang.String Optional. Name of the third HTML parameter.

ParamValue3 java.lang.String Optional. Value of the third HTML parameter.

ParamName4 java.lang.String Optional. Name of the fourth HTML parameter.

ParamValue4 java.lang.String Optional. Value of the fourth HTML parameter.

ParamName5 java.lang.String Optional. Name of the fifth HTML parameter.

274 CM System Technical Reference Manual

Name

Data Type

Description

ParamValue5 java.lang.String Optional. Value of the fifth HTML parameter.

ParamName6 java.lang.String Optional. Name of the sixth HTML parameter.

ParamValue6 java.lang.String Optional. Value of the sixth HTML parameter.

ParamName7 java.lang.String Optional. Name of the seventh HTML parameter.

ParamValue7 java.lang.String Optional. Value of the seventh HTML parameter.

ParamName8 java.lang.String Optional. Name of the eighth HTML parameter.

ParamValue8 java.lang.String Optional. Value of the eighth HTML parameter.

ParamName9 java.lang.String Optional. Name of the ninth HTML parameter.

ParamValue9 java.lang.String Optional. Value of the ninth HTML parameter.

ParamName10 java.lang.String Optional. Name of the tenth HTML parameter.

ParamValue10 java.lang.String Optional. Value of the tenth HTML parameter.

sys_Literal

Context:

Java/global/percussion/generic/

Description:

This exit converts the UDF-supplied parameter to a string and returns it.

Class name:

com.percussion.extensions.general.PSSimpleJavaUdf_literal

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

p1 java.lang.Object The source object

sys_MakeAbsLink

Context:

Java/global/percussion/generic

Chapter 8 Extensions 275

Description:

This exit creates an absolute URL with up to 6 name/value pairs specified in the parameters.

A URL has the following pieces for purposes of this description

<scheme>://<host><path-segments><resource>?<query>#<fragment>

Five basic forms are allowed for the supplied URL:

Fully qualified (e.g. http://server:9992/Rhythmyx/approot/res.html

Partially qualified (e.g. /Rhythmyx/approot/res.html)

Relative (e.g. ../myApp/res.html)

Resource name only (e.g. res.html)

An empty string

Any of these forms may contain a query and fragment part. The exit assumes that any relative url is
relative from the originating request's app root. If the supplied URL is fully qualified and the protocol is

not 'http', the exit returns the supplied URL, unmodified. Otherwise, it substitutes any pieces supplied. If

the supplied URL is not fully qualified,the exit adds the missing parts using the values from the

originating request. For a partially qualified name, it adds the http protocol, server and port to the supplied

name. For an unqualified name, it adds these items, plus the CM System request root and the originating

application request root. For a relative name, it adds the http protocol, server, port, and CM System root,

assuming the name is relative from the originating request's app root. For an empty string, it uses all parts

of the originating request, substituting the supplied parameters. If the port is 80, it does not add a port

number to the generated url.

Multiple name/value pairs may be specified for the parameters. For example, if the following were

supplied as parameters:

resource = query1.html

param1 = city

value1 = Boston

param2 = state

value2 = MA

then the exit would generate the following URL (assuming the request was targeted directly at the
CM System server):

http://rxserver:9992/Rhythmyx/MyApp/query1.html?city=Boston&state=MA</p

>

Note: The resource may contain parameters defined on it, in which case the exit appends the supplied

parameters after the last parameter defined.

Class name:

com.percussion.extensions.general.PSMakeAbsLink

http://server:9992/Rhythmyx/approot/res.html
http://rxserver:9992/Rhythmyx/MyApp/query1.html

276 CM System Technical Reference Manual

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

resource java.lang.String Relative resource without the parameters.

paramName1 java.lang.String Optional. Name of the first HTML parameter.

paramValue1 java.lang.String Optional. Value of the first HTML parameter.

paramName2 java.lang.String Optional. Name of the second HTML parameter.

paramValue2 java.lang.String Optional. Value of the second HTML parameter.

paramName3 java.lang.String Optional. Name of the third HTML parameter.

paramValue3 java.lang.String Optional. Value of the third HTML parameter.

paramName4 java.lang.String Optional. Name of the fourth HTML parameter.

paramValue4 java.lang.String Optional. Value of the fourth HTML parameter.

paramName5 java.lang.String Optional. Name of the fifth HTML parameter.

paramValue5 java.lang.String Optional. Value of the fifth HTML parameter.

paramName6 java.lang.String Optional. Name of the sixth HTML parameter.

paramValue6 java.lang.String Optional. Value of the sixth HTML parameter.

sys_MakeAbsLinkSecure

Context:

Java/global/percussion/generic

Description:

This exit creates an absolute URL with up to 6 name/value pairs specified in the parameters. It is identical

to sys_MakeAbsLink, except, if the supplied URL is fully qualified and specifies the https

(javascript:BSSCPopup('https.htm')) protocol, the link is generated using https instead of http

(javascript:BSSCPopup('http.htm')) . If the supplied URL is not fully qualified or does not specify https

protocol, the link is generated using http.

A URL has the following pieces for purposes of this description:

<scheme>://<host><path-segments><resource>?<query>#<fragment>

Five basic forms are allowed for the supplied URL:

Fully qualified (e.g. https://server:9443/Rhythmyx/approot/res.html

Partially qualified (e.g. /Rhythmyx/approot/res.html)

Relative (e.g. ../myApp/res.html)

Resource name only (e.g. res.html)

javascript:BSSCPopup('https.htm')
javascript:BSSCPopup('http.htm')

Chapter 8 Extensions 277

An empty string

Any of these forms may contain a query and fragment part. The exit assumes that any relative url is

relative from the originating request's app root. If the supplied URL is fully qualified and the protocol is

not 'http' or 'https', the exit returns the supplied URL, unmodified. Otherwise, it substitutes any pieces

supplied. If the supplied URL is not fully qualified, the exit adds the missing parts using the values from

the originating request. For a partially qualified name, it adds the http or https protocol, server and port to

the supplied name. For an unqualified name, it adds these items, plus the CM System request root and the

originating application request root. For a relative name, it adds the http or https protocol, server, port, and

CM System root, assuming the name is relative from the originating request's app root. For an empty

string, it uses all parts of the originating request, substituting the supplied parameters. If protocol of the

URL is http and the port is 80, it does not add a port number to the generated URL.

The first parameter, useSecure, specifies whether to use https or http. If the value of this parameter is

yes, and the original request used a secure channel or the supplied URL specifies https, the UDF uses

https; if the value of the parameter is anything else, it uses http regardless of the protocol used by the

original request.

Multiple name/value pairs may be specified for the parameters. For example, if the following were

supplied as parameters:

useSecure=yes

resource = query1.html

param1 = city

value1 = Boston

param2 = state

value2 = MA

then the exit would generate the following URL (assuming the request was targeted directly at the
CM System server and was made on a secure server):

https://rxserver:9443/Rhythmyx/MyApp/query1.html?city=Boston&state=MA</p>

Note: The resource may contain parameters defined on it, in which case the exit appends the supplied

parameters after the last parameter defined.

Input parameters and resulting protocol and port used

useSecure

Original Request
Protocol

Supplied URL
Protocol

Resulting
Protocol

Resulting port

no HTTP none HTTP originating request's port

no HTTPS none HTTP CM System server's

default port

yes HTTP none HTTP originating request's port

yes HTTPS none HTTPS originating request's port

no HTTP HTTP HTTP port from supplied URL

no HTTPS HTTP HTTP CM System server's

default port

no HTTP HTTPS HTTP originating request's port

278 CM System Technical Reference Manual

Input parameters and resulting protocol and port used

useSecure

Original Request
Protocol

Supplied URL
Protocol

Resulting
Protocol

Resulting port

no HTTPS HTTPS HTTP CM System server's

default port

yes HTTP HTTP HTTP port from supplied URL

yes HTTPS HTTP HTTP port from supplied URL

yes HTTP HTTPS HTTPS port from supplied URL

yes HTTPS HTTPS HTTPS port from supplied URL

Class name:

com.percussion.extensions.general.PSMakeAbsLinkSecure

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

useSecure java.lang.String Required. Flag specifying whether or not to use a

secure connection. Enter yes to specify use of

https for a secure connection; enter no (or any

value other than yes) to specify use of http for a

non-secure connection.

resource java.lang.String Optional. Relative resource without the

parameters.

paramName1 java.lang.String Optional. Name of the first HTML parameter.

paramValue1 java.lang.String Optional. Value of the first HTML parameter.

paramName2 java.lang.String Optional. Name of the second HTML parameter.

paramValue2 java.lang.String Optional. Value of the second HTML parameter.

paramName3 java.lang.String Optional. Name of the third HTML parameter.

paramValue3 java.lang.String Optional. Value of the third HTML parameter.

paramName4 java.lang.String Optional. Name of the fourth HTML parameter.

paramValue4 java.lang.String Optional. Value of the fourth HTML parameter.

paramName5 java.lang.String Optional. Name of the fifth HTML parameter.

paramValue5 java.lang.String Optional. Value of the fifth HTML parameter.

paramName6 java.lang.String Optional. Name of the sixth HTML parameter.

paramValue6 java.lang.String Optional. Value of the sixth HTML parameter.

Chapter 8 Extensions 279

sys_MakeAbsLinkSecureEx

Context:

Java/global/percussion/generic

Description:

This exit creates an absolute URL with up to 10 name/value pairs. It is identical to
sys_MakeAbsLinkSecure except that it allows you to specify a host name and port. Typically, the host

specified is the name of the secure DNS server.

This UDF is preferred to the sys_MakeAbsLinkSecure UDF when using SSL for publishing.

Class name:

com.percussion.extensions.general.PSMakeAbsLinkSecureEx

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters

Name

Data Type

Description

useSecure java.lang.String Optional. Flag specifying whether or not to use a secure connection.

Enter yes to specify use of https for a secure connection; enter no (or

any value other than yes) to specify use of http for a non-secure

connection.

Defaults to yes.

host java.lang.String (Optional) The host name to be used to produce the output url. If not

specified, the host name of the originating request will be used.

port java.lang.String (Optional) The port to be used to produce the output url. If not specified,

the port of the originating request will be used, subject to the value of the

\"useSecure\".

resource java.lang.String Relative resource without the parameters.

paramName1 java.lang.String (Optional) Name of the first HTML parameter.

paramValue1 java.lang.String (Optional) Value of the first HTML parameter.

paramName2 java.lang.String (Optional) Name of the second HTML parameter.

paramValue2 java.lang.String (Optional) Value of the second HTML parameter.

paramName3 java.lang.String (Optional) Name of the third HTML parameter.

paramValue3 java.lang.String (Optional) Value of the third HTML parameter.

paramName4 java.lang.String (Optional) Name of the fourth HTML parameter.

280 CM System Technical Reference Manual

Name

Data Type

Description

paramValue4 java.lang.String (Optional) Value of the fourth HTML parameter.

paramName5 java.lang.String (Optional) Name of the fifth HTML parameter.

paramValue5 java.lang.String (Optional) Value of the fifth HTML parameter.

paramName6 java.lang.String (Optional) Name of the sixth HTML parameter.

paramValue6 java.lang.String (Optional) Value of the sixth HTML parameter.

paramName7 java.lang.String (Optional) Name of the seventh HTML parameter.

paramValue7 java.lang.String (Optional) Value of the seventh HTML parameter.

paramName8 java.lang.String (Optional) Name of the eighth HTML parameter.

paramValue8 java.lang.String (Optional) Value of the eighth HTML parameter.

paramName9 java.lang.String (Optional) Name of the ninth HTML parameter.

paramValue9 java.lang.String (Optional) Value of the ninth HTML parameter.

paramName10 java.lang.String (Optional) Name of the tenth HTML parameter.

paramValue10 java.lang.String (Optional) Value of the tenth HTML parameter.

sys_MakeIntLink

Context:

Java/global/percussion/generic

Description:

This exit creates an absolute URL with up to 10 name/value pairs and adds user session information. The

URL locates an internal resource.

The exit constructs a URL that the CM System server uses to make an internal request. Therefore, it

differs from sys_MakeAbsLink because it always constructs the URL using 127.0.01 (the local server

address) and the CM System server port (usually 9992) regardless of what is supplied or what the

originating

request used.

A URL has the following pieces for purposes of this description:

<scheme>://<host><path-segments><resource>?<query>#<fragment>

Five basic forms are allowed for the supplied URL:

Fully qualified (e.g. http://server:9992/Rhythmyx/approot/res.html

Partially qualified (e.g. /Rhythmyx/approot/res.html)

Relative (e.g. ../myApp/res.html)

Resource name only (e.g. res.html)

An empty string

http://server:9992/Rhythmyx/approot/res.html

Chapter 8 Extensions 281

Any of these forms may contain a query and fragment part. The exit assumes that any relative url is

relative from the originating request's app root. If the supplied URL is fully qualified and the protocol is

not 'http', it returns the supplied URL, unmodified. Otherwise, it substitutes any pieces supplied. If the

supplied URL is not fully qualified, it adds the missing parts using the values from the originating request

(except for the server address, which is always 127.0.0.1 and the port which is always the one on which

the CM System server is listening). For a partially qualified name, it adds the http protocol, server and port

to the supplied name. For an unqualified name, it adds these items, plus the CM System request root and

the originating application request root. For a relative name, it adds the http protocol, server, port, and CM

System root, assuming it is relative from the originating requests app root. For an empty string, it uses all

parts of the originating request, substituting the supplied parameters. If the port is 80, it does not add

the port number to the generated url.

Multiple name/value pairs may be specified for the parameters. For example, if the following were

supplied as parameters:

resource = query1.html

param1 = city

value1 = Boston

param2 = state

value2 = MA

and the session identifier were sessionid, then the exit generates the following URL (the params do not
necessarily appear in the order presented):

http://rxserver:9992/Rhythmyx/MyApp/query1.html?pssessionid=sessionid&city=Boston&state=MA</p>

NOTE: The resource may contain parameters defined on it, in which case the exit appends the sessionid

after the last parameter defined.

Class name:

com.percussion.extensions.general.PSMakeIntLink

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

resource java.lang.String Relative resource without the parameters. Must be relative from the

application root directory.

paramName1 java.lang.String Optional. Name of the first HTML parameter.

paramValue1 java.lang.String Optional. Value of the first HTML parameter.

paramName2 java.lang.String Optional. Name of the second HTML parameter.

paramValue2 java.lang.String Optional. Value of the second HTML parameter.

paramName3 java.lang.String Optional. Name of the third HTML parameter.

paramValue3 java.lang.String Optional. Value of the third HTML parameter.

paramName4 java.lang.String Optional. Name of the fourth HTML parameter.

http://rxserver:9992/Rhythmyx/MyApp/query1.html

282 CM System Technical Reference Manual

Name

Data Type

Description

paramValue4 java.lang.String Optional. Value of the fourth HTML parameter.

paramName5 java.lang.String Optional. Name of the fifth HTML parameter.

paramValue5 java.lang.String Optional. Value of the fifth HTML parameter.

paramName6 java.lang.String Optional. Name of the sixth HTML parameter.

paramValue6 java.lang.String Optional. Value of the sixth HTML parameter.

sys_MakeIntRequest

Context:

global/percussion/extensions/general/

Description:

This UDF lets users map an XML element assembled in an exit or a CM System application in the

Rhythmyx Workbench mapper. You can map any element in the XML to this UDF. The root of the XML
document returned by this request must match the name of the XML element to which the UDF is

mapped. Otherwise, the CM System server returns a runtime error.

For example, suppose you had the following mapping for this UDF:

In this example we map the element <RelatedContent> through sys_MakeIntRequest. This request must

return an element <RelatedContent>, similar tot he following example code:

<RelatedContent>

<infourls actionlisturl="Text" activeiteminfourl="Text"

contentstatusurl="Text" userstatusurl="Text"/>

<linkurl sys_context="Text" sys_slotid="Text" relateditemid="Text"

sys_contentid="Text" sys_variantid="Text" slotname="Text">

<Value current="Text"/>

</linkurl>

</RelatedContent>

The following code shows this XML included with the final output of the application:

<sys_AssemblerInfo previewurl="Text" sys_siteid="Text"

pssessionid="Text" sys_command="Text" sys_contentid="Text"

sys_variantid="Text" sys_revision="Text" sys_context="Text"

sys_authtype="Text" type="Text" outputformat="Text" xml:lang="Text">

<RelatedContent>

<infourls actionlisturl="Text" activeiteminfourl="Text"

contentstatusurl="Text" userstatusurl="Text"/>

<linkurl sys_context="Text" sys_slotid="Text" relateditemid="Text"

sys_contentid="Text" sys_variantid="Text" slotname="Text">

<Value current="Text"/>

</linkurl>

</RelatedContent>

<AssemblerProperties>

Chapter 8 Extensions 283

<Property name="Text">

<Value current="Text"/>

</Property>

</AssemblerProperties>

<InlineLink url="Text"/>

</sys_AssemblerInfo>

Class name:

com.percussion.extensions.general.PSMakeInternalRequest

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

resource java.lang.String Required. The CM System resource to which to make an internal

request. Specifies the application and page of the dataset to which the

internal request is to be made. May be as brief as

appName/pageName or as extensive as

http://127.0.0.1:9992/Rhythmyx/AppTest/nov.xml?

alpha=bravo&test=5.

stylesheet java.lang.String Optional. The name of the stylesheet to be applied to the request result

document. The stylesheet must be stored in a CM System application.

If stored in the current application, just the file name is needed (e.g.

transform.xsl). For other applications use the relative path (e.g.

../sys_resources/stylesheets/transform.xsl).

inheritParams java.lang.String Optional. A flag to specify whether or not to inherit the original

request parameters for the internal request. Default is yes. Value is

case-insensitive.

paramName0 java.lang.String Optional. Name of the first HTML parameter. Parameter parsing stops

at the first NULL or empty parameter name.

paramValue0 java.lang.String Optional. Value of the first HTML parameter.

paramName1 java.lang.String Optional. Name of the second HTML parameter.

paramValue1 java.lang.String Optional. Value of the second HTML parameter.

paramName2 java.lang.String Optional. Name of the third HTML parameter.

paramValue2 java.lang.String Optional. Value of the third HTML parameter.

paramName3 java.lang.String Optional. Name of the fourth HTML parameter.

paramValue3 java.lang.String Optional. Value of the fourth HTML parameter.

paramName4 java.lang.String Optional. Name of the fifth HTML parameter.

paramValue4 java.lang.String Optional. Value of the fifth HTML parameter.

paramName5 java.lang.String Optional. Name of the sixth HTML parameter.

http://127.0.0.1:9992/Rhythmyx/AppTest/nov.xml

284 CM System Technical Reference Manual

Name

Data Type

Description

paramValue5 java.lang.String Optional. Value of the sixth HTML parameter.

paramName6 java.lang.String Optional. Name of the seventh HTML parameter.

paramValue6 java.lang.String Optional. Value of the seventh HTML parameter.

paramName7 java.lang.String Optional. Name of the eighth HTML parameter.

paramValue7 java.lang.String Optional. Value of the eighth HTML parameter.

paramName8 java.lang.String Optional. Name of the ninth HTML parameter.

paramValue8 java.lang.String Optional. Value of the ninth HTML parameter.

paramName9 java.lang.String Optional. Name of the tenth HTML parameter.

paramValue9 java.lang.String Optional. Value of the tenth HTML parameter.

sys_MakeLink

Context:

Java/global/percussion/generic

Description:

This exit creates a URL (as a string) with up to 6 name/value pairs. It creates the URL from the supplied

parameters and returns it. Up to 6 name/value pairs may be specified for the arguments. For example, if

the following were supplied as arguments:

base = query1.html

param1 = city

value1 = Boston

param2 = state

value2 = MA

then it generates the following URL:

query1f.html?city=Boston&state=MA

Note: The base may contain parameters defined on it, in which case the exit appends the supplied

parameters after the last parameter defined.

Class name:

com.percussion.extensions.general.PSMakeLink

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

baseUrl java.lang.String URL without the parameters.

Chapter 8 Extensions 285

Name

Data Type

Description

paramName1 java.lang.String Optional. Name of the first HTML parameter.

paramValue1 java.lang.String Optional. Value of the first HTML parameter.

paramName2 java.lang.String Optional. Name of the second HTML parameter.

paramValue2 java.lang.String Optional. Value of the second HTML parameter.

paramName3 java.lang.String Optional. Name of the third HTML parameter.

paramValue3 java.lang.String Optional. Value of the third HTML parameter.

paramName4 java.lang.String Optional. Name of the fourth HTML parameter.

paramValue4 java.lang.String Optional. Value of the fourth HTML parameter.

paramName5 java.lang.String Optional. Name of the fifth HTML parameter.

paramValue5 java.lang.String Optional. Value of the fifth HTML parameter.

paramName6 java.lang.String Optional. Name of the sixth HTML parameter.

paramValue6 java.lang.String Optional. Value of the sixth HTML parameter.

sys_Multilpy

Context:

Java/global/percussion/generic/

Description:

This exit multiplies operand 1 by operand 2 and returns the result. Operand 1 and operand 2 are supplied

by a UDF.

Class name:

com.percussion.extensions.general.PSSimpleJavaUdf_multiply

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

leftOp java.lang.Number Operand 1

rightOp java.lang.Number Operand 2

286 CM System Technical Reference Manual

sys_Subtract

Context:

Java/global/percussion/generic/

Description:

This exit subtracts operand 1 from operand 2 and returns the result.

Class name:

com.percussion.extensions.general.PSSimpleJavaUdf_subtract

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

leftOp java.lang.Number Operand 1

rightOp java.lang.Number Operand 2

sys_wfGetCheckOutUserStatus

Context:

Java/global/percussion/workflow

Description:

This exit returns a String that represents the status of the current document. Three values are possible:

0 - Not checked out

1 - Checked out by current user

2 - Checked out by another user

Chapter 8 Extensions 287

Class name:

com.percussion.workflow.PSGetCheckOutStatusUdf

Interface:

com.percussion.extension.IPSUdfProcessor

Parameters:

Name

Data Type

Description

userName java.lang.String The name of the user that currently has the document checked

out. Usually obtained from a backend column in the

CONTENTSTATUS table.

Workflow Action Processing

sys_TouchParentItems

Name:

sys_TouchParentItems

Context:

Java/global/percussion/extensions/general/

Description:

This action touches all "parent" (Owner) items of the current item in Relationships whose Category is

Active Assembly. It finds all Ancestors of the Content Item in Active Assembly Relationships and updates

them by putting the current date/time and current user name in the CONTENTLASTMODIFIEDDATE

and CONTENTLASTMODIFIER columns of the CONTENTSTATUS table.

This exit uses the following resources in the sys_ceDependency application:

 parents.xml query - this resource must have a "pipe name" of parents.

 touchitem.xml - an update resource (with a pipe name of touchitem. this resource updates the

CONTENTSTATUS table. The only parameter of touchitem.xml is sys_contentid. This

parameter specifies a list of content IDs as a {link java.util.ArrayList ArrayList} object.

Class name:

com.percussion.extensions.general.PSTouchParentItems

288 CM System Technical Reference Manual

Resource file:

classes

Interface:

com.percussion.extension.IPSWorkflowAction

Parameters:

None

sys_createTranslations

Name:

sys_createTranslations

Context:

global/percussion/workflow/

Description:

This action creates a Translation Content Item of the original Content Item in each Locale in which the

original Content Item does not already have a corresponding Translation Content Item. The action uses a

configuration file, sys_createTranslations.properties, which is located in the directory

<Rhythmyxroot>/rxconfig/i18n. This file defines the type of Translation Relationship to create between

the original Content Item and the Translation Content Item for each Locale. It also defines a list of

Locales for which Translation Content Items will not be generated.

Class Name;

com.percussion.workflow.PSCreateTranslations

Resource File:

rxconfig/I18n/sys_createTranslations.properties

Interface:

com.percussion.extension.IPSWorkflowAction

Parameters:

None

289

