

Modeling and
Design of a

Rhythmyx Content
Management

System
Version 6.7

 Printed on 5 June, 2009

Copyright and Licensing Statement
All intellectual property rights in the SOFTWARE and associated user documentation, implementation
documentation, and reference documentation are owned by Percussion Software or its suppliers and are
protected by United States and Canadian copyright laws, other applicable copyright laws, and
international treaty provisions. Percussion Software retains all rights, title, and interest not expressly
grated. You may either (a) make one (1) copy of the SOFTWARE solely for backup or archival purposes
or (b) transfer the SOFTWARE to a single hard disk provided you keep the original solely for backup or
archival purposes. You must reproduce and include the copyright notice on any copy made. You may not
copy the user documentation accompanying the SOFTWARE.

The information in Rhythmyx documentation is subject to change without notice and does not represent a
commitment on the part of Percussion Software, Inc. This document describes proprietary trade secrets of
Percussion Software, Inc. Licensees of this document must acknowledge the proprietary claims of
Percussion Software, Inc., in advance of receiving this document or any software to which it refers, and
must agree to hold the trade secrets in confidence for the sole use of Percussion Software, Inc.

The software contains proprietary information of Percussion Software; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information and
intellectual property contained herein is confidential between Percussion Software and the client and
remains the exclusive property of Percussion Software. If you find any problems in the documentation,
please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of Percussion Software.

Copyright © 1999-2009 Percussion Software.
All rights reserved

Licenses and Source Code
Rhythmyx uses Mozilla's JavaScript C API. See http://www.mozilla.org/source.html for the source code.
 In addition, see the Mozilla Public License (http://www.mozilla.org/source.html).

Netscape Public License

Apache Software License

IBM Public License

Lesser GNU Public License

Other Copyrights
The Rhythmyx installation application was developed using InstallShield, which is a licensed and
copyrighted by InstallShield Software Corporation.

The Sprinta JDBC driver is licensed and copyrighted by I-NET Software Corporation.

The Sentry Spellingchecker Engine Software Development Kit is licensed and copyrighted by Wintertree
Software.

The Java™ 2 Runtime Environment is licensed and copyrighted by Sun Microsystems, Inc.

The Oracle JDBC driver is licensed and copyrighted by Oracle Corporation.

http://www.mozilla.org/source.html
http://www.mozilla.org/source.html

The Sybase JDBC driver is licensed and copyrighted by Sybase, Inc.

The AS/400 driver is licensed and copyrighted by International Business Machines Corporation.

The Ephox EditLive! for Java DHTML editor is licensed and copyrighted by Ephox, Inc.

This product includes software developed by CDS Networks, Inc.

The software contains proprietary information of Percussion Software; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information and
intellectual property contained herein is confidential between Percussion Software and the client and
remains the exclusive property of Percussion Software. If you find any problems in the documentation,
please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of Percussion Software.

AuthorIT™ is a trademark of Optical Systems Corporation Ltd.

Microsoft Word, Microsoft Office, Windows®, Window 95™, Window 98™, Windows NT® and MS-
DOS™ are trademarks of the Microsoft Corporation.

This document was created using AuthorIT™, Total Document Creation (http://www.author-it.com).

Schema documentation was created using XMLSpy™.

Percussion Software
600 Unicorn Park Drive
Woburn, MA 01801 U.S.A.
 781.438.9900
Internet E-Mail: technical_support@percussion.com
Website: http://www.percussion.com

http://www.author-it.com/

 v

Contents

About Modeling and Design 7

Rhythmyx Implementation Roadmap 8

Modeling and Design in the Rhythmyx Implementation Roadmap..10

Preparing for Modeling and Design 11

Steps in the Modeling and Design Process ...12
Our Modeling and Design Sample..13
Mapping Out The Site...14

Revisions from the Original Site ...16

Initial Evaluation of the Web Site 19

Initial Assessment of Content Types ..20
Initial Web Page Decomposition ..27

Designing Templates and Slots 35

Decomposing Four Similar Pages...38
Decomposing the Events Page..44

Refining Content Types and Shared Fields 47

Determining Fields for the Generic Content Type..49
Determining Fields for the Event Content Type...52
Determining Fields for the Image Content Type ..55
Organizing Shared Field Sets ...59
Assigning Properties to Fields ..61

Assigning Properties to Shared Fields...62
Assigning Properties to Sharedimage Fields ...69
Assigning Properties to Local Fields...73

vi Contents

Decomposing the Image Snippet and Other Snippets...81

Designing the Global Template and Managed Navigation 85

Choosing the Web Pages' Look and Feel..87
Designing the Site's Managed Navigation ..88
Planning Site Folders for Managed Navigation..92

Planning Roles, Communities, and Workflows 95

Defining the Workflow Process for Content Types..96
Designing Communities ...105
Planning Community and Workflow Roles ..106

Establishing Publishing Requirements 109

Selecting the Content to Publish ...110
Determining a Publishing Schedule..113
Defining Locations and URLs ..114
Planning Database Publishing ..115

Ally's Development Plan 117

System Architecture..118
System Fields..119
Shared Field Sets ..121
Slots and Templates ..124
Content Types...132
Global Template ...136
Managed Navigation...137
Publishing ...138

Additional Database Publishing Details ..140
Workflow..141
Communities and Roles ..144

Next Steps 145

Index 147

 7

C H A P T E R 1

About Modeling and Design

The process of modeling and design must occur before you begin to implement your Rhythmyx
components. During modeling and design you plan the type of pages you want to display on your Web
Site, and then decompose the pages into the components that comprise them so you can determine the
Content Types, Templates, and Slots you need in your system.

In addition, the modeling and design process involves planning the shared fields, Global Templates,
managed navigation, Roles, Workflows, Communities, and Publishing components required for your
system.

The end result of modeling and design is a development plan that specifies the details of the Rhythmyx
objects that will be implemented.

Although remodeling often occurs during the implementation phase, performing the modeling and design
process prior to developing your system is crucial. Experience at Percussion Software consistently
demonstrates that customers who engage in preplanning of their implementation are able to implement
their system more efficiently and in less time than when those customers that begin implementation before
mapping out the structure of their system.

8 Modeling and Design of a Rhythmyx Content Management System

Rhythmyx Implementation
Roadmap

The Rhythmyx implementation roadmap follows. You may find that performing some of these steps in a
different order better serves the function of your system. You will also find yourself returning to steps
that you have already completed because it has become clear that you must revise some of the components
that you have designed.

Steps in the implementation roadmap:

1 Model and design your Web Site and the components that will make up your Rhythmyx CMS.
Create a development plan that implementers can follow when designing these components.
Most of the remaining steps instruct you to create the components designed and outlined
during this process.

2 Configure the Roles, Communities, Workflows, and users sketched out during modeling and
design. As you continue the implementation process, you will see changes that you want to
make.

3 Set up the basic framework for your Site Folders and navigation hierarchy. The Site Folder
structure may not be established during modeling and design; you may begin to determine it at
this time, and will note changes that you want to make as your implementation proceeds.

4 Create your shared fields.

5 Create your Slots.

6 Create your Global template.

7 Create your Content Types, either by modifying existing FastForward Content Types or by
creating new ones.

8 Create your local and shared Templates.

9 Completing the set up of your Site Folders and navigation hierarchy.

10 Modify the configuration of your Roles, Communities, Workflows, and users according to
any necessary changes that you have noted during implementation.

11 Configure site folder publishing.

12 Deploy your Rhythmyx components to your integration environment, and, after testing, to
your production environment.

 Chapter 1 Rhythmyx Implementation Roadmap 9

The implementation roadmap will be represented by the following graphic at the section or chapter that
begins each step. The road map will indicate which step you have reached in the process.

Figure 1: Rhythmyx Implementation Roadmap

10 Modeling and Design of a Rhythmyx Content Management System

Modeling and Design in the Rhythmyx
Implementation Roadmap
This document guides you through the modeling and design process. It is part of the Rhythmyx
development library, including:

 Getting Started with Rhythmyx

 Rhythmyx Implementation Guide

 Setting Up the Rhythmyx Production Environment
A variety of documents is also available addressing specialized implementation issues.

Modeling and design should precede any implementation activity, but should not occur until after you
have developed an initial familiarity with Rhythmyx.

Before beginning modeling and design, you should become familiar with Rhythmyx and its basic
concepts.

 Read the Rhythmyx Concepts Guide.

This document introduces and explains the basic concepts of Rhythmyx and of Content
Management using Rhythmyx. You should read at least the portions of the Rhythmyx
Concepts Guide recommended for implementers.

 Read Getting Started with Rhythmyx.

This document guides you through a basic installation of Rhythmyx with the FastForward
implementation and includes some basic tutorial exercises to help you learn more about
Rhythmyx and how it works.

 Attend training on Rhythmyx.

Percussion Software provides training on Rhythmyx frequently throughout the year. Training
will provide more opportunities to become familiar with Rhythmyx and the implementation
process.

Once you have completed these tasks, you are ready to use this document to help guide you through the
modeling and design process.

 11

C H A P T E R 2

Preparing for Modeling and Design

Just as performing modeling and design will result in an improved implementation, preparing for
modeling and design ensures that that process will be completed quickly and effectively. Review the
modeling and design process before beginning. If Percussion Software is assisting with your modeling
and design, you will be provided with a Pre-Engagement Workbook. Complete this document before
beginning your modeling and design session with Percussion Professional Services Organization
representatives.

It is also useful to provide printed copies of the HTML pages you want to publish. If you are redesigning
your pages, you can use printouts of the design wireframes. Otherwise, use printouts of pages from your
existing Web site.

12 Modeling and Design of a Rhythmyx Content Management System

Steps in the Modeling and Design Process
This topic provides a set of steps that may be followed during modeling and design. However, many
factors may change the order in which you perform the steps including the number of pages on your Web
Site and the degree to which you are changing your current Web Site.

Steps for modeling and design:

1 Map out your Site and its changes (see page 14).

2 Perform an initial assessment of the Content Types required on your Site. (see page 20)

3 Analyze Content Type fields and related Content Items used on Web pages. (see page 27)

4 Decompose pages into fields, Templates, and Slots. (see page 35)

5 Refine and list fields required on Content Types. (see page 47)

6 Design Global Template and Managed Navigation. (see page 85)

7 Plan Roles, Communities and Workflows. (see page 95)

8 Determine publishing requirements. (see page 109)

9 Produce a development plan. (see page 117)

 Chapter 2 Preparing for Modeling and Design 13

Our Modeling and Design Sample
To demonstrate modeling and design we will reproduce a session between a customer who will be
involved in implementing the system and a Rhythmyx implementer. In this exercise, the customer's Site
will be represented by a small portion of the FastForward Enterprise Investments Site. Using a small
portion of the Site will enable us to demonstrate how analysis occurs and how decisions are made while
avoiding the length of discussion necessary for analyzing an entire Site. The portion of the Site that we use
will include many of the Content Types, Templates, Slots, shared fields and other components that we
implement in Section 2 of this document.

At the beginning of each topic in this section, we include a box that summarizes the main question or
questions that the Rhythmyx implementer is asking. The section shows how the customer answers or
responds to the question or questions.

14 Modeling and Design of a Rhythmyx Content Management System

Mapping Out The Site

Questions:
 What do you want your Rhythmyx-designed Web Site to look like?

 With your implementation of Rhythmyx will you be duplicating your current site, redesigning your site,
or designing your site for the first time?

The process of mapping out a Site varies greatly from customer to customer. In most cases, you will
begin with an existing Web Site and include any changes that you want to make during your transition to
Rhythmyx. If you do not have an existing Web Site, you must sketch out your proposed Web Site.

The complexity of this step is affected by the following:

 the size of the Site

 the number of sub-sections

 the number of page types

 connections to outside systems

During an actual modeling and design session, all sub-sections, page types, and connections to other
systems must be mapped out on paper.

For demonstration purposes, we will use a very small portion of the FastForward Site to represent the Site
of our customer, Ally.

The graphic that follows shows the portion of Enterprise Investments that we will look at while analyzing
Ally's Site. Ally would print out or sketch the pages much as they appear in the graphic, and show how
they are connected with arrows.

Note that in the FastForward Enterprise Investments Site, the Home Page does not directly link to the
"Better Investing National Convention and World Federation of Investors" page. However, in this
document, we do not discuss the December 2004 Calendar Page, which links these two pages. Therefore,
it is only represented by a placeholder.

As Ally and Noah, the Rhythmyx implementer who is working with her, proceed to analyze these pages in
the topics that follow, you will have an opportunity to see larger graphics of them. The graphic in the next
page shows you the pages comprising Ally's Web Site and shows how they are connected, but does not
clearly display any page details.

 Chapter 2 Preparing for Modeling and Design 15

Our purpose for using the Home Page in this exercise is to maintain the starting point of the Site, and to
discuss how its graphics are stored in Content Types. We will not decompose the Home Page as we
decompose the other Pages because it uses custom features which are beyond the scope of this document.

Figure 2: Ally's Sample Site

16 Modeling and Design of a Rhythmyx Content Management System

Revisions from the Original Site

Question:
 What aspects of your current Site do you want to redesign with Rhythmyx?

Although you may have several changes that you want to make to the pages in your Site when you move
to Rhythmyx, in our example, Ally plans to make one change to the "Better Investing Convention . . . "
Page. She shows the change she wants to make to Noah to discuss its feasibility. The current "Better
Investing Convention . . . " Page appears as:

Figure 3: Original Better Investing National Convention Page

 Chapter 2 Preparing for Modeling and Design 17

Events at Ally's company occur simultaneously at various Locations. In the past, content contributors have
had to display a separate page on the Web Site for the same event at each location. She would like the
ability to create one Content Item that stores the event and its multiple locations, and the ability to display
the event and all of the locations on one Web page. Ideally, she would like each Location entry to hold
four fields describing the Location: Address, City, State, and Contact. The final page would appear
something like the following, where the additional locations are listed at the bottom of the page.

Figure 4: New Page for Better Investing National Convention

Noah says that Rhythmyx can handle this change easily. He proposes a method for doing this later, in the
topic Decomposing the Events Page (see page 44).

In Ally's mock-up of her proposed Web Site, she replaces the original "Better Investing National
Convention" page with the modified one.

 19

C H A P T E R 3

Initial Evaluation of the Web Site

The first phase of modeling and design is to perform an initial evaluation of the Web site to outline the
basic Content Types that will be used to define managed content, and preliminary Templates that will be
used to publish them.

20 Modeling and Design of a Rhythmyx Content Management System

Initial Assessment of Content Types

Question:

 What are your initial ideas of the Content Types that your system will require?

Noah suggests that Ally begin by making initial assessments of what Content Types her different pages
should represent. He explains that nothing decided at this point will be final, and that she should not feel
pressured to make the most efficient decisions.

As stated earlier, we will not decompose the Home Page like the other Pages in Ally's site due to its
custom components. We will discuss this page last, so that we can address the use of image Content
Types.

Ally begins with the other pages in her Site, and Noah explains that the uniform area surrounding each
page is a Global Template, which they will analyze later, and not include in their analysis of the Pages.
He instructs her to cut it out (as we have done in our diagram) or ignore it as she analyzes her pages.

The grayed out portion in the following graphic marks off the Global Template.

Figure 5: Global Template

 Chapter 3 Initial Evaluation of the Web Site 21

NOTE: In the graphic above, breadcrumbs are part of the global template, as they normally will be. In
FastForward, due to the HTML requirements of the structure of the page, breadcrumbs are part of each
main page template rather than the global template.

Ally and Noah begin by looking at the About Enterprise Investments page.

Figure 6: About Enterprise Investments

Ally notes that it includes a title and content describing generic information about the company. Ally
suggests that it represents a Generic Content Type. Noah feels that this is a good initial assessment, but
mentions that Ally should make a note of the links to related pages at the bottom of the page and the box
on the side including title links and descriptions to other related pages. He explains that these elements
may help Ally determine which other pages can use the same Content Type as this one.

22 Modeling and Design of a Rhythmyx Content Management System

Next they look at the Products and Services page:

Figure 7: Products and Services page

Noah asks Ally to describe the page, and then make an initial assessment of what Content Type it
represents. She notes that it has the Products and Services title, a brief introduction, and then a section
with two headings for categories of products: Insurance Products and Funds. In this section:

1 the headings are links to articles about the category of product

2 below the headings are title links to specific types of insurance or funds followed by detailed
body text.

 Chapter 3 Initial Evaluation of the Web Site 23

Ally says that her first impression is that this represents a Products and Services Content Type since all of
the content is related to Products and Services. Noah has her temporarily label the page "Products and
Services Content Type", but suggests that this assessment may change as she looks at her other pages.

Now Ally and Noah look at the Funds Page:

Figure 8: Funds Page

24 Modeling and Design of a Rhythmyx Content Management System

Ally notes that the Funds page begins with the Funds title and a brief introduction, similar to the Products
and Services page. Then it includes a Related section that resembles the second column of the Products
and Services page. The column includes the same list of retirement articles and funds listed in the second
column of the Products and Services page as well as two additional funds. Since the page is dedicated to
information about Funds, Ally decides to call it a Funds Page. Noah agrees that she should temporarily
label the page "Funds Page", but asks her to keep in mind that this page and the previous one have the
following similarities in format:

 At the top, the title is followed by an introduction.

 After the title and introduction is a section with links to articles followed by links to specific
products with lengthy descriptions of them. The only differences is that one page has a two-
column format, and the other page has a single column format.

Next they look at the EI Global Financial Service Fund page:

Figure 9: EI Global Financial Service Fund page

Ally points out that this page includes the title of the specific type of fund and a description as well as a
table giving specific items of information about the fund. At the bottom of the page is a related fund in the
format of a title link and description, and at the right side of the page in a box is another fund with a title
link and description. Ally designates this page as a representing a "Fund Type" Content Type. Noah
suggests that the page has quite a few similarities to the "About Enterprise Investments" page, but
suggests that they investigate this after looking at the other pages in the Site.

 Chapter 3 Initial Evaluation of the Web Site 25

The next page that they look at is the "Better Investing National Convention" page that Ally is planning to
change:

Figure 10: New Page for Better Investing National Convention

Ally notes that like the other pages they have looked at so far, this page has a title and a description -
enough to compose the body of the Content Type. It differs from the other pages reviewed so far because
at the bottom of the page it lists certain event details - the event start date, event end date, event type, and
event locations, rather than links to related pages. Ally designates this as an Event Content Type.
Because of the event-specific information listed, Noah agrees that this may work as an Event Content
Type, but he reiterates that nothing is final at this point.

26 Modeling and Design of a Rhythmyx Content Management System

Finally, Noah and Ally look at the home page. Their complete analysis of this page will not be covered in
this document. However, we will cover their discussion of the various images shown on this page:

Figure 11: Home Page

Noah explains that in Rhythmyx, images and other binary files must be stored in a Content Type that
includes a special control for uploading and storing binary files as well as certain metadata fields that are
required for storing, managing, and rendering binary files. Image files need additional metadata fields
required for rendering them on a Web page. Ally tells Noah that she was hoping to have the flexibility of
an image Content Type that could create a thumbnail of an uploaded image. Noah explains that this is
frequently requested, and they can include a java extension (plugin) with the Content Type to create the
thumbnails. Ally designates an Image Content Type to store images of the type she sees on the Home
page and thumbnails of the image.

Noah explains that Ally is now ready to begin decomposing the pages she has temporarily designated as
various Content Types into their component fields to make a better determination about which of the
pages are similar and which are different.

 Chapter 3 Initial Evaluation of the Web Site 27

Initial Web Page Decomposition

Questions:
 What is similar and different about the pages you have sketched out?

 Which of these pages potentially could be represented by the same Content Types?

At this point, Ally has loosely defined the Content Types that her Web pages represent as Generic,
Products and Services, Funds, Fund Type, Event, and Image. Now, Noah explains, they will roughly
decompose the pages into fields and links to better see their structural similarities. This process may help
them see that pages that initially appear different because they deal with different topics may actually be
similar in structure. If pages are similar in structure, Ally can use the same Content Type to define their
content.

Noah suggests beginning by comparing the "Funds" page and the "Generic" pages:

28 Modeling and Design of a Rhythmyx Content Management System

Figure 12: Funds Page

 Chapter 3 Initial Evaluation of the Web Site 29

Figure 13: About Enterprise Investments

Noah asks Ally to note the similarities and differences between these two pages. She notes that they both
have a title at the top and then body text. Following the body text they both have a Related section. She
states that the Related sections are quite different. The Funds page includes title links and brief summaries
for retirement articles, and then title links and more substantial descriptions for funds. The Related section
for the About Enterprise Investments page includes two simple title links to other pages. At the side of the
page is a box with title links and descriptive text for two additional pages.

Noah explains which parts of the pages would represent fields in the Content Types in Rhythmyx, and
which parts of the pages would represent information from other pages and would not be part of the
Content Type. He explains that the titles and body text are part of the Content Types and would probably
be represented by "Title" and "Body" fields. The remainder of the information on both of the pages is
information from other Content Items that links to pages representing those Content Items.

Ally sees that structurally, these pages are more similar than she realized. They both only display a title
and body field from the original Content Item. All of the other information they display includes text and
links to other Content Items, although much of this information appears in different places on the page.

Noah explains that they are not actually looking at Content Types, but Templates that display Content
Items of certain Content Types in specific formats. He explains that Templates display some fields from a
Content Item and can also display portions of other Content Items in Slots that are included in Templates.
It is possible for Templates to hide the empty space where a field on a Content Type is not filled in; it is
also possible for Templates to hide Slots where other Content Items could be displayed, but are currently
empty. For example, a Slot on the Funds page might include a green bar on the right side with data from
other Content Items, but since the Web Master has not entered other Content Items into that Slot, the
green bar is not shown on that page.

30 Modeling and Design of a Rhythmyx Content Management System

Noah suggests that the two pages could actually represent the same Content Type, and could possibly
represent the same Template. Ally objects, pointing out that the two pages cannot represent the same
Template because, although they both display links to pages for other Content Items at the bottom of the
page, the format of the links is completely different. Noah explains that in Rhythmyx, the links and
portions of other Content Items on pages are also Templates, and that any number of differently formatted
Templates can be inserted into a Slot. Therefore, it is possible that the Funds and the About Enterprise
Investments pages could represent the same Template and the same Content Type. However, Ally is not
sure if she wants the creators of the Funds page to have the option of using the green right sidebar to
present additional information. Noah also points out that if it turns out that the different formats of the
Content Items in the Slots would require too much additional coding in the Page Template, it may not be
worthwhile to use the same Template for both of them, although they could still represent the same
Content Type.

Noah confirms that Ally is beginning to think about her Content Types and Templates from a Rhythmyx
perspective. He says that she should keep in mind the question of whether the two pages looked at so far
should represent a single Content Type or two separate Content Types, but can make this decision after
they look at the other pages again.

Now they look at the EI Global Financial Service Fund page:

Figure 14: EI Global Financial Service Fund page

Ally states that this page is essentially the same structurally as the About Enterprise Investments page. It
has a title and body text. On the right is the green sidebar displaying another Content Item, and at the
bottom is a "Related" section displaying another Content Item. Noah points out the table in the center of
the page, and says that the Fund Type, Management Style, Date of Inception, Total Net Assets, and
Eligibility fields should probably be specific to the Content Type representing the fund.

 Chapter 3 Initial Evaluation of the Web Site 31

At this point, Ally gives Noah some additional information. There are actually several funds represented
in pages similar to this one on the Web Site. They all have a table with these pieces of information in the
center. However, the entire table is copied and pasted from documents sent from another department. The
content contributors do not require separate fields for entering the information in the table.

With this information, Noah suggests that the table can be part of the body content which can be entered
into a rich text field in the Content Editor in the following format:

Figure 15: Content entered in rich text control

How to decide whether to include data in its own field or as part of a rich text field:

Include data in its own field if:

 The data includes multiple values that may change more frequently than the content in the rich text field.

 You do not always want the data assembled with the content in the rich text field.

 You want to require users to enter this data for the Content Type.

 You want to specify that the field appear in a particular location on the page (not within the rich text field).

Include data as part of a rich text field if:

 By inserting the data into the rich text field, you are able to avoid creating a new Content Type.

 When assembled, the content in the rich text field should always be accompanied by the data.

 The data is not entered often enough to require its own field or fields.

 You want to give the content contributor control over where the field appears on every page.

Now Noah agrees that the Global Financial Services Fund page does have the same format as the About
Enterprise Investments page. Ally decides that her system should include a Generic Content Type that
could be used for information as diverse as the Site's summary page, and pages representing specific
funds. She notes that it could also be used for "major products" pages such as the Funds page if she
decides that the Funds page should have the green sidebar Slot on the right side. Noah reminds her that the
sidebar Slot is part of the Template, not the Content Type. So Ally decides that a Generic Content Type
should represent all three pages decomposed so far, the About Enterprise Investments page, the EI Global
Financial Service Fund page, and the Funds page. The main fields on each of theses page seems to be the
title and body text. She notes that different Page Templates may be associated with these pages.

32 Modeling and Design of a Rhythmyx Content Management System

They now look at the Products and Services page again.

Figure 16: Products and Services page

Like the other pages they have looked at so far, it includes title and body fields at the top, which are
followed by content from other content items. Potentially, it could have a green box on the side
representing a Slot. The only major difference between this page and the other pages is that the other
content included at the bottom of this page appears in two columns. Noah mentions that the two (or
possibly more) column approach on the Products and Services page may require different coding in the
Template than the other pages, but since the fields that come from the Content Type (title and body) are
the same, they should be able to use the same Content Type. He continues that since the four pages use the
same fields from the original Content Type, the same Content Type can represent all of them, and Ally
determines that the Generic Content Type will represent all four of them.

 Chapter 3 Initial Evaluation of the Web Site 33

They now look at the Better Investing National Convention page:

Figure 17: New Page for Better Investing National Convention

When Ally initially assessed this page, she noted that it showed fields that seemed specific to events, and
therefore should represent an Event Content Type. Looking at it again she decides that this assessment is
sound. The page includes an Event Start Date, Event End Date, Event Type field, and the Event Location
table. If she associated this page with the Generic Content Type, she would have to add all of these fields
to the Generic Content Type, even though they would only be used for Events. Associating the page with
an Event Content Type is more efficient.

34 Modeling and Design of a Rhythmyx Content Management System

How to decide whether to merge similar pages into one Content Type or split them into two
Content Types:

Merge similar pages into one Content Type if:

 You want to give content contributors or web masters a great deal of flexibility regarding the content they
enter and how they format it.

 Differences are negligible; for example by adding a date field or a basic Slot to one of the Content Types,
you could merge them into one and make your system simpler.

Split similar pages into two Content Types if:

 Merging would require you to add fields to one of the Content Types that you do not want available for that
Content Type.

Ally and Noah have already decided that a separate Image Content Type is required, so at this point, they
do not have to further analyze the Home Page. Noah suggests that this is a good time to begin thinking
about the specifics of the Templates that Ally requires to display her content.

 35

C H A P T E R 4

Designing Templates and Slots

Questions:
 Which information on the pages you have sketched out comes from the Content Item represented, and

which is taken from other Content Items?

 Do you have rough HTML templates of the pages you want to display on your site?

Noah has already introduced the concept of Templates to Ally, but before they begin designing Templates
for her system, he explains Rhythmyx Templates in more detail. Noah explains that the purpose of
Templates is to define how Rhythmyx outputs are assembled and formatted. These outputs can be Pages
or portions of Pages, as Ally has already seen. For example, a Page Template defines the entire About
Enterprise Investments page. In the following graphic of the Template used for this Page, the title and
body fields from the Content Item are outlined, and Slots holding Content Items are shaded:

Figure 18: Page Template

When an output cannot stand alone as a Page, in Rhythmyx it is referred to as a Snippet. In the above
graphic, Snippets appear in placeholders on the Template called Slots. A Snippet can contain any fields in
a Content Item, including fields that are not included in any Page Templates. For example, a Snippet
Template defines the green sidebar on the About Enterprise Investments page. This Snippet can include
multiple Content Items. In this case, it includes the title and summary fields from two Content Items,
which are outlined in the following graphic:

36 Modeling and Design of a Rhythmyx Content Management System

Figure 19: Snippet Template

Noah notes that the output that a Template defines does not have to be a Web page or part of a Web page;
it can be information stored in a database or other storage system.

He further explains that Templates designed for use on Web Sites are either type-specific (defined for a
single Content Type) or shared (can be used by multiple Content Types). They have discussed Global
Templates, but will not attempt to define the Site's Global template right now. At this point, Ally will
begin planning her Page Templates, the Snippet Templates that will be included on her Page Templates,
and the Content Type or Content Types each Template is associated with. She must also design her Slots
and the Templates that each Slot can contain.

Noah briefly explains that to create a typical Page or Snippet Template that displays a text-based Content
Item, an implementer uses an existing HTML page in the Web Site or defines a sample page (or portion of
a page) in HTML, adds code for Slots, and then adds the HTML to a new Template using the Rhythmyx
Workbench's Template wizard and editor. The Wizard uses a templating language (by default, Apache's
Velocity) to create the Template, which is then applied to Content Items to create Pages and Snippets in
the format of the original HTML that the implementer defined. The Slots referenced in the Template are
defined in the Rhythmyx Workbench's Slot Wizard and Editor.

Ally already has HTML code defining the pages that she has reviewed with Noah. Of course, sections that
will be coded as Slots in Rhythmyx do not yet specify Slots, and she will have to recode them. Noah
mentions that they will move any formatting information that is duplicated in the HTML for different
pages into a cascading stylesheet. This includes colors, font types and sizes, and margin sizes. This
introduces another topic, that Noah briefly mentions because it affects Ally's decisions on how to format
the Content Type fields that appear in her Templates. He explains that the fields in Rhythmyx Content
Types can be local to a Content Type, or shared or system fields that appear in any number of Content
Types. It is common to create a default format for shared or system fields in a cascading style sheet, so
that they appear in the same format regardless of the Template that displays them. The default format in
the cascading style sheet can always be overridden in a Template if she wants the field to appear
differently.

 Chapter 4 Designing Templates and Slots 37

By decomposing the pages with pen and paper, they can determine which portions represent fields and
which portions represent Slots so that they can modify Ally's existing HTML code. They can also see
what is repeated among pages, and change repeated elements into Slots, Templates, and cascading style
sheet markup.

38 Modeling and Design of a Rhythmyx Content Management System

Decomposing Four Similar Pages

Questions:
 Specifically, which fields from the page's Content Type do you want to display on each page?

 Which portions of each page do you want to use to display information from other Content Types?

 How much flexibility do you want to give Web Site designers in determining what is displayed on each
page?

 How do you want to format the information on each page?

As Ally and Noah have analyzed the pages on Ally's Web Site, they have already determined that the
About Enterprise Investments, the EI Global Services Funds, the Funds, and the Products and Services
pages should represent a Generic Content Type, but may be associated with different Templates. Noah
suggests that they begin by fully decomposing these four similar pages to help them determine the
remaining issues.

The following two graphics show how they decompose the About Enterprise Investments and EI Global
Financial Service Fund pages on paper. Because they have already analyzed the pages, they are able to
easily identify what functions best as a Content Type field and what functions best as a Slot. As they have
already discovered, these two pages are structurally the same. They both include the title and body fields
from the Content Type, and sidebar and bottom Slots for including information and/or links to other
Content Items. Ally is comfortable with the idea of using the structure of the pages as a Generic Template
that will be assigned to a Generic Content Type, and possibly other Content Types. The Generic Content
Type will have a Title field and a Body field as well as other fields that they will determine in the next
step of the modeling and design process.

Figure 20: Decomposed About Enterprise Investments page

 Chapter 4 Designing Templates and Slots 39

Figure 21: Decomposed EI Global Financial Service Fund page

40 Modeling and Design of a Rhythmyx Content Management System

Now Ally and Noah decompose the Funds page. Ally's original decomposition of the Funds page follows.
She makes an effort to duplicate fields and Slots in the Generic Template to see if she can use the same
Template. She also fills in a place for a Sidebar Slot, which could be added if she decides to use the same
Template.

Figure 22: Decomposed Funds Page

 Chapter 4 Designing Templates and Slots 41

At this point, Ally is in favor of making a single Template that performs the rendering and the formatting
for the three pages that they have decomposed so far. She believe this will make their system simpler yet
offer her company's Web Site designers a fair degree of flexibility.

Noah agrees that this is a good solution. Now he suggests that they decompose the Products and Services
page since they have already determined that due to the columns in the bottom Slot, a separate Template
may be required.

Ally includes the same Title field and Body field that she has included in her other Templates. She
includes the possible Sidebar Slot at the right side of the page, and at the bottom of the page, she makes a
note that the Bottom Slot will have a table option.

Figure 23: Decomposed Products and Services page

Noah now explains to Ally why the double column approach as used here will require a different
Template. In the other content items, each item inserted into the Bottom Slot is displayed vertically. For
this content item, each item inserted into the Bottom Slot is displayed horizontally across the page as the
top item in a column. In the example above, these items are EI Insurance Products and EI Funds. They
are displayed at the top of each column as a title link. The items listed below the top item in each column
are included in the top item's Bottom Slot (in the example above, the EI Insurance Products item includes
the Homeowner Insurance, Life Insurance and Reinsurance items in its Bottom Slot. The EI Funds item
includes the items below it in its Bottom Slot). Although both Templates can use the same Bottom Slot,
some code to specify the table format must be included in one of the Templates to cause the Slot to
display the items horizontally.

42 Modeling and Design of a Rhythmyx Content Management System

Ally has one concern - how will Rhythmyx know which page Template to use for each Generic content
item? Noah says that Rhythmyx has a special type of Template called a Dispatch Template created just for
this purpose. A Dispatch Template does not include any code or markup. It simply looks at a condition,
applies it to the appropriate content item, and depending on the result of the condition, chooses the correct
Template. For example, Ally could add a Usage field to the Generic Content Type that specifies whether
or not the item defines a major product. Depending on the value of this field, Rhythmyx would create a
page using the normal Generic Page Template or the Generic Page Template with the horizontal list at the
bottom.

Noah has a few minor suggestions about component names. He suggests that she change the name
"Bottom Slot" to "List Slot" in order to give the page designer an idea of its intended function. In most
pages where this is used, the Slot contains a list of at least a few items that the user can go to for more
information. In addition, he suggests that she change the name of the title field to displaytitle, since they
will probably include a separate system title for each Content Type, and displaytitle clarifies the function
of this title.

Now Ally has some Template designs that she can use to begin to implement her system. Of course, these
templates may change as she does more planning and begins implementing. Her current normal Generic
Template is the following:

Figure 24: Generic Content Type Template

 Chapter 4 Designing Templates and Slots 43

Her current Generic Template for major products is the following:

Figure 25: Generic Template for Major Products

44 Modeling and Design of a Rhythmyx Content Management System

Decomposing the Events Page
Ally and Noah have already determined that the Events Page will represent an Event Content Type and an
Event Page Template. Previously, she told Noah that she wanted to change the page to show all of the
locations (and the details of each location) where the event will take place. However, she does not know
how a Rhythmyx field is designed to hold multiple locations and their details.

Noah explains that multiple locations and their details are not stored as a Location field but as a Location
child field set in a Rhythmyx Content Type. A child field set allows for multiple entries in a table format,
and the field set supports any number of fields. Ally's Location child field set would have a format similar
to:

 City State Address Contact

Location 1 City 1 State 1 Address 1 Contact 1

Location 2 City 2 State 2 Address 2 Contact 2

Location 3 City 3 State 3 Address 3 Contact 3

.

The procedure for adding this child field set is shown in the Creating Shared Fields chapter of the
Rhythmyx Implementation Guide. Of course the format of Ally's original Page must be changed to list all
locations in the child field set as shown in the following graphic. The procedure for creating the Template
that displays all of the contents of a child field set is shown in the Creating Slots and Templates chapter of
the Rhythmyx Implementation Guide.

 Chapter 4 Designing Templates and Slots 45

They decompose the Events page to determine the structure of the Template and to begin to determine
which fields are required on the Content Type:

Figure 26: Decomposed Event Page

46 Modeling and Design of a Rhythmyx Content Management System

Noah believes this will translate easily into a Template. His only suggestion is that Ally may want to
include a List Slot at the bottom of the page which could optionally display links to pages of related
information. Ally agrees with this suggestion, and the final Template appears as:

Figure 27: Events Content Type Template

At this point, Ally has determined that the Event Page Template will be type-specific for the Event
Content Type, which will include the fields Displaytitle, Body, Event Start Date, Event End Date, Event
Type, as well as others that they will determine in the next modeling and design step, and the Event
Location child field set.

 47

C H A P T E R 5

Refining Content Types and
Shared Fields

Questions:
 Which information on the pages and snippets that you have sketched out represents Content Type

fields?

 What system information do you want to store in each Content Type?

 Which fields are repeated in multiple Content Types?

Now that Ally has determined her system's Content Types and the fields that will appear on the Templates
for the Content Types, she is ready to define the Content Types in detail. Noah explains that detailed
definitions are necessary in order to create a development plan that another user can implement. He begins
by reiterating the components that make up Content Types and the properties associated with them.

Noah explains that each Content Type is composed of fields, which Rhythmyx categorizes as local,
shared, or system. During creation of a Content Type in the Workbench, implementers can define local
fields that are specific to a Content Type. Implementers can also add user-defined shared fields and
Rhythmyx-defined system fields to any Content Type. Implementers usually define non-system fields that
are used by most Content Types in their system as shared fields. This saves time when defining Content
Types and ensures that common fields are stored in consistent formats. After Ally defines the fields in her
Content Types, she will be able to see which of them are used frequently enough to include in shared field
sets (shared fields that are stored in a set because they are related).

Figure 28: Content Types can include shared, system and local fields

48 Modeling and Design of a Rhythmyx Content Management System

One or more Workflows are permitted for each Content Type, and a default Workflow is required.
Otherwise, Content Items of that type could never be approved and entered into a publishable State.

Each Content Type must also be visible to one or more Communities to enable users to have access to it.

A Content Type can exist without a Template associated with it, but without a Template its Content Items
can never be published since Content Items are always published in the format of a Template.

In summary, Noah states that for each of her Content Types, Ally must specify:

 shared fields

 system fields

 local fields

 field validations and visibility

 allowed Workflows

 the default Workflow

 Communities that have access to it

 Templates
Of course, during the implementation process, she may change some of these specifications.

Ally has already designed the Templates (see page 35) associated with each of her Content Types. She
will determine the Communities and Workflows for her Content Types in the section Planning Roles,
Communities, and Workflows (see page 95). In this section, she will focus on determining the fields and
shared field sets in her Content Types and defining their properties.

 Chapter 5 Refining Content Types and Shared Fields 49

Determining Fields for the Generic Content
Type
Ally and Noah begin by deciding what fields to include in the Generic Content Type. Initially they look at
the page Template that they analyzed for the Generic Content Type. Early in the Web Page
decomposition process (see page 27) they determined that the Generic Content Type should include the
following fields:

 displaytitle

 body

Figure 29: Generic Content Type Template

In addition, they have designed some Slots on other pages that will hold information from Generic
Content Items. In one of these Slots (shown in the green sidebar, above), they have seen a title and
marketing blurb (callout) for a Generic Content Item.

They add the callout field to the Generic Content Type:

 callout

50 Modeling and Design of a Rhythmyx Content Management System

Noah tells Ally that certain system fields are required in all Content Types, and in fact, the Workbench
automatically adds them to new Content Types when they are created. They add these system fields to the
list of fields for the Generic Content Type:

 sys_title (the internal title for the Content Item)

 sys_communityid (the login Community of the user who created the Content Item, that is, the
Content Item's Community)

 sys_lang (the login Locale of the user who created the Content Item, that is, the Content Item's
Locale)

 sys_currentview - (a field that Rhythmyx uses internally)

 sys_workflowid - (the Workflow associated with the Content Item)

 sys_hibernateVersion - (a field that Rhythmyx uses internally)

Noah mentions that implementers frequently add the system fields sys_contentstartdate,
sys_contentexpirydate, and sys_reminderdate to all Content Types. These fields designate when the
Content Item should become public, when it should be archived, and a date for sending a reminder to
certain users (for example, a date past sys_contentstartdate to send to users who have not approved the
item). He also says that implementers often also include the sys_suffix field, which is used to generate the
location where Content Items are published. Ally agrees to add these four fields to the Generic Content
Type as well as her other Content Types:

 sys_contentstartdate

 sys_contentexpirydate

 sys_reminderdate

 sys_suffix

Why include sys_suffix:

The Rhythmyx publisher uses a formula referred to as a Location Scheme for
determining the path and filename to use for each Content Item it publishes. A
Location Scheme can be a literal file name, such as index.html, or a formula,
such as the following expression:

'item' +
$sys.item.getProperty('rx:sys_contentid').String + '.'+
$sys.item.getProperty('rx:sys_suffix')

This expression could translate to item456.htm or item333.jpg. The final element in
the expression, $sys.item.getProperty('rx:sys_suffix') tells the Publisher to use
sys_suffix as the suffix or extension for the filename, and this is why sys_suffix is
included in Content Types.

Note: Java Expression Language (JEXL). JEXL expressions for Location Schemes
are often more complicated than the examples shown. For details about JEXL, see
http://jakarta.apache.org/commons/jexl/. (see akarta.apache.org/commons/jexl/ -
http://)

Noah points out that in some cases, the Content Item may already have a file name. For example, if it is a
binary Content Type uploaded through a sys_File control, or a Content Item created in another application
and uploaded through WebDAV. In these cases, she may want to store the file name, either to keep a
record of the original uploaded file name, or to use it in the Location Scheme.

http:///

 Chapter 5 Refining Content Types and Shared Fields 51

For example, the Location Scheme could be:

 'item' + $sys.item.getProperty('rx:filename').String

This scheme would show which Content Item was published by indicating its uploaded file name rather
than its Content ID.

Ally decides to add a filename field to her Content Types for potentially storing each Content Item's
publishing filename.

 filename
Ally explains that she wants potential visitors to be able to find her pages in search engines and wants
fields for storing search keywords and a description of the page that the search engine can use. She adds
keywords and description fields that can hold content that will be added to the page source code for this
purpose.

 search keywords

 search description
Noah says that Ally is required to add at least one local field to each Content Type. Earlier, they discussed
adding a field that a Dispatch Template (see page 38) could use to determine the function of a content
item. They add a usage field, which will hold a value to tell the Dispatch Template whether or not the
content item stores a main product category.

 usage
The bulleted names in this topic represent the fields in Ally's Generic Content Type. Later, she will assign
properties, such as data type and size to these fields, and eventually, she will add them to the development
plan for her Rhythmyx CMS. You can see these fields listed together with descriptions of their properties
in the development plan (see page 117).

Now she will complete a similar process to define the fields in her Event Content Type.

52 Modeling and Design of a Rhythmyx Content Management System

Determining Fields for the Event Content
Type
When Ally defined the fields that would comprise her Generic Content Type, she determined that many of
these fields would be included in all of her Content Types. So she begins selecting the fields for her Event
Content Type by listing the fields that she plans to use globally. For explanations of these fields, see
Determining Fields for the Generic Content Type (see page 49):

 sys_title

 sys_communityid

 sys_lang

 sys_currentview

 sys_workflowid

 sys_hibernateVersion

 sys_contentstartdate

 sys_contentexpirydate

 sys_reminderdate

 sys_suffix

 filename
Now they look at the page template that they have designed for the Event Content Type.

 Chapter 5 Refining Content Types and Shared Fields 53

Figure 30: Events Content Type Template

This page includes the following fields:

 displaytitle

 body

 event start date

 event end date

 event type

 multiple locations that show:

 event address

 event city

54 Modeling and Design of a Rhythmyx Content Management System

 event state

 event contact

In the topic Decomposing the Events Page (see page 44), Noah has already introduced the idea of the
multiple locations being stored as a child field set (a table of values) and address, city, state, and contact
becoming fields in each column in the location child field set.

The same Slot that they have designed to hold a title and marketing blurb (callout) of the Generic Content
Type can also hold a title and callout of the Event Content Type, so Ally adds a callout field.

 callout

In addition, Ally wants potential site visitors o also be able to find her Event pages in search engines, and
adds the same keywords and description fields that she included on her Generic Content Type (see page
49):

 search keywords

 search description

The fields for the Event Content Type appear to be planned, but Ally explains that at some point, Event
Content Types may be composed in an application outside of Rhythmyx, and she may wish to use the
open source WebDAV feature to upload content from outside applications into Event Content Types. She
asks if this requires any additional fields. Noah says that to use WebDAV, she is required to include a
webdavowner field to hold the name of the user who currently is using WebDAV to upload the file. So
she adds the field to her Content Type:

 webdavowner

The bulleted names in this topic represent the fields in Ally's Event Content Type. Later, she will assign
properties to these fields, and eventually, she will add them to the development plan for her Rhythmyx
CMS.

Now she will complete a similar process to define the fields in her Image Content Type.

 Chapter 5 Refining Content Types and Shared Fields 55

Determining Fields for the Image Content
Type
Ally begins defining the fields for her Image Content Type by listing the fields she plans to use globally.

For explanations of these fields, see Determining Fields for the Generic Content Type (see page 49):

 sys_title

 sys_communityid

 sys_lang

 sys_currentview

 sys_workflowid

 sys_hibernateVersion

 sys_contentstartdate

 sys_contentexpirydate

 sys_reminderdate

 sys_suffix

 filename (Notice below that the img1_filename field automatically stores the extracted
filename; however, a standard location scheme could use the field filename, and then it is
important that the img1_filename value is moved into the filename field. Currently no location
schemes use the filename field.)

Earlier, Noah mentioned that a binary file and its mime type must be retrieved and stored to make an
image available to Templates. He also mentioned that the extension (java plugin) that processes the
uploaded image extracts additional information that she can store in the Image Type. Now he goes into
more detail about the information the extension extracts.

Noah explains that implementers use the sys_fileInfo and/or the sys_imageInfoExtractor extensions to
process image files and determine some of their metadata. The only difference between these extensions is
that sys_imageInfoExtractor extracts height and width information in addition to all of the other
information that sys_fileInfo extracts. When an implementer adds a field that uploads an image to a
Content Type, Rhythmyx automatically add sys_FileInfo as a dependency of the Content Type.
Therefore, to store height and width information, the implementer must add sys_imageInfoExtractor as a
preprocessing extension.

56 Modeling and Design of a Rhythmyx Content Management System

The control used to upload the file determines whether or not the field that uploads the file must have a
predetermined name. Noah explains that Rhythmyx provides two controls for uploading files: sys_File is
simple, enabling the user to locate and upload a file, and sys_WebImageFX is more complex, enabling the
user to upload, create, or edit a file. sys_webImageFX requires that the field that uploads the image be
given a specific filename; sys_file allows the implementer to give the field any name. In either case, the
implementer must give the fields that store the metadata extracted the name of the upload file field as a
prefix. For example, if the field that stores the uploaded file is named img1, the field that stores the
filename must be img1_filename. The metadata that sys_fileInfo and sys_imageInfoExtractor extract is
represented by the following suffixes, which the implementer appends to the upload file field name.
Beside each suffix is a description of the content it stores, and an explanation of whether or not the
metadata is required for storing or displaying the image. For more information about the sys_fileInfo or
sys_imageInfoExtractor extensions, see the Rhythmyx Technical Reference.

Suffix Content Sample Field Sample
Content

_filename The original filename of the
uploaded file. Required by
image editing control to
display the image. Also often
used in system processing.

img1_filename IMG_0357.JPG

_ext The file extension. Required by
the simpler image upload
control to display the image in
a browser.

img1_ext .JPG

_type The MIME type and subtype.
This is required for displaying
the image in a browser.

img1_type image/pjpeg

_size The length of the file, in bytes.
Not required to display the
image, but often used in
system processing.

img1_size 548650

_height Used by
sys_imageInfoExtractor only.

The height of the image. Not
required to display the image,
but often used in system
processing.

img1_height 1600

_width Used by
sys_imageInfoExtractor only.

The width of the image. Not
required to display the image,
but often used in system
processing.

img1_width 1200

 Chapter 5 Refining Content Types and Shared Fields 57

Ally does not see any reason to use the more complex sys_webImageFX control, since her users will only
be uploading files and not editing or creating them, so she will use the sys_file control and give the field
that uploads the file a name that she finds appropriate.

Of course, Ally does not have to use all of the fields that sys_fileInfo and sys_imageInfoExtractor extract
in the Image Content Type. Noah tells Ally to add only those that will serve a purpose to her Image
Content Type. Ally decides to add the following fields. She uses img1 as the prefix because she also wants
to add a thumbnail of the image, for which she will use the prefix img2.

 img1

 img1_filename

 img1_ext

 img1_type

 img1_size

 img1_height

 img1_width

She includes img1_ext and img1_type because they are required for displaying the image in a browser.
She decides to include img1_filename since she is storing the filename in all of her Content Types. She
also decides to include img1_size, img1_height, and img1_width, which are not required, to help Web
designers determine how to best place these images on a page.

Since she wants the option of adding a thumbnail of the image when she uploads it, she also decides to
add a second set of the same type of fields:

 img2

 img2_filename

 img2_ext

 img2_type

 img2_size

 img2_height

 img2_width

Ally wants to encourage content contributors to provide alternate text for images that are not rendered and
for users who use screen reading software. She adds the following field to hold alternate text for images:

 img_alt

In addition she wants to add an image category field, so that Web designers can sort images by categories
when searching in Rhythmyx for one to use. She adds a field to hold categories:

 img_category

Noah suggests that she add two more fields. Since her other Content Types have an external title field, he
suggests she make this a requirement for all of her Content Types. It may be easier to identify Content
Items in the CMS interface by an external title. In addition he suggests that she add a description field not
for Web searches, but so that internal users have text they can match when searching for an image. Ally
adds these two fields:

 displaytitle

58 Modeling and Design of a Rhythmyx Content Management System

 description

Ally guesses that some of her image files may be uploaded through WebDAV, and adds a webdavowner
field. See Determining Fields for the Event Content Type (on page 52) for an explanation of this field.

 webdavowner

The bulleted names in this topic represent the fields in Ally's Image Content Type. Later, she will assign
properties, such as data type and size to these fields, and eventually, she will add them to the development
plan (see page 117) for her Rhythmyx CMS.

Ally has completed determining the fields for her Content Types. She already knows which of these are
system fields. Now she can work with Noah to determine which of these are common enough to be
included in shared field sets.

 Chapter 5 Refining Content Types and Shared Fields 59

Organizing Shared Field Sets

Questions:
 Which fields are repeated in multiple Content Types?

 Which fields in current Content Types may it be useful to store for creating similar Content
Types in the future?

Now Ally has a list of the fields that composes each of her Content Types. She already knows which of
these fields are system fields. Noah suggests that they begin to determine which of these fields they want
to add to shared field sets. Shared fields are stored as sets within a shared field file. A shared field set
generally includes related shared fields.

They can begin by seeing which of the fields appear in most of her Content Types. (During an actual
modeling and design session, Ally would have more than three Content Types, so fields that appear in
"most" Content Types would normally appear in more than two of them.)

Ally lists the following fields which are common to at least two of the Content Types:

 body

 callout

 title

 description

 filename

 keywords

 webdavowner

Ally groups these fields into a field set, and names it the shared field set.

Noah suggests that they group most of the remaining Image Content Type fields into a field set. Several
of the fields are required, and Ally has mentioned specific reasons for including those fields that are not
required. In the future, if she decides to create another image Content Type, it will be easier to have all of
the fields that she wants included already grouped together in a field set. Ally agrees, and they group the
following fields into another field set:

 img_alt

 img1

 img1_ext

 img1_filename

 img1_height

 img1_size

 img1_type

 img1_width

 img2

 img2_ext

60 Modeling and Design of a Rhythmyx Content Management System

 img2_filename

 img2_height

 img2_size

 img2_type

 img2_width

Ally names the field set sharedimage.

The remaining fields that are not system fields are local fields. These are:

 the Generic Content Type's placeholder field

 the Image Content Type's img_category field

 the Event Content Type's event_start, event_end, event_type fields and the fields in the
event_location child field set.

Now that Ally and Noah have determined her shared field sets, they proceed to assign properties to all of
her shared and local fields.

 Chapter 5 Refining Content Types and Shared Fields 61

Assigning Properties to Fields

Questions:
 What basic properties, such as size, data type, and control, best suit each field?

 What special properties, such as visibility conditions and search rules, do you want to apply to
certain fields?

 Is a default value necessary?

Now that Ally and Noah have chosen the shared and local fields for the Content Types in Ally's CMS,
they must specify the properties of the fields. Noah lists the properties that they should determine for each
field:

 Content Editor label that appears beside the field

 Content Editor control for displaying field

 data type

 size

 required/optional

 default value

 whether or not to enable searching on field

 read-only rules

 rules for hiding field

 rules for validating field

 rules for transforming the field's format

 whether or not to allow field to be shown in metadata views of Content Items in Content
Explorer

 For field sets:

 requirements for number of rows entered

 whether or not to enable users to reorder rows entered

 whether or not to show field on main Content Editor page

Noah mentions that other field properties exist that it is not necessary to determine now because the value
can just as easily or more easily be decided during implementation. These properties include the value of
the keystroke for accessing the field (the mnemonic)

Noah suggests that they begin with their field sets, and then go on to the local fields in their Content
Types. The properties for system fields are already defined.

62 Modeling and Design of a Rhythmyx Content Management System

Assigning Properties to Shared Fields
Noah and Ally begin by assigning properties to the fields in the shared field set. The shared field set
consists of the following fields:

 body

 callout

 displaytitle

 description

 keywords

 filename

 webdavowner
body Field

They begin by looking at the body field. Looking at the way it appears in the page Templates in some of
Ally's sample Content Items, they agree that it should be a large text field:

Figure 31: About Enterprise Investments page

 Chapter 5 Refining Content Types and Shared Fields 63

Figure 32: Generic Content Type Template

64 Modeling and Design of a Rhythmyx Content Management System

Figure 33: Events Content Type Template

Earlier, when they were initially decomposing Web pages (see page 27), Ally had mentioned that the EI
Global Financial Service Fund page includes a formatted table in the body field. Noah suggested that
Rhythmyx could handle this if Ally used a rich text control for the field, so content contributors could
optionally format text in the body. Noah shows her the sys_EditLive control, Rhythmyx's rich text control,
which uses the Ephox EditLive for Java editor:

 Chapter 5 Refining Content Types and Shared Fields 65

Figure 34: Body field

The sys_EditLive control enables users to enter formatted text (and even graphics) into the field. For
fields that use a sys_EditLive control, a data type of text and a size of max (the maximum the database can
hold for the data type) are required.

Noah adds that any number of fields in a Content Type can use the sys_EditLive editor, but when users
view the fields in the content editor, only one sys_EditLive field can be active and edited at a time. When
a user first opens a content editor including a sys_EditLive field, the user must click on the field to enable
it. Once the user clicks on another sys_EditLive field, the first sys_EditLive field becomes disabled.

Ally decides that they can use the field's name, Body, as the label that appears in the Content Editor. Noah
asks Ally if she wants to require users to enter data in the Body field in order to save the Content Item.
She does not think this is a good idea because users may want to begin Content Types by simply entering
the title and then finish them at a later time.

Noah says they now have the basic information for the Body field:

Name Label Control Name Occur Data Type Format (size)

body Body: sys_EditLive optional text max

Now he asks Ally about some specific details that must be entered when creating the field.

 Noah asks her if she wants the field to have a default value. She does not think this is
necessary. Noah agrees, and adds that default values are usually used when a field is required,
for example, a required start date field may have the current date as its default value.

 He also asks her if she wants user searches to look at the data in this field. Ally definitely
wants users to be able to search on this field, since it is one of the main fields in a Content
Type.

 He confirms that she does not want to add rules for hiding the field or validating or
transforming the data in the field. Since this is one of the main fields that users enter, and
users do the formatting themselves, Ally does not want to apply any of these rules to this field.

 Noah also confirms that she wants the field to be visible in metadata views of Content Items.
Ally says that she wants the field to be visible in views.

66 Modeling and Design of a Rhythmyx Content Management System

callout field

Now they look at the callout field. In the first two pages shown above, the green sidebar holds displaytitles
and callouts from a few different Content Items. Ally notes that the callout's text length varies - in one
case it is very brief, but in another, it is as long as a body field. In addition, in the second example,
formatting is applied to the text. Ally and Noah agree that the basic information for the callout field can
be the same as that for the body field due to its possible lengthiness and its use of formatting.

Name Label Control Name Occur Data Type Format (size)

callout Callout: sys_EditLive optional text max

Noah asks Ally to decide about the other properties they have discussed: default value, searching on the
field, special rules for the field, field visibility in previews.

Ally decides that the values they have determined for these specific details for the body field should be the
values they assume for all fields unless they discuss a special reason to treat them differently. Therefore,
the callout field will not have a default value, will be searchable, will not include any special rules, and
will be visible in previews of Content Items.

displaytitle field

The displaytitle field appears at the top of the pages shown above, and above the content in Sidebar and
List Slots. Ally says that she can easily decide that it is a required text field of some brief length, but is not
sure which control to use. She wonders if she should use a sys_EditLive control so that content
contributors can format it.

Noah says that most implementers choose to maintain the formatting of displaytitle fields in Templates
and cascading style sheets for consistency. This leaves Ally with two options for controls, the
sys_TextArea control, which allows for several lines of plain text:

Figure 35: sys_TextArea

and the sys_EditBox control, which allows for a single line of plain text:

Figure 36: Example sys_EditBox

Since Ally does not want the displaytitle to fill more than one line, she decides to use the sys_EditBox
control. Now Ally has the basic information for the displaytitle field, except for the exact size. Noah
explains that the size is the amount of space allowed for storing the field in the database; not the size of
the control that will appear on the screen. The sizes that controls appear on the screen are set internally in
Rhythmyx, although the implementer can change the size of controls for individual fields by setting
parameters for them in the Workbench. Noah recommends using a generous storage size in case data
requires more space to store than expected, so Ally assigns a storage length of 512.

 Chapter 5 Refining Content Types and Shared Fields 67

They establish the basic information for the displaytitle field as:

Name Label Control Name Occur Data Type Format (size)

displaytitle Title sys_EditBox required text 512

Ally determines that there are no other special values for other properties assigned to this field.

description field

The purpose of the description field is to provide a description that appears when the page is listed in a
Web search engine. It is easy at this point for Ally to decide that it should be an optional text field that
uses a sys_TextBox control. Again, Noah suggests specifying a storage size that is much larger than what
they will require, such as 1024. No special values for other properties are required for this field. Its basic
specifications are:

Name Label Control
Name

Occur Data Type Format (size)

description Description sys_TextArea optional text 1024

keywords field

The keywords field is similar in purpose to the description field, but provides Web search engines with
search words for pages. Ally decides that it can have the same specifications as the description field:

Name Label Control
Name

Occur Data Type Format (size)

keywords Keywords sys_TextArea optional text 1024

filename field

Ally can easily choose most of the basic information for the filename field. She decides that the field
should be an optional text field of 512 characters. She decides by default that she would like to hide the
field from content contributors since it is currently not used, although she would like the option to use it in
the future. She asks Noah if there is a special control she should use.

Noah shows Ally that there is a sys_HiddenInput control, but it is used to hide fields that should never be
visible to content contributors. Instead, he suggests that she apply a visibility rule to the field, since she
wants the ability to display the field in some Content Types. The visibility rule used most often to hide a
field is a conditional statement that hides the field when 1=2. Of course, this is never true, and the field is
not shown. But to make the field visible in certain cases, the implementer can simply change the
conditional to 1=1.

Therefore, the filename field has the basic specifications:

Name Label Control
Name

Occur Data Type Format (size)

filename File Name: sys_EditBox optional text 512

68 Modeling and Design of a Rhythmyx Content Management System

Visibility Rule

Field Rule

filename Not visible by default

webdavowner field

Noah notes that when content is uploaded through WebDAV, Rhythmyx inserts the name of the user with
a lock on the Content Item into the webdavowner field. Therefore, the webdavowner field is similar to the
filename field because Rhythmyx enters its value rather than content contributors, and in most cases, Ally
will want to make it invisible in Content Editors. She gives it nearly the same specifications and visibility
rule as the filename field, but changes the size to 255 because a username will probably be shorter than a
filename or title field.

Noah suggests that Ally not allow users to search on this field when they perform searches. Since they
cannot see the field and it is used internally, if its contents matched a search, it would probably be an
accidental match and just cause confusion.

The webdavowner field has the basic specifications:

Name Label Control
Name

Occur Data
Type

Format (size)

webdavowner WebDAV Owner: sys_EditBox optional text 255

Visibility Rule

Field Rule

filename Not visible by default.

Other properties

Do not enable searching for this field.

 Chapter 5 Refining Content Types and Shared Fields 69

Assigning Properties to Sharedimage Fields
Now Noah and Ally assign properties to fields in the sharedimage field set. This field set consists of the
following fields:

 img1

 img1_filename

 img1_size

 img1_type

 img1_ext

 img1_height

 img1_width

 img_alt

 img2

 img2_filename

 img2_size

 img2_type

 img2_ext

 img2_height

 img2_width
img1 field

The img1 field is the field that stores the uploaded image file. Ally has two options when choosing the
control to upload and store the image file. The sys_File control lets the user enter or search for the file to
upload and store. It is compact and easy to use and appears as:

Figure 37: sys_File control

The sys_webImageFX control uses Ektron's WebImageFX editor. It not only allows content contributors
to upload graphics, but also to paste them from them clipboard, edit them or design them. Other than the
fact that it displays the uploaded file in the WebImageFX editor, the sys_WebImageFX control functions
almost identically to the sys_File control. The sys_imageInfoExtractor and sys_fileInfo extensions
return values for the same image properties (see page 55) and insert them into the same field names;
however, the field that uploads the file must be named uploadfilephoto, and therefore, all of the meta field
names must be prefixed with uploadfilephoto (uploadfilephoto_type, uploadfilephoto_ext, etc.).

70 Modeling and Design of a Rhythmyx Content Management System

The sys_WebImageFX control is available to users who acquired a special license. For more information
about the control, see the Rhythmyx Technical Reference.

Figure 38: sys_WebImageFX

For both controls, the data type is always binary and the size is max.

Since Ally's content contributors will only select image files to use, but not create or modify them, she has
already decided to use the sys_File control. She decides that the field should be required, since the basic
function of the Image Content Type is to upload and store an image.

Name Label Control Name Occur Data Type Format (size)

img1 Image: sys_File required binary max

Ally understands that she should disable searching for the field, since this is a binary field, and the search
is a text search. In addition, since this is a binary field which may take up a lot of storage, she wants to
make sure that she indicates that it should be stored as a binary value in the database.

Other properties

 Disable searching.

 Store value as binary in
database.

img1_filename field

Ally has already created a filename field for the shared field set (see page 62), and decides to simply give
the img1_filename field the same properties, except this field should be required, since it is filled when the
required file is uploaded. In addition, Noah suggests that she not hide this filename, because content
contributors may want a reminder of which file they have uploaded.

Name Label Control
Name

Occur Data Type Format (size)

img1_filename Image File
Name:

sys_EditBox required text 512

 Chapter 5 Refining Content Types and Shared Fields 71

Read Only Rule

Field Rule

img1_filename Always read
only, since the
system enters
this field.

img1_size field

This field is relatively easy for Ally to define. Since it holds the size of the file, she decides to make it an
integer field that uses the simple sys_EditBox control. Since the size of the file is usually used in internal
processing she decides to hide the field, using the 1=2 visibility rule she used with the filename and
webdavowner fields in the shared field set. She uses an easily reversible rule instead of a sys_hiddenInput
control in case an implementer wants to create a Content Type and make the size visible.

Ally intends to make the img1_size field required, since it will automatically be extracted and inserted
with the sys_imageInfoExtractor extension that she will use to upload the file. Noah suggests that she
make the field optional, since it is not required to display the image in a browser, and it is possible that in
the future a different extension that does not extract the size field will be used to upload images.

Ally agrees to make the field optional, and defines the following properties:

Name Label Control
Name

Occur Data Type Format (size)

img1_size Image File Size: sys_EditBox optional integer none

Visibility Rule

Field Rule

img1_size Not visible by default

img1_type field

Ally remembers that this field stores the mime type of the uploaded file and is required for displaying the
image in a browser. At this point, she has a good understanding of what fields she wants to display, and
appropriate data types and sizes for them. She gives the img1_type field the following properties:

Name Label Control
Name

Occur Data
Type

Format (size)

img1_type Image Mime
Type:

sys_EditBox required text 256

72 Modeling and Design of a Rhythmyx Content Management System

Read Only Rule

Field Rule

img1_type Always read
only, since the
system enters
this field.

img1_ext field

Like the img1_type field, the img1_ext field is required for displaying the image in a browser. Ally
determines to give it the same basic properties as the img1_type field.

Name Label Control
Name

Occur Data
Type

Format (size)

img1_ext Image Extension: sys_EditBox required text 50

Noah suggests that by default she make it invisible with the visibility rule 1=2 since the Content Editor
displays the file name, which already includes the extension.

Ally agrees and adds:

Visibility Rule

Field Rule

img1_ext Not visible by default

img1_height field

The characteristics and function of the img1_height field is similar to the img1_size field, which Ally has
already defined, so she decides to give it the same properties as that field. Noah basically agrees, but has
one suggestion: the height (and width) give more significant information to Web page designers than the
size because it gives them an idea of how much space the image will take up on a page. Therefore, he
suggests that the field not be hidden.

Ally agrees and assigns the properties of the field as follows:

Name Label Control
Name

Occur Data Type Format (size)

img1_height Image Height: sys_EditBox optional integer none

img1_width field

Since the img1_width field has the same function as the img1_height field, Ally gives it the same
characteristics:

Name Label Control
Name

Occur Data Type Format (size)

img1_width Image Width: sys_EditBox optional integer none

 Chapter 5 Refining Content Types and Shared Fields 73

img_alt field

The img_alt field is a text field that stores a description of an image that a browser uses if the image
cannot be rendered or that screen reading software reads. Ally decides to use a sys_EditBox control and
store the field as text up to 512 characters in size. She makes the field optional since alternate descriptions
for images are not required in her company.

Name Label Control
Name

Occur Data Type Format (size)

img_alt Image Alt Text: sys_EditBox optional text 512

img2 fields

The fields with prefixes of img2 are used if a web designer requires thumbnails of the img1 images. Ally
gives them all of the same properties as the img1 fields, except:

 she changes the word Image in their labels to Mini to indicate that they are thumbnails

 she makes all of them optional since she does not presently plan to use them

 she hides them all with a visibility rule of 1=2.

 she does not make the img1_type and img1_filename fields read only because they are hidden.
If an implementer decides to use the img2 fields in the future, the implementer must add a special
extension (java plugin) to convert the image files to thumbnail size.

We will not list the characteristics of the img2 fields here. If you would like to see their specifications,
see the FastForward Implementation Plan.

Assigning Properties to Local Fields
Now that Ally has assigned properties to her shared fields, she must assign them to the local fields in her
Generic, Event, and Image Content Types.

Generic Content Type

The Generic Content Type has a single local field named Usage. The function of this field is to tell the
Dispatch Template (see page 38) the use of the content item so it knows which Template to apply. Ally
uses a sys_DropDownSingle control so she can specify two choices for implementers (one choice
indicates that the content item is used for a main product category, the other choice indicates that the
content item has any other use). She makes it a required text field with a size of 1.

Name Label Control Name Occur Data Type Format (size)

usage Usage: sys_DropDownSingle required text 1

74 Modeling and Design of a Rhythmyx Content Management System

Image Content Type

The Image Content Type has a single local field name img_category. This field stores the category of the
image for use in searches or other types of selection. A user enters information into this field by choosing
from a set of values. Noah explains that Rhythmyx offers several different controls that Ally can use for
this type of field.

 sys_DropDownSingle

The sys_DropDownSingle control lets users choose one value from a predefined list. The drop
list format of this control allows it to be compact, yet include a large number of options.

Figure 39: sys_DropDownSingle control

 sys_DropDownMultiple

Figure 40: sys_DropDownMultiple control

The sys_DropDownMultiple control is similar to the sys_DropDownSingle control, but lets
users choose multiple values from the predefined list. As with the sys_DropDownSingle
control, the format of this control allows it to be compact, yet include a large number of
options. Compare it to the sys_CheckBoxGroup, below, which also allows users to choose
multiple values from a list of options but displays all options on the page.

 sys_RadioButtons

The sys_RadioButtons control lets users choose one value from a predefined list. All values
appear on the page with selection buttons preceding them. Selecting one option deselects all
other options. The format of this control allows users to see all options at once, but if there are
a large number of options, it may take up a lot of space in a Content Editor.

Figure 41: sys_RadioButtons Control

 Chapter 5 Refining Content Types and Shared Fields 75

 sys_CheckBoxGroup

The sys_CheckBoxGroup control lets users choose any number of the list of values shown.
All values appear on the page with selection boxes preceding them. The advantage of
presenting multiple choices using this control rather than a sys_DropDownMultiple control is
that users have an easier time considering all of their options at once and are less likely to
miss choosing an option. However, this control could potentially take up a lot of space in a
Content Editor (although you can configure it in columns).

Figure 42: sys_CheckBoxGroup control

76 Modeling and Design of a Rhythmyx Content Management System

 sys_CheckBoxTree

The sys_CheckBoxTree control differs from the sys_CheckBox in that it lets you display
expanding main categories with sub-categories beneath them. The tree may expand to any
level of choices, but categories with sub-categories beneath them are not selectable. Like the
sys_CheckBox, this control lets users choose any number of selections preceded by check
boxes.

Figure 43: sys_CheckBoxTree control

Ally does not want the user to be able to select more than one category for each image. This eliminates
the sys_DropDownMultiple, sys_CheckBoxGroup, and sys_CheckBoxTree controls. Since the categories
for images may increase as the Site grows, Ally decides that the sys_RadioButtons control may begin to
take up too much space on a Content Editor page. She decides to use the sys_DropDownSingle control,
which will take up a small amount of space on the Content Editor page regardless of the number of
choices it holds.

She decides to make the field optional, since some images may not fit into the categories chosen. Since
she wants the categories to be brief in length, she chooses a data type of text and a size of 50 characters.
The field has no special properties. Its basic properties are:

Name Label Control Name Occur Data Type Format
(size)

img_category Image
Category:

sys_DropDownSingle optional text 50

Event Content Type

The Event Content Type has three local fields, event_start, event_end, and event_type. It also includes the
local child set field event_location, which has four local fields, event_city, event_state, event_address, and
event_contact.

The event_start and event_end fields are easy for her to define. Rhythmyx offers only one date control,
sys_CalendarSimple, so she uses it for both fields.

The sys_CalendarSimple control includes a text box for entering a date, and a calendar icon that the user
can click on to open an enlarged calendar for choosing a date that is entered into the text box in the correct
format.

Figure 44: sys_CalendarSimple control

 Chapter 5 Refining Content Types and Shared Fields 77

Ally chooses a data type of datetime which does not require specifying a size. She makes the fields
optional, since her company wants the ability to post events on the Web Site before a specific date is
determined.

Name Label Control Name Occur Data Type Format
(size)

event_start Event
Start Date:

sys_CalendarSimple optional datetime none

Name Label Control Name Occur Data Type Format
(size)

event_end Event End
Date:

sys_CalendarSimple optional datetime none

The event_type field is intended to store the category of the event, and Ally defines it similarly to the
img_category field. However, this field is intended to be used on Web pages, to explain to visitors what
type of event is being advertised, and therefore requires a larger size.

 Name Label Control Name Occur Data Type Format
(size)

event_type Event
Type:

sys_DropDownSingle optional text 255

Now Ally defines the properties of the fields in her event_location field set.

Noah explains that before defining the properties of the fields, she must make a few decisions about the
event_location field set as a whole:

 First, she must decide if entering information into the field set is required or optional. If it is
required, she must decide it there is a specific number of location entries that must be entered.

 Next, she must decide if users are allowed to reorder location entries after they enter them.
Ally wants to make sure that an event is not entered without a location, so she makes the event_location
field set required. However, events in her company can take place at one or more locations, so she does
not require a specific number of entries.

She decides to let users reorder the location rows after they enter them.

event_location

 required

 allow users to reorder entries

Now she can define the fields in the event_location field set.

The event_city and event_state are both short fields and she decides to use a simple sys_EditBox control
and a data type/size of text/50.

78 Modeling and Design of a Rhythmyx Content Management System

Since the event_address and event_contact may require more text, such as several address lines, or contact
phone and fax numbers, she decides to use sys_TextArea controls for these fields and give them each a
data type/size of text/255.

Noah explains that she has the option of displaying fields in field sets on the main page of the Content
Editor or only allowing contributors to view them when they enter or edit them in a separate child editor.
Although she must enter all of the data into the field set fields in the child editor, she can display any
number of them on the main page. The Rhythmyx Workbench term for displaying a field set field on the
main page is display in summary.

Ally asks Noah what is the advantage of displaying or not displaying a field on the main page. Noah says
that it is a matter of how much space the fields will take up on the main page and whether or not including
them will help content contributors see what information is included in the Content Item or confuse them
by presenting too much information at once.

Ally decides to display the city and state fields on the main page, but only allow content contributors to
see the contact and address fields in the child editor.

Name Label Control Name Occur Data Type Format (size)

event_city Event
City:

sys_EditBox optional text 50

Other properties

Display in summary

Name Label Control Name Occur Data Type Format (size)

event_state Event
State:

sys_EditBox optional text 50

Other properties

Display in summary

Name Label Control Name Occur Data Type Format (size)

event_address Event
Address:

sys_TextArea optional text 255

Name Label Control Name Occur Data Type Format (size)

event_contact Event
Contact:

sys_TextArea optional text 255

 Chapter 5 Refining Content Types and Shared Fields 79

The city and state fields will appear in the Content Editor as:

Figure 45: Event Location table

Before a contributor has entered data in the Event Location field set, the [Edit table] button on the
Content Editor reads [Add new item]. After a contributor has entered data, the button reads [Edit table],
as in the graphic above. The [Edit Table] button accesses a child editor for modifying existing entries and
includes an[Add new item] button for adding new entries. In the child editor, an Action column includes

controls for deleting the row , editing or viewing all of the fields in the row , or changing the order

of rows . If users are not allowed to reorder rows after they enter them, the does not appear.

Figure 46: Child Table editor

80 Modeling and Design of a Rhythmyx Content Management System

To view or edit all of the fields in a row, the user clicks . This opens the child editor that is used to
add or edit field set fields.

Figure 47: Child Table Editor, Add New Item page

To walk through a step by step example of how this control works, see The Event Content Editor.

NOTE: We have not covered the sys_VariantDropDown and sys_HTMLEditor controls. Although these
controls are available in the Workbench, they are present for backwards compatibility and should not be
used with new fields in Rhythmyx 6.0 and later.

Ally has now defined the fields in her shared field sets and Content Types. You can see a consolidated list
of what she has specified in this section in the development plan (see page 117). Now she will proceed to
design the global template and managed navigation for her Web Site.

 Chapter 5 Refining Content Types and Shared Fields 81

Decomposing the Image Snippet and Other
Snippets

Questions:
 What do you want the Image Content Type to do in addition to uploading and storing an image file

(create and store a thumbnail of the image? store certain metadata about the image?)

 What formats do you want to give the Templates that can be shown in each Slot.

Ally understands that to display images on her Web Pages, she will need at least one Image Content Type.
Ally wants to create a Snippet that simply displays an image. She will include this Snippet in Slots on the
Home Page Template and any other Templates where she wants to display an image. The Image Snippet
will be type-specific to the Image Content Type.

Figure 48: Images on Home Page

82 Modeling and Design of a Rhythmyx Content Management System

Noah, agrees that the Image Content Type is necessary and will appear in Slots on the top of the Home
Page and in the center of the page. He explains that the image in the center of the page is uploaded and
stored in an image Content Type like the others, but Ally must choose if she wants to include it in a Slot
on the page or add it to a field that is represented by a rich text editor as an "inline Slot", for example:

Figure 49: Graphic in Rich Text Editor

Ally decides that the central graphic could be entered as part of a field into a rich text editor, and she will
use Rhythmyx's default inline image Slot.

How to decide if a graphic should be entered in a separate Slot on a page or in an inline Slot
within a rich text editor:

Enter a graphic in a separate Slot if:

 You want to be able to display the text in the rich text editor without the graphic.

 You want to give the Web Master the option of choosing the graphic that appears beside the text in the
rich text editor.

 The graphic is frequently updated, but the text in the rich text editor is not.

 You want the graphic to appear in a particular place on a page by inserting it into a certain normal Slot on
a Template.

Enter a graphic in an inline Slot in a rich text editor if:

 You want the graphic to appear beside the text in the rich text editor wherever the text appears.

 You want the same graphic to always be associated with the text in the rich text editor.

 You want to be able to design unique formatting for the graphic and its text in the rich text editor.

 You want the content contributor to be able to determine where the image appears on each page.

Noah explains that in addition to the Snippet Template that assembles and displays the image, she will
have to define a binary Template that retrieves the binary file. A binary Template does not include code
for assembling Snippets or Pages; its function is to retrieve a binary file and its mime type from the
Content Type fields that store them so the file is available to other Templates. The Snippet Template that
Ally creates to display her image files must link to the binary Template in the code for assembling the
Snippet.

NOTE: The procedure for configuring a binary Template is explained in the the topic "Implementing a
Binary Template" in the Rhythmyx Implementation Guide. However, FastForward provides Templates that
perform this function; you may find it easier to use these Templates than to create your own.

 Chapter 5 Refining Content Types and Shared Fields 83

Earlier, Ally mentioned that she wanted the ability to store a thumbnail of the original image in the Image
Content Type. Noah reminds her that the Content Type will need fields to store the original and thumbnail
images, and certain fields required for displaying the images. In addition, the extension (java plugin) that
uploads the image extracts additional information that she can optionally store in the Image Content Type.
Noah will help Ally determine exactly what fields to include in the Image Content Type in the following
modeling and design step.

Now Ally and Noah must go through all of the Snippets that are included in the Sidebar Slots, the List
Slots, and the Breadcrumb Slots on the Web pages they have decomposed and perform the decomposition
process on the Snippets to create Snippet Templates. Ally should note where she wants text or images on
the Snippets to link to other pages. When the Snippets are implemented, the assembler source code must
specify which fields are links and what pages they link to. For example, earlier we showed a graphic of
content assembled in the Sidebar Slot:

Figure 50: Snippet Template

84 Modeling and Design of a Rhythmyx Content Management System

In this case, the Sidebar Slot holds two Generic Content Items formatted using a Template that displays
the Content Item displaytitle as a link to a page displaying the Content Item and the Content Item callout
(marketing blurb) as plain text. When decomposing the Template, she should indicate which fields are
links so that the implementer of the Snippet Template can code the field to link to the appropriate page.
For example:

Figure 51: Snippet Template decomposed

We will not repeat Ally and Noah's decomposition process for each Snippet Template, since it is similar;
however, it is important that Ally attempts to plan every Template and Slot on the system before
implementation begins.

Ally must also specify which Templates each Slot can hold. She will begin with the Templates she
currently sees in the Slots on her Web Pages, but may choose to add others as options.

 85

C H A P T E R 6

Designing the Global Template and
Managed Navigation

Questions:
 What do you want the look and feel of your Web Site to be?

 What do you want the navigation components of your Web pages to
include?

When Ally began looking at the pages in her Web Site to initially assess her system's Content Types,
Noah had her cut out the uniform content bordering each page. This area (as well as portions of the
formatting applied to content within each page) composes the Global Template.

The Global Template is applied to a set of pages in a Site, all the content in a site folder, or even just the
content that uses a specific Template. In Ally's Web Site, as is often the case, most of the pages in the Site
will include the Global Template to maintain a look of uniformity.

Noah suggests that they begin examining the Global Template by looking at a complete page that includes
it. In the following graphic of the About Enterprise Investments Page, the cut out outer portion of the page
outlined in black is referred to as the Global Template. In this case, the Global Template takes the form of
what is commonly referred to as a C-clamp around the page, and consists largely of navigation links. The
Global Template determines the look and feel of the C-clamp, for example, the green background, the
banner and the font style. In addition, its cascading style sheet can determine aspects of the look and feel
of portions of the page. The green sidebar on the inner portion of the page would probably be determined
by the Global Template's css so that it matches the C-clamp surrounding the page.

86 Modeling and Design of a Rhythmyx Content Management System

Figure 52: In this graphic, the Global Template is outlined in black

Frequently, the Home Page of a Web Site has different characteristics than the Site's other pages and uses
its own specialized template instead of the Global Template. Note that the Home Page Ally's Web Site
uses a separate Template that incorporates much of the code in the Global Template:

Figure 53: Ally's Home Page

 Chapter 6 Designing the Global Template and Managed Navigation 87

Choosing the Web Pages' Look and Feel
Noah begins by asking Ally if she wants to maintain the current appearance of her Web Site. Ally would
like, if possible, to use most of the same graphics for the logo, and button designs, and to apply a similar
range of green and brown shades to her navigation panels, content pages, and text. Noah explains that the
look and feel is usually specified in one or more stylesheets that are referenced in the HTML associated
with the Global Template.

Ally already has cascading style sheets that define some of the look and feel styles that she has been using
in the Web Site. They can make any necessary modifications during implementation and reference the
stylesheets in the HTML they develop for the Global Template.

88 Modeling and Design of a Rhythmyx Content Management System

Designing the Site's Managed Navigation

Questions:

 Do you want to use text or images as your navigation links?

 Do you want to make all pages on the Site available in your left navigation
pane, or only section pages?

 Do you want sections in the left navigation pane to be collapsible?

 Do you want to include breadcrumbs?

Noah explains that Global Templates usually include the Managed Navigation portion of the Web Page. In
the C-clamp structure that Ally is using, Managed Navigation refers to the links at the top of the page, the
left side bar, and the bottom of the page, that appear identically, or in a similar pattern on each page. In
addition the breadcrumbs at the top of each page are an aspect of Managed Navigation (breadcrumbs are
links showing the path of pages that the visitor has followed). The implementer or Web Master manages
these navigation links in Rhythmyx so that Rhythmyx automatically generates them when assembling a
page. The Global Template includes them in navigation Slots. Ally must review with Noah the links that
she wants to appear in the different areas of her Global Template, and make sure that Rhythmyx can
produce them using Managed Navigation.

At the top and bottom of her page, Ally's navigation bars include four links to the same section pages. She
would like to maintain these basic links. The top navigation pane consists of buttons that are actually
graphics that include text. Although Ally likes the graphics, she is considering changing them to text
menus that expand to include the options shown in the left navigation bar. For example, the Investment
Advice link would be a drop menu that included Insurance Advice, Estate Planning, Retirement, and Tax.
Noah suggests that Ally avoid using the drop menus. Although she may see Web Sites where the top
navigation bar includes drop menus, this style has become less popular because it makes the navigation
area too complex.

Ally agrees and returns to the idea of using buttons, which she likes because they lend a more professional
appearance to the Web Site. She would also like to create popout versions of each button graphic that
appear when the button is clicked. Noah presents another caveat: in general css-styled text works better
than graphics for navigation links because the text is readable by screen readers and therefore meets
accessibility standards, and scaling graphics to the correct size is less precise than specifying
measurements for text areas in a cascading style sheet. However, Ally decides to use the graphics since
visitors to the site are familiar with them, and her Web designers have not had a problem displaying them
in the past.

Figure 54: Top Navigation Bar

The bottom navigation bar includes simple text links to the same pages. Ally would like to maintain them,
since Web Site visitors may scroll down and lose access to the top navigation buttons.

Figure 55: Bottom Navigation bar

 Chapter 6 Designing the Global Template and Managed Navigation 89

Ally has breadcrumb links on her Web pages directly below the top navigation bar. Currently, if a visitor
to the Site had begun at the Home Page, then linked to the Products and Services page, and then linked to
the Funds page, the breadcrumbs would appear as:

Figure 56: Breadcrumbs

Noah lists some of the other options for displaying breadcrumbs and asks Ally to consider if she wants to
make any of these changes:

 Do not list the Home page since users always have alternate ways to return to it.

 Do not list the current page since users are already looking at it.

 Connect the links with another character or characters than ">". For example "..." or ">>" or

a graphic such as .
Ally feels that her current method is the most common she has seen on Web Sites, and wants to keep it
since users will easily understand its function.

90 Modeling and Design of a Rhythmyx Content Management System

Now, Ally and Noah look at the left navigation bar:

Figure 57: Left Navigation Bar

The left navigation bar includes a graphic at the top that changes depending on which section of the Site
the visitor has entered. Below the graphic are the same four main navigation links that appear on the top
and bottom navigation bars. But the left navigation bar includes secondary page links below each main
page link. Below all of the links are tables showing market values and mortgage rates.

If she clicks one of the links for the main pages, it appears darker green. If she clicks one of the links for
the secondary pages, it appears yellow.

Ally wants the links to the four main sections in her Site to remain as they are, but asks Noah what
variations are common in listing the secondary pages. Noah offers some common variations on Ally's
structure:

 She could include all of the pages in the Site in the left navigation bar, inserting some at a
third or even a fourth level below the secondary pages.

 Chapter 6 Designing the Global Template and Managed Navigation 91

 She could allow the main navigation links to be collapsible. The visitor to the page could
either click a main link to show the sub-links below it and collapse all of the other main links,
or click a control to expand and collapse each section.

Ally decides that these features are not really necessary. She provides Noah with the HTML for what is
currently the common portion of her Web pages because they can use this to develop the Global Template.

92 Modeling and Design of a Rhythmyx Content Management System

Planning Site Folders for Managed
Navigation
Although it is during the implementation process that the correct Site Folder structure is set up so that
Rhythmyx can automatically achieve the Managed Navigation that Ally has planned, Noah tells Ally that
she should begin to plan out her Site Folder structure to be sure her she can set up her links the way she
wants to in Rhythmyx.

He gives her a brief explanation of the way Rhythmyx automates Managed Navigation. The root Site
Folder contains a special navigation Content Item called a NavTree. The NavTree includes a Slot that
includes the main menu items that appear in each of the navigation bars. For example, for Ally's site, the
root folder NavTree would include About Enterprise Investments, Investment Advice, Mortgages and
Home Finance, and Products and Services. Site Folders within the root folder are associated with these
main menu items. Each contains a navigation Content Item called a Navon that includes:

 text and optionally an image to use as a link to the main menu items

 the name of the page that the link accesses

 a Slot for including the submenu items that make up the listings of secondary pages in the left
navigation bar

In Rhythmyx Managed Navigation, the folder holding the Navon also includes subfolders for the submenu
items in the listings of secondary pages, and typically includes the Content Item (page) that the link in the
Navon accesses, although this item may be present in another folder. Each subfolder may also include a
Navon that includes a link to the submenu item and typically includes the sub-Content Item also. The
Global Template includes code that automatically propagates its navigation Slots with all of the navigation
links specified in the Navons.

NOTE: This is a very abbreviated explanation of how Managed Navigation works in Rhythmyx. For a full
explanation, see the chapters "Setting Up the Publishing Site and Basic Navigation" and "Managed
Navigation" in the Rhythmyx Implementation Guide.

 Chapter 6 Designing the Global Template and Managed Navigation 93

Together Ally and Noah put together the following preliminary Site structure:

Figure 58: Site Folders for Managed Navigation

This site structure shows the folders that will hold Managed Navigation elements. During
implementation, Ally will also include other folders for storing Content Items that do not appear in
navigation elements of the Site.

Now that Ally and Noah have planned her Global Template and Managed Navigation, they can begin to
sketch out the Roles, Communities, and Workflows for her system.

 95

C H A P T E R 7

Planning Roles, Communities, and
Workflows

Noah suggests that now Ally focus on sketching out the Roles, Communities, and Workflows that her
system requires. He describes these elements as forming the foundation of her development environment
because without them, she could not assign individual users access to certain Content Items and functions
to perform on them. Additionally, she could not apply her company's operating rules to the process of
creating and approving content. He briefly defines these three elements for her:

 Role - a collection of users associated with the same permissions and access in Rhythmyx. For
example, users in the same Role can access the same Sites and Content Types, and perform
the same functions on Content Items.

 Community - a Role or group of Roles with access to similar information in Rhythmyx. A
Community is given access to Rhythmyx components such as Content Types, Display
Formats, Menus, Searches, Sites, Templates, Views, and Workflows. When a Role is
associated with a Community, it then has access to the components that the Community has
access to.

 Workflow - The business process that a Content Item progresses through during its lifetime.
In Rhythmyx this process involves the Content Item moving through a progression of States in
which users in different Roles approve or reject it as it is prepared for publishing. Usually a
Content Item eventually reaches a public State. Once the Content Item is in a public State the
system can publish it to a Site.

In Rhythmyx, the movement of Content Items between States is referred to as Transitions.
Implementers can configure Transitions to send emails to specific Roles or Users when a
Transition occurs. These emails are referred to as Notifications.

96 Modeling and Design of a Rhythmyx Content Management System

Defining the Workflow Process for Content
Types
Noah suggests they begin by looking at Ally's current approval (Workflow) process for each of her
Content Types. Ally explains that it is somewhat loosely defined, and follows one of two patterns.

Usually the process is as follows:

Either Writers or Financial Consultants create initial content. Writers send their content to copy editors,
and financial consultants send their content to financial editors. The editors review the content and make
necessary changes. The editor either sends it back to the creator with comments and starts the process
over, or makes some edits and sends it to a quality assurance specialist who determines that it will appear
correctly as a formatted page on the Web Site. The quality assurance specialist may send it back to the
editor for review if extensive changes are required, although the editor rarely objects, since the text
content always stays the same. If the quality assurance specialist does not require changes to the item, he
or she passes it on to a Web Administrator who has the ability to further modify its format for the Web
Site and then publish it. The Web Administrator can also unpublish the content and either archive it, or
send it back to any earlier State. In addition, implementers have the ability to create content and move it
through any of the Workflow States described above.

However, on occasion, Web Administrators create specifications for content that is necessary for the Site's
organization. Usually they require this content as soon as possible. In these cases, the Writers or Financial
Consultants who create the content do not have editors and quality assurance specialists review it, and
send it directly to Web Administrators, who then proceed as in the above Workflow.

Noah suggests that they sketch out a Rhythmyx-style Workflow diagram that shows the States and
Transitions in the first Workflow that Ally has described. They will add the Roles that can perform each
Transition below the name of the Transition. After finalizing this Workflow, they will return to the other
one, which is simpler.

Note: For this chapter, we have developed graphics of Workflows using the Rhythmyx Workflow Editor.
In an actual modeling and design session, the Workflow would probably be sketched on a whiteboard.

 Chapter 7 Planning Roles, Communities, and Workflows 97

Figure 59: Ally's Original Workflow

Noah says that now they should see if they can simplify the Workflow in any way so that the process of
creating content and getting it onto the Web Site is more streamlined. He suggests that they begin by
looking at the Roles assigned to each Transition. Currently in the Workflow, users are transitioning
content according to their role in the company. He suggests that instead Ally think of Roles in terms of
Workflow functions. For example, he says that it is unimportant if a Financial Consultant or a Writer
creates a Content Item. In terms of the Workflow, both of these users can be assigned to an Author Role.

Noah mentions that it is necessary to have one Role be a Workflow administrator. This Role must be able
to perform transitions in all States and check in any content item to prevent content from becoming
"stuck" in a Workflow. He notes that Ally really already has this Role, which she calls the Implementer.
Ally changes the name of the Implementer Role to Administrator to better reflect the Role's function in the
Workflow.

98 Modeling and Design of a Rhythmyx Content Management System

Noah explains that the feature of Ad Hoc assignment enables them to merge copy editors and financial
editors into the same Editor Role, by allowing the user Transitioning the item to choose a specific
individual assigned to the "to" State to act on the Content Item. In this case the user who performs the
Transition could use Ad Hoc assignment to choose the correct user, either a copy editor or financial editor.
Noah notes that combining these Roles would further simplify the Workflow by eliminating the need for
both a Copy Edit and a Financial Edit State. Instead they can have a single Review State. He also
mentions another option. If Ally wants to merge the two states into one Review State, but maintain two
separate Roles, she can use another Workflow feature that enables her to specify a required number of
approvals before a Content Item Transitions, and to name the Roles that must perform the approvals. In
this case, she could require two approvals, one performed by a Copy Editor and one performed by a
Financial Editor.

Ally agrees to merge the two Roles and States, but decides that in this case using Ad Hoc assignment or
requiring two specific Roles is unnecessary; the distinction between the two editors is really blurred, and
both can perform a satisfactory edit on any Content Item.

Noah asks Ally how necessary she feels it is to include the Quality Assurance State. She has suggested
that the purpose of this State is to allow the Quality Assurance specialist to confirm that the content's page
format will appear correctly, and notes that Web Administrators perform the same task. Noah suggests
that this review can be performed while the Content Items are in the Review State, so they can remove the
Quality Assurance State. Ally agrees, and says further that the Web Administrator is better suited to
perform this review. Noah reminds Ally that she can require approvals from specific Roles for the
transition to Public; in this case, she might want to require approvals from both the Editor Role and the
Web Administrator Role. Ally says she prefers this option. (NOTE: The Standard Workflow provided
with FastForward does not use this technique, but we will demonstrate how to implement it in the
Rhythmyx Implementation Guide.)

With these revisions, Ally's Workflow is more streamlined and appears as:

Figure 60: Ally's Streamlined Workflow

Noah suggests that she add a few more features in this Workflow that have proven useful to customers:

 A Direct to Public Transition for items in the Draft State. This Transition should only be
available to Web Administrators and Administrators. It enables the Web Administrator or
Administrator to move crucial content onto the Web Site immediately.

 Chapter 7 Planning Roles, Communities, and Workflows 99

 A Quick Edit State for items in the Public State. If a published item needs to be quickly
revised and republished, users in assigned Roles can send it to the Quick Edit State, edit it,
and then immediately transition it back to the Public State. The Quick Edit State is a special
State that makes it easier to process a minor change to a published item without sending it
through the entire Workflow again. Rhythmyx provides a special Publishable value, Ignore,
for this State. When a Content Item is in a State with this Publishable, its current status is
ignored and Rhythmyx processes it based on it processing in the previous publishing run. If
the Content Item was public, the last Public Revision is published. If it was not public, the
Content Item is not published.

 A Pending State where Content Items can be held after completing Review and waiting for
their Start Date to pass so they can become Public.

Ally agrees that these features would be beneficial and adds them to her Workflow.

Noah then recommends a few Aging Transitions. Aging Transitions are Transitions that Rhythmyx
automatically performs on a Content Item. Aging Transitions can occur:

 repeatedly after set intervals;

 once after a set interval; or

 once after a date specified within the Content Item has passed.

An Aging Transition does not necessarily move the Content Item to a new State. Repeating Transitions in
particular often keep the Content Item in its current State. (Such a Transition is often referred to as a
"circular Transition".) Such Transitions are often used to send Notifications to users that some action is
required on a Content Item. Noah suggests adding the following Aging Transitions:

 A date field Transition that automatically Transitions the Content Item from Pending to Public
when it reaches its Start Date.

 A date field Transition that sends a Notification reminding the assigned Roles that the Public
Content Item is reaching its Expiration Date.

 A date field Transition that automatically Transitions the Content Item from Public to Archive
when it reaches its Expiration Date.

Since Noah has recommended an Aging Transitions that generates a Notification, Noah and Ally discuss
Notifications in more detail. Noah explains that a Notification is a Template used to automatically
generate an e-mail when a Transition occurs. Ally decides to send emails to Roles in the Archive State
after both Age to Archive and Expire transitions, since these users often want to revise archived content
and send it back to the Web Site.

Noah points out that all of the Notifications Ally has specified go to the users in Roles assigned to the
State that the item is transitioned to, which is common. He notes that she could also have chosen to send
notifications to users that the item is transitioned from, or to individually specified email addresses.

100 Modeling and Design of a Rhythmyx Content Management System

At this point, Noah suggests that they re-sketch her Workflow with their latest additions and changes. He
sees some additional changes that he wants to suggest to Ally, but wants to make sure they are keeping
track of the changes they have already made.

Figure 61: Ally's Enhanced Workflow

Ally has added Notifications to the following Transitions:

 Submit (to "to" Roles)

 Review, (to "to" Roles)

 Public (to "to" Roles)

 Expire to Archive (to "to" Roles)

 Age to Archive (to "to" Roles)

 Rework (to "to" Roles)

 Chapter 7 Planning Roles, Communities, and Workflows 101

Noah makes a few suggestions regarding the current iteration of the Workflow. Now that Ally has the
Move to Quick Edit and Return to Public Transitions, her other Transitions that remove Content Items
from the Public State for editing are superseded since they are less efficient. Ally agrees to remove the
Back to Review, NotReady, and Update Transitions.

He also notes that she made a point of sending Notifications to Roles in the Archive State, but does not
include any Transitions from the Archive State. Ally says that she has seen Web Administrators publish
content right back to the Web Site after it has been archived, so she should add that Transition. She has
also seen them send content back to Authors for updating, so she will add that Transition.

Ally also has some ideas for enhancements. Noah previously explained the Ad Hoc assignment feature to
her. She understands that if she makes a Role an Ad Hoc assignee, a user can transition a Content Item to
the State and assign a user as an Ad Hoc assignee so that only that user can work on the Content Item.
Ally decides to make the Author Role in the Draft State an Ad Hoc assignee so that other Roles can send
Content Items back to the users who created them. She would also like the Editor who sends back the
content to explain to the Author what changes to make in the Notification, but is not sure if users can
customize Notifications in this way. Noah explains that Rhythmyx can add approver comments to
Notifications by inserting a comment made during the Transition into the email sent. Ally can require that
a comment is included with the Transition to ensure that the "to" Role receives instructions.

Ally wants to add an additional change. She decides that the Web Admin Role should have the same
ability that the Administrator Role has to perform most Transitions. She gives the Web Admin Role the
ability to perform the Submit, Rework, and Approve Transitions.

Noah has also discussed the option of requiring certain numbers of approvals as well as requiring certain
Roles to perform the approvals. Ally decides to require that the Editor and Web Admin Roles perform the
Approve Transition before a Content Item can move to the Pending State.

Her final Workflow appears as:

102 Modeling and Design of a Rhythmyx Content Management System

Figure 62: Ally's Final Workflow

Noah says they must plan out two more details of the Workflow before it is ready to be implemented.
First, each time a Role is assigned to a State, its access to Content Items in that State is specified. Options
include:

 assignee

Users in Roles with assignee access have full control over the Content Items in that State.
They can check out the Content Items, edit them, and Transition them to another state. A
Role must have assignee access to permit its members to have any ability to act on Content
Items.

 reader

Users in Roles with reader access can see Content Items when they are in the State, and can
open them in read-only mode. They cannot perform any operation on the Content Items.

 none

Users in Roles with none access cannot see Content Items in the State, and cannot act on
them.

 Chapter 7 Planning Roles, Communities, and Workflows 103

Ally decides to make the Author Role a reader in all States other than the Draft State, in which it is an
assignee, so the author of content always has the ability to view the content that he or she has created.
Similarly, she decides to make the Editor Role a reader in all States other than the Review State, in which
it is an assignee, and the Archive State, in which it would have little interest, so the editor of content
always has the ability to view content that he or she has edited. She also decides to make the QA Role a
reader in the Review and Pending States, since the Role can act on content in some States surrounding it,
and may have an interest in viewing it in these States. Noah adds one more Role as a reader to the Public
State. He explains that the RxPublisher Role, an internal Rhythmyx Role, must have reader access to
content in this State in order to Publish it. To summarize, Ally's reader Roles for the Standard Workflow
are:

 in Draft State - Editor Role

 in Review State - Author and QA Roles

 in Pending State - Author, Editor, and QA Roles

 in Publish State - Author, Editor, and RxPublisher Roles

 in Quick Edit State - Author and Editor Roles

 in Archive State - Author Role

The second detail that remains to be resolved is to determine whether Default Transitions need to be
assigned for any States, and if so, which Transitions should be specified as Default. Default Transitions
are used in Relationship processing, which sometimes automatically Transitions Content Items from one
State to another. In the standard implementation of Rhythmyx, the Active Assembly - Mandatory and
Translation - Mandatory Relationships typically move Content Items from Pending to Public when their
related Content item makes the same Transition, while the Promotable Version Relationship moves the
current Version of the Content Item to Archive when the Promotable Version Transitions to Public. Note
that if no Default Transition is defined, the processing uses the first Transition in alphabetical order by
name. As this can result in undesired behavior, best practice requires that Default Transitions be
designated from the Pending and Public States. Aging Transitions cannot be designated as Default
Transitions, so the decision for the Pending State is easy. The only option is the To Public Transition.
The Public State is somewhat more complicated, as two options are available: the Expire Transition to
Archive and the Move to Quick Edit Transition to Quick Edit. Since the desired behavior of the
Promotable Version is to move the current Version to Archive, the logical choice is the Expire Transition.

Since this is the Workflow assigned to most content, Ally calls it the Standard Workflow.

Noah says that now it should be easy for them to design the second Workflow that Ally described. All
they have to do is remove the Review State, which will also remove the special aging Transitions
associated with the State. He asks Ally if approvers in the Pending State ever send content back to Authors
during this type of Workflow. She explains that since the purpose of the Workflow is to get the content
published quickly, approvers in the Pending State make any necessary changes themselves and then
publish the Content. Since this Workflow is much simpler than the Standard one, she decides it is not
necessary to make the Author Role in the Draft State an Ad Hoc assignee.

104 Modeling and Design of a Rhythmyx Content Management System

They easily sketch out this Workflow, which is an abbreviated version of the Standard Workflow, and
name it the Simple Workflow.

Figure 63: Ally's Simple Workflow

Ally's reader Roles for the Simple Workflow are the same as those for the Standard Workflow with the
exception of those Roles that are readers in the Standard Workflow's Review State.

Now Ally has finished defining her Workflows, and Noah and Ally are ready to begin discussing her
Communities.

NOTE: Rhythmyx comes with a Simple Workflow and a Standard Workflow that are nearly the same as
Ally's Simple and Standard Workflow. Many customers are able to create their Workflows by creating
variations of these two FastForward Workflows. See Workflows for more information about how to
implement one Workflow by modifying another one.

 Chapter 7 Planning Roles, Communities, and Workflows 105

Designing Communities
Noah has already stated that Communities define a Role or a group of Roles that require access to similar
components in Rhythmyx. He now adds that each Site usually has at least one Community, but often has
more if users who work on the Site require access to different Content Types, Templates, Workflows, etc.
He recommends that Ally keep her Communities simple; their main purpose is not security, but to
simplify what users see in Rhythmyx so they do not have to view components they never use and probably
do not understand. In the future, she can add additional Communities if necessary.

Ally suggests that she could begin by creating an Enterprise Investments Admin Community that has
access to everything, and then create a basic Enterprise Investments Community that has access to all
components except those used for Site navigation, such as navigation Content Types and Global
Templates.

Noah feels that this is a good plan. Viewing navigation and Global Template components could confuse
typical content contributors. Although they may not use certain other components (for example, a writer
might not create an Image Content Item) it is unnecessary to complicate the design of Communities by
attempting to guess what each type of user will need to access.

106 Modeling and Design of a Rhythmyx Content Management System

Planning Community and Workflow Roles
Previously, Noah defined Roles as collections of users with the same access and permissions in
Rhythmyx. He now explains that although all Roles are defined in the same way, it is considered a best
practice to define "Workflow" Roles and "Community" Roles separately.

Noah says that Roles associated with Communities function to give users access to the Rhythmyx
components such as Content Types, Display Formats, Menus, Searches, Sites, Templates, and Views that
are associated with Communities. Roles associated with Workflows function to give users reader or
assignee access Content Items in a Workflow State. As Ally already knows, Roles with reader access can
view the Content Item in the specific State, while Roles with assignee access can Transition the Content
Item to another Workflow State.

The purpose of separating Workflow and Community Roles is to allow a user in one Workflow Role to
have the ability to perform a certain Workflow Transition in multiple Communities. The user has to be in
a Workflow Role that has permission to perform the Transition, and a Role associated with the
Community of the Content Type. It is easier if these associations are separated into two Roles.

For example, suppose Ally's system had two Communities representing two different sites: Enterprise
Investments and Corporate Investments (this is actually the case in FastForward). If she did not separate
Community and Workflow Roles, for each Community, she would have to create all of the possible
Workflow Roles. By separating Community and Workflow Roles, she can create one set of Workflow
Roles, and assign users to a Workflow Role and either one or both Communities depending on which
Community content she wants the users to have access to. For example, instead of:

 Corporate Investments Author Role

 Corporate Investments Administrator Role

 Corporate Investments Editor Role

 Corporate Investments Web Admin Role

 Corporate Investments QA Specialist Role

 Enterprise Investments Author Role

 Enterprise Investments Administrator Role

 Enterprise Investments Editor Role

 Enterprise Investments Web Admin Role

 Enterprise Investments QA Specialist Role

She can simply create:

 Community Roles

 Corporate Investments Role

 Corporate Investments Admin Role

 Enterprise Investments Role

 Enterprise Investments Admin Role

 Workflow Functional Roles

 Author Role

 Chapter 7 Planning Roles, Communities, and Workflows 107

 Administrator Role

 Editor Role

 Web Admin Role

 QA Specialist Role

Ally still has the option of creating more restrictive Community Roles. For example, if Ally wanted to
limit the access of the Web Admin and QA Roles to their specific Communities, she could create the
Community-specific Roles:

 Corporate Investments Web Admin Role

 Corporate Investments QA Specialist Role

 Enterprise Investments Web Admin Role

 Enterprise Investments QA Specialist Role

While users in a generic Web Admin or QA Role would always have the highest access available to those
Roles regardless of the Content Item's Community, users in Community-specific functional Roles only
have the access available for Content Items within that Community. For example, suppose Lisa Kerr is a
Member of the following Roles with the specified access:

 Corporate Investments Web Admin

 Review: read

 Pending: assignee

 Enterprise Investments QA

 Review: assignee

 Pending: read

If Lisa opened a Content Item from the Corporate Investments Community, and that Content Item was in
the Review State, she would be able to see it and examine its properties, but could not act on it. If another
user Transitioned the Content Item to the Pending State, Lisa would have full control over it. If she
opened a Content Item in the Enterprise Investments Community and it was in the Review State, she
would have full control, including the ability to Transition the Content Item to the Pending State. Once
that Transition was complete, however, Lisa would have only read access to the Content Item; she would
be able to see the Content Item and to review its properties, but she would not be able to act on the
Content Item.

Ally would have to be careful when assigning users to their Roles, however, because users are granted the
highest access. If, in addition to being a member of the Roles listed above, List was also a Member of the
generic Edit Role, she would have the highest access granted by these three Roles. If she opened a
Content Item in the Corporate Investments Community, she would have full control in both the Review
and Pending States. In the Review State, The Editor Role would give her the highest access (assignee),
while in the pending State, the Corporate Investments Web Admin Role would give her assignee access in
the Pending State.

After discussing her needs with Noah, Ally decides that the generic functional Roles meet her needs
effectively, so she does not need Community-specific functional Roles. With that decision, Ally
completes defining her Workflows, Communities, and Roles. She can now proceed to define her
publishing requirements.

 109

C H A P T E R 8

Establishing Publishing
Requirements

With the design of Content Types, Templates, and user access finished, the modeling and design process
is nearly complete. At this point, Ally must establish the publishing requirements for her system.

Noah asks Ally how content is currently served on the site. She tells him that most of their content is
served from static HTML files on the Web server, but that content about events is served from a database
to dynamically display events based on user queries on parameters such as location, date, and event type.
Noah replies that Rhythmyx can handle both cases. The Publishing system includes standard Delivery
Type configurations for publishing to either a file system or a database. In fact, most customers use the
standard Delivery Type configurations included with Rhythmyx, updating them with the appropriate local
data. Noah notes that the most common reason that a customer would create a new Delivery Type
configuration is because they created a custom publishing plugin and need to configure a Delivery Type
for it.

Noah also informs Ally that if the Web server is on a remote machine from the Rhythmyx server,
additional Delivery Types are available for FTP and secure FTP (SFTP). Ally tells him that they intend to
host the Rhythmyx server on the same machine as the Web server, so she does not need to use FTP.

For the moment, Noah recommends that they focus on file system publishing. Noah reminds Ally that
they already decided to use Site Folder publishing when they planned the Site's Managed Navigation (see
page 92). The Site Folders that Ally sketched out when she planned managed navigation will not only
hold Navons and pages that navigation links access, but also other content items that fit into each Folder
category. During publishing, Rhythmyx creates a set of directories the target Web Server's file system that
duplicates the Folders defined for the Site in the navigation pane of Content Explorer. Public Content
Items in the Site Folders are published to these directories as HTML pages.

110 Modeling and Design of a Rhythmyx Content Management System

Selecting the Content to Publish
Noah and Ally must first determine how to select the Content Items that will be published. Noah explains
that the basic publishing unit in Rhythmyx is an Edition. A publishing job is started by initiating the
processing of an Edition. An Edition contains a set of Content Lists, which are processed in the order
defined in the Edition. The Content Lists select the Content Items that will actually be published. The
Editions are associated with Sites, which determine the location where the assembled Content Items will
be published.

Noah then outlines the Content List and Edition configurations available in Rhythmyx.

When creating a Content List, you must define:

 which Content Items will be published;

The Content List Generator determines the initial list of Content Items to be published. The
initial list is run through an Item Filter to determine the final list.

 which Templates will be used to assemble the selected Content Items;

The Template Expander determines which Templates will be used for assembly.

 whether all eligible Content Items will be published, or only those that changed since the last
publishing run;

If a Content List is flagged as incremental, then only Content Items that meet one of the
following criteria will be processed:

 the Content Item was Transitioned to a Public State since the last publishing run for
the Site; the Content Item will be published to the Site.

 the Content Item was modified since the last publishing run for the Site; the Content
Item will be republished to the Site with the modifications.

 the Content Item was Transitioned from a Public State to an Archive State since the
last publishing run for the Site; the Content Item will be removed from the Site.

 the Content Item includes a link to a Content Item affected by one of the other
criteria; the Content Item will be republished with appropriate modification.

If the Content List is not flagged as incremental, all Content Items returned from the Item
Filter will be published.

 which Delivery Type will be used to deliver the assembled Content Items.

When defining an Edition, you must define:

 which Content Lists will be run;

The Content Lists determine which Content Items will be published, the Templates that will
be used to assemble them, and whether the a full or incremental publish will be processed.

 the Priority of the Edition;

The priority of an Edition is either Normal or High. An Edition with High Priority will be
processed before an Edition with an Normal Priority, and will interrupt the processing of any
Normal Priority Editions currently running.

 Chapter 8 Establishing Publishing Requirements 111

 the unpublishing Behavior of the Edition.

The options for Behavior are

 Unpublish then publish

Edition processing includes unpublishing Content Items that are not in a State
specified as either Public or Ignore (typically Quick Edit). HTML pages of Content
Items that are not in these States will be removed from the target location. This is
the preferred option in most cases.

 Publish

Edition processing does not include unpublishing expired Content Items.
(Unpublishing may still be available, however, if a Content List explicitly configured
to unpublish is associated with the Edition).

Noah explains to Ally that most implementations start with an incremental Edition. An incremental
Edition includes one Content List, which is flagged as incremental. The Content List typically uses the
sys_SearchGenerator Content List Generator, with a query that selects Content Items from all Content
Types. The Item Filter is generally sitefolder. This Item Filter inherits the public Item Filter, which filters
out Content Items that are in a State other than Public or Quick Edit (Ignore), but also filters out links to
Content Items that are not Public on other Sites managed in Rhythmyx. The sys_SiteTemplateExpander is
used to publish the Templates associated with the Site. The Edition is typically configured to Unpublish
then Publish and with a Normal Priority. Incremental Editions are typically published frequently to keep
content on a Site up to date. Based on Noah's recommendation, Ally decides to include an incremental
Edition configured as Noah described, with the name EI_Incremental.

Noah then describes full Editions. A full Edition publishes all Public Content Items on the Site. While a
full Edition can consist of a single Edition, it is more typical to implement at least two different Content
Lists: one to select binary Content Items, the other to select non-binary Content Items. The Content Lists
use the sys_SiteTemplateExpander, The sitefolder Item filter is used, and the Incremental checkbox is not
checked. In the Edition, the binary Content List is typically ordered before the non-binary Content List to
ensure that any files targeted by a link is available when the link is generated. The Edition is typically
configured to Unpublish then Publish and with a Normal Priority, and is not flagged as Incremental. Full
Editions are the first Editions published when an implementation goes live, and are generally published at
longer intervals to keep a Site completely up to date. Ally follows Noah's recommendation to include a
full Edition in her implementation and names it EI_Full.

Many implementations, Noah notes, include a variation on the full Edition that includes only the non-
binary Content List. This Edition is generally included to support changes in Site Navigation, such as
Folders being moved within the Site. Other than including only the non-binary Content List, the
configuration of this Edition is identical to the EI_Full Edition. Ally follows Noah's recommendation and
names this Edition EI_Full_Nonbinary.

Many customers share Ally's need to publish individual Content Items on demand, Noah says. Rhythmyx
supports this requirement though demand Editions, often named Publish Now. A demand Edition usually
includes one Content List, which uses the sys_SelectedItemsGenerator; this Content List Generator selects
only the Content Items selected by the user in Content Explorer. The Content List uses the
sys_SiteTemplateExpander and is not flagged as incremental. The Edition is configured to Publish
(unpublishing processing is not desired in this case) and with a High Priority (allowing it to override any
Normal Priority Editions that might be running.

112 Modeling and Design of a Rhythmyx Content Management System

Note that since Ally wants to implement publishing to a file system, the Delivery Type on all of these
Content Lists is filesystem.

 Chapter 8 Establishing Publishing Requirements 113

Determining a Publishing Schedule
Once the Editions and Content Lists have been defined, Noah and Ally turn to defining a publishing
schedule. Noah notes that, while Editions can be started manually, in a production environment Editions
are typically run automatically on a schedule. Common practice, he says, is to publish a Full Edition on
some longer schedule, such as weekly or monthly, with incremental Editions being published at shorter
intervals, such as daily. Special Demand Editions can be run manually to make high-priority changes to
site content.

Noah asks Ally how many pages are currently managed in her Site, and how many new pages are created
each day. Ally estimates that the Site generally consists of about 150 HTML pages. Content contributors
create about thirty new pieces of content each day, but the overall results is that about ten pages change
per day, either being added, modified, or deleted. Noah then asks about the current publishing schedule.
Ally replies that the current delivery system is scheduled to publish new pages to the Web site once in the
morning, and to remove expired content once in the evening. Once or twice a week, a page must be
published or removed before a scheduled run; in that case, the Web Master handles the change manually.

Noah responds that publishing ten pages per day is well within the capabilities of Rhythmyx. He suggests
that Ally should schedule the incremental Edition to run three times per day to handle routine changes to
the Site. Such a frequent publishing schedule should reduce the need to publish individual Content Items
on demand. In addition, Noah suggests running the full Edition weekly to ensure that the Site is fully up-
to-date, acting as a backup in case the incremental Edition skips a Content Item for some reason. Ally
agrees with Noah's recommendations.

NOTE: Publishing schedules are very subjective. Your Publishing schedule should be defined based on
the number of Content Items that are routinely created and modified each day in your system. Ally's
publishing schedule is appropriate for her needs, but may not be appropriate for your needs. For example,
a Web site that included a lot of news might schedule a Normal Edition to run every hour, while a retailer
whose stock changes once per season might schedule it to run once or twice per week. The number of
pages maintained on a Web site also plays a role in determining how frequently a Full Edition should run.
A customer with a large Web site should avoid running a Full Edition each night to avoid performance
problems in their server.

114 Modeling and Design of a Rhythmyx Content Management System

Defining Locations and URLs
Noah recommends that during the modeling and design session, they define the directory path to the
locations where output files will be published, the file name used for the output files, and the URLs used
in links between those files. Noah points out that the paths and URLs will be different in different output
locations, or Contexts. The URL of a graphic file used in previewing a Content Item on the Rhythmyx
server will be different than the URL used in rendering the published page from the production Web
server. Each is a different Context.

For each Context, Noah says, they need to define a set of Location Schemes, which generate the actual
paths and URLs. A unique Location Scheme can be defined for each combination of Content Type and
Template. In most cases, Noah notes, one default Location Scheme is defined that is used by most
Content Type/Template combination, with addition Location Schemes for specific combinations that
require a different result.

Noah mentions that Rhythmyx includes a default Context (and set of Location Schemes) for Preview, so
Ally does not have to define how Content Items will be previewed. But she must implement Contexts and
Location Schemes for her production environment.

Ally suggests a basic Location Scheme

 The Location Scheme begins with the Folder path to the Content Item.

 The Location Scheme includes a unique identifier for the Content Item.

 The Location Scheme ends with a file extension. For HTML files, the extension would
obviously be ".html". For binary files, the extension is the standard extension for the type of
binary file (for example, ".gif", ".jpg", or ".pdf").

Noah suggests using the Content Item's id as the unique identifier and shows and a sample location for a
Content Item:

AboutEnterpriseInvestments/486.jpg
Ally does not like the idea of the file name beginning with a number, so she decides to add the string
"Item" before the Content Item ID. Noah suggests that the Location Scheme also include the prefix that
can be added to assembled Content Items from the Template. For example, a Content Item assembled by
a Template that specifies the string "GEN" as the prefix would result in an output location such as:

AboutEnterpriseInvestments/GENItem486.jpg
He also notes that Content Items other than binaries might have extensions specified. Ally agrees to to
change the Location Scheme to include any extension stored for the Content Item before defaulting to
".html".

Ally plans to use this Location Scheme both to define the location where each Content Item will be
published and to define the links between Content Items. Noah observes that this plan is often possible,
but asks whether Ally's Web server uses a virtual root or the URL is rewritten. In these cases, the link
URLs are different than the publishing location and an additional Context and set of Location Schemes is
required to generate the correct URLs.

Noah says they have enough information on this subject, and can work out the details during
implementation.

 Chapter 8 Establishing Publishing Requirements 115

Planning Database Publishing
Ally has already stated that she plans to use Rhythmyx's database publishing capabilities to publish Event
Content Items to a database. She wants the Site to include pages that allow users to query the database on
parameters such as city, date, and event type to dynamically display matching events.

Currently, event content is published once per week, and Ally wants to continue to follow that schedule.

 Although Ally has stated that she plans to publish data from Event Content Items to her database, she has
not specified which information she plans to publish. Noah suggests that now she create models of her
database publishing table schemas.

Ally's Event Content Items (see "Determining Fields for the Event Content Type" on page 52) include a
child table editor with any number of event locations and their associated data. She decides to duplicate
this structure in her target database tables. In the parent target table, she will omit most metadata fields,
which she does not plan to display on the Web Page, and instead include the title, callout (summary) and
body fields and the fields directly associated with events. The child table is easy to plan. She includes the
Content ID to associate the child table with the parent table, and a seq field to give each child table entry a
unique id. Then she includes the fields included in the Content Type's child field set: event_city,
event_state, event_address, and event_contact. Users will query on these fields, and the resulting Content
Items will be displayed on the Web page along with the parent table fields.

The target tables will resemble:

Figure 64: TARGET_CONTENT table

116 Modeling and Design of a Rhythmyx Content Management System

Figure 65: TARGET_LOCATION table

Ally must give the sketches of these tables, along with the name and port of the database that she wants to
publish to the implementers of the system. With this information, they can set up a database publishing
Template that will publish to the correct database and enter the correct information into her tables.

Noah explains that database publishing requires minimal publishing configuration. Content Lists are
required to select the content to publish, he says. The Content Lists typically use the sys_SearchGenerator
and the sys_ListTemplateExpander, specifying the database publishing Templates. The Content Lists
must be associated with Editions. The association of a Content List to an Edition requires a Context, but
only a very rudimentary Location Scheme is required. Ally wants to implement a simple Location
Scheme that names each Content Items item + content id + .xml, for example, item455.xml. Noah agrees
with her suggestion.

 While in Ally's case, a unique Site for database publishing is not necessary, Noah recommends creating
one to make it easier to organize and locate database publishing configurations.

Ally has now completed the major part of the process of modeling and design. Now she and Noah will
write her development plan using the specifications they put together during this process. The next
section shows illustrates their final development plan.

 117

C H A P T E R 9

Ally's Development Plan

A development plan contains the specifications that the customer and Rhythmyx implementer have
designed during the modeling and design process. Creating formal specifications not only ensures that the
customer and Rhythmyx implementer agree about the details of the system being created, but also gives
other implementers who are developing the system an exact plan of the components to create.

A development plan describes in detail:

 the system environment

 system fields (these are predefined by Rhythmyx)

 shared field sets

 Content Types

 Templates and Slots

 relationships between Content Types, shared field sets, Templates and Slots

 Global Template and Managed Navigation requirements

 Publishing requirements

 Integration with other systems, if any

 Workflows

 Communities

 Roles

 special components such as extensions

Ally's development plan is the subset of the FastForward development plan that covers what has been
modeled and designed in this chapter. Its details include modifications to the FastForward plan that Ally
and Noah have made during modeling and design.

Note: Since an official development plan (also called a Statement of Work) is also a legal agreement
between the two parties, there are portions of the plan that we will not include in this section, including
goals, inclusions, and exclusions.

In an actual plan, the discussion of the system's architecture would probably be more detailed, and cover
details of security, authentication, and email used for Notifications.

On the last page of an actual plan, both parties would be required to sign off before any development
began.

118 Modeling and Design of a Rhythmyx Content Management System

System Architecture
Rhythmyx will be installed in development, testing, and production environments. In each of these
environments, the Rhythmyx Server will be hosted on a Windows XP server machine, and the database
will be installed to a SQL Server 2000 instance.

Implementers will create the original system on the development server and then deploy its components to
the testing server. If testing demonstrates that functionality is not working as intended, implementers may
send components back to the development server for additional work. Once testing confirms that the
system, including publishing, is working correctly on the testing server, implementers will deploy its
components to the production server, so that content contributors can begin creating content and content
can be published to the production Web Server and database.

Figure 66: Ally's Rhythmyx System

 Chapter 9 Ally's Development Plan 119

System Fields

Name Label Control Name Data
Type

Rules Format
(size)

sys_communityid Community: sys_DropDownSingle integer Required,
Hidden

none

sys_contentexpirydate Expiration
Date:

sys_CalendarSimple datetime none

sys_contentstartdate Start Date: sys_CalendarSimple datetime Required none

sys_currentview sys_HiddenInput Hidden none

sys_hibernateVersion sys_HiddenInput integer Hidden none

sys_lang Locale: sys_DropDownSingle text Required,
Hidden

16

sys_pathname Path Name: sys_EditBox text 255

sys_pubdate Pub Date: sys_CalendarSimple datetime none

sys_reminderdate Reminder
Date:

sys_CalendarSimple datetime none

sys_suffix Suffix: sys_EditBox text Hidden 50

sys_title System
Title:

sys_EditBox text Required 255

sys_workflowid Workflow: sys_DropDownSingle integer Required,
Hidden

none

Field Descriptions:

Field Description

sys_communityid The id for the community in which the content item was created.

sys_contentexpirydate May be used to trigger aging transitions out of the public workflow
state.

sys_contentstartdate May be used to trigger aging transitions into the public workflow
state.

sys_currentview (Required for internal system operation)

sys_hibernateVersion (Required for internal system operation)

sys_lang The id for the locale in which the content item was created (for
multi-lingual support)..

sys_pathname (Deprecated) Used for creation of delivery location path in
publishing; This has been replaced by site folder publishing
functionality.

120 Modeling and Design of a Rhythmyx Content Management System

sys_pubdate May be used to trigger aging transitions for publishing.

sys_reminderdate May be used to trigger aging transitions for “reminder”
notifications.

sys_suffix Used in publishing delivery location schemes for filename
generation.

sys_title The internal title of the content item, which will be displayed in the
Content Explorer.

sys_workflowid The id for the workflow in which the content item was created.

Default Values:

Field Value

sys_contentstartdate <Today's date> (sys_DateFormat ext., with yyyy-MM-dd)

sys_suffix .html

sys_communityid PSXUserContext/User/SessionObject/sys_community

sys_lang PSXUserContext/User/SessionObject/sys_lang

 Chapter 9 Ally's Development Plan 121

Shared Field Sets
Shared

Name Label Rules Description Control Data Type/
Storage Size

displaytitle Title Required The title shown to users. sys_EditBox text/512

body Body The main body of
content. Since the
sys_EditLive control is
used, the body is stored
in rich text format and
may include inline links
and images.

sys_EditLive text/max

filename File name Hidden The file name of the item
when it is published.

sys_EditBox text/512

keywords Keywords Search terms that are not
part of the item's content
and are inserted into
markup tags.

sys_TextArea text/1024

callout Callout A synopsis of the body
content.

sys_EditLive text/max

description Description Search phrases that are
not part of the item's
content and are inserted
into markup tags.

sys_TextArea text/1024

webdavowner WebDAV Owner Hidden Stores the user with a
lock on the Content Item
when content is uploaded
through WebDAV.

sys_TextArea text/255

SharedImage

Name Label Rules Description Control Data Type/
Storage Size

img1 Image Required Field that uploads the
image.

sys_file binary/max

122 Modeling and Design of a Rhythmyx Content Management System

Name Label Rules Description Control Data Type/
Storage Size

img1_filename Image Filename Required
Read only

File name of the uploaded
image. sys_FileInfo
extracts this data for
system processing or user
interface display.
sys_webImageFX requires
this data to store and
display the file.

sys_EditBox text/10

img1_size Image File Size Hidden File size of the uploaded
image. sys_FileInfo
extracts this data for
system processing or user
interface display.

sys_EditBox integer/none

img1_type Image Mime Type Required,
Read only

MIME type of the
uploaded image.
sys_FileInfo extracts this
data which sys_File
requires to display the file
in a browser.

sys_EditBox text/256

img1_ext Image Extension Hidden,
Required

Extension of the uploaded
image. sys_FileInfo
extracts this data which is
required to display the file
in a browser.

sys_EditBox text/10

img1_height Image Height Height of the uploaded
image. The
sys_imageInfoExtractor
pre-exit extracts this data
for system processing or
user interface display.

sys_EditBox integer/none

img1_width Image Width Width of the uploaded
image. The
sys_imageInfoExtractor
pre-exit extracts this data
for system processing or
user interface display.

sys_EditBox integer/none

img_alt Image Alt Text Alternate text shown on
screen if image does not
render.

sys_EditBox text/512

img2 Mini Hidden Field that uploads
thumbnail of image.

sys_file binary/max

 Chapter 9 Ally's Development Plan 123

Name Label Rules Description Control Data Type/
Storage Size

img2_filename Mini Filename Hidden File name of the uploaded
thumbnail image.
sys_FileInfo extracts this
data for system processing
or user interface display.
sys_webImageFX requires
this field to display the file.

sys_Editbox text/512

img2_size Mini File Size Hidden File size of the uploaded
thumbnail image.
sys_FileInfo extracts this
data for system processing
or user interface display.

sys_Editbox integer/none

img2_type Mini Mime Type Hidden MIME type of the
uploaded thumbnail image.
sys_FileInfo extracts this
data which is required to
display the file in a
browser.

sys_Editbox text/256

img2_ext Mini Extension Hidden Extension of the uploaded
thumbnail image.
sys_FileInfo extracts this
data which sys_File
requires to display the file
in a browser.

sys_Editbox text/10

img2_height Mini Height Hidden Height of the uploaded
thumbnail image. The
sys_imageInfoExtractor
pre-exit extracts this data
for system processing or
user interface display.

sys_EditBox integer/none

img2_width Mini Width Hidden Width of the uploaded
thumbnail image. The
sys_imageInfoExtractor
pre-exit extracts this data
for system processing or
user interface display.

sys_EditBox integer/none

124 Modeling and Design of a Rhythmyx Content Management System

Slots and Templates
Note: The following Slot and Template descriptions are based on those Ally and Noah have discussed
during Modeling and Design. Therefore, only a portion of Slots and Templates associated with the
Generic, Image, and Event Content Types are listed. All of these Slots and Templates (except EventDB)
exist in FastForward; some of them have been specifically mentioned in the Modeling and Design
sections; others have not been discussed but are included because they are associated with one another.

Slots:

Name Allowed Content Types Description

Sidebar Slot all General sidebar for related content.

List Slot all Lists of links to other content.

sys_inline_link all System Slot for inline links.

Shared Templates:

Name Description Slots Type Publish

D - EI Generic Dispatch Template for Generic
pages. Selects either the P - EI
Generic Template or the P - EI
Generic Category Template. (see
page 38)

None Page Default

P - EI Generic Generic full page, renders title,
body, and callout (summary).

Sidebar, List Page Never (because
Dispatch
Template will
specify when it is
published)

P - EI Generic
Category

Generic full page for items that
hold product categories. Renders
title, body and callout (summary)

Sidebar, List Page Never (because
Dispatch
Template will
specify when it is
published)

S - Title Link Rendering of title field as a link to
the full page.

None Snippet Never

S - Title Callout
Link

Renders a Title and Callout Link. None Snippet Never

S - Callout Renders the shared callout field. None Snippet Never

 Chapter 9 Ally's Development Plan 125

Shared Template Screenshots:

P - EI Generic Page

Figure 67: Generic Content Type Template

126 Modeling and Design of a Rhythmyx Content Management System

P - EI Generic Category Page

Figure 68: Generic Template for Major Products

S - Title Link

Figure 69: S - Title Link Template

S - Title Callout Link

Figure 70: S - Title Callout Link Template

 Chapter 9 Ally's Development Plan 127

S - Callout

Figure 71: S - Callout Template

Type-Specific Templates:

Name Description Slots Type Publish

B-Image Returns the binary
stream from the image
shared group img1
field, setting the mime
type as specified by
the Image mime type
field. This is never
inserted into a Slot;
Image Snippets use it
to acquire the image.

None Image Always

S-Flash Displays streaming
images,

None Image Never

S-Image Displays just the
image as a snippet

None Image Never

S - Image and Title same as S - Image, but
with the display title
centered underneath
the image.

None Image Never

S - Title, Callout and
More

Renders an Image,
Title, callout and
more Link

Image Link Generic Never

P - Event Query (to be
created during
implementation)

Enables users to enter
information about
Events and pull up
lists of matching
events from the
database.

to be determined to be determined Always

P - EI Event EI Full Page Event List, Sidebar Event Default

128 Modeling and Design of a Rhythmyx Content Management System

Type-Specific Template Screenshots

(B - Image, S - Flash, and P - Event Query are not applicable for screenshots)

S - Image

Figure 72: S - Image Template

S - Image and Title

Figure 73: S - Image and Title Template

 Chapter 9 Ally's Development Plan 129

S - Title Callout And More

Figure 74: S - Title Callout and More Template

130 Modeling and Design of a Rhythmyx Content Management System

P - EI Event

Figure 75: P - EI Event

Database Publishing Template:

Name Description Slots Type Publish

EventDB Template for storing
Event Content Type
information in a
database.

None Event Default

 Chapter 9 Ally's Development Plan 131

Target Database Tables:

Figure 76: TARGET_CONTENT table

Figure 77: TARGET_LOCATION table

132 Modeling and Design of a Rhythmyx Content Management System

Content Types
Generic

 Field Field Name Source Type
(Size)

Control Rules

System Title sys_title system text (255) sys_EditBox Required

Title displaytitle shared text (512) sys_EditBox Required

Start Date sys_contentstartdate system datetime sys_calendarsimple Required

Expiration Date sys_contentexpirydate system datetime sys_calendarsimple Optional

Reminder Date sys_reminderdate system datetime sys_calendarsimple Optional

Keywords keywords shared text (1024) sys_textarea Optional

Description description shared text (1024) sys_textarea Optional

Callout callout shared text (max) sys_textarea Optional

Body body shared text (max) sys_EditLive Optional

File Name filename shared text (512) sys_EditBox Hidden,
Optional

Suffix sys_suffix system text (50) sys_EditBox Hidden,
Optional

Community sys_communityid system integer sys_DropDownSingle Hidden,
Required

Workflow sys_workflowid system integer sys_DropDownSingle Hidden,
Required

Locale sys_lang system text (50) sys_DropDownSingle Hidden,
Required

 sys_currentview system text sys_HiddenInput Hidden,
Optional

WebDAV
Owner

webdavowner shared text (255) sys_TextArea Hidden,
Optional

 sys_hibernateVersion system integer sys_HiddenInput Hidden,
Optional

Usage usage local text(1) sys_DropDownSingle Required

Image

Field Field Name Source Type
(Size)

Control Rules

System Title sys_title system Text (255) sys_EditBox Required

Title displaytitle shared Text (512) sys_EditBox Required

Start Date sys_contentstartdate system datetime sys_CalendarSimple Required

 Chapter 9 Ally's Development Plan 133

Field Field Name Source Type
(Size)

Control Rules

Expiration
Date

sys_contentexpiryda
te

system datetime sys_CalendarSimple Optional

Reminder
Date

sys_reminderdate system datetime sys_CalendarSimple Optional

Description description shared text (1024) sys_TextArea Optional

Image img1 shared binary
(max)

sys_File Required

Image file
name

img1_filename shared text (512) sys_EditBox Optional

Image
Extension

img1_ext shared text (50) sys_EditBox Required

Image Mime
Type

img1_type shared text (256) sys_EditBox Optional,
Read-only

Image Height img1_height shared integer sys_EditBox Optional

Image Width img1_width shared integer sys_EditBox Optional

Image Alt
Text

img_alt shared text (512) sys_EditBox Optional

Image
Category

img_category local text(50) sys_DropDownSingle Optional

Image file
size

img1_size shared integer sys_EditBox Optional

File Name filename shared text (512) sys_EditBox Hidden,
Optional

Suffix sys_suffix system text (50) sys_EditBox Hidden,
Optional

Mini img2 shared binary
(max)

sys_File Hidden,
Optional

Mini File
Name

img2_filename shared text (512) sys_EditBox Hidden,
Optional

Mini
Extension

img2_ext shared text (50) sys_EditBox Hidden,
Optional

Mini Mime
Type

img2_type shared text (256) sys_EditBox Hidden,
Optional

Mini Height img2_height shared integer sys_EditBox Hidden,
Optional

Mini Width img2_width shared integer sys_EditBox Hidden,
Optional

Mini File
Size

img2_size shared integer sys_EditBox Hidden,
Optional

134 Modeling and Design of a Rhythmyx Content Management System

Field Field Name Source Type
(Size)

Control Rules

Community sys_communityid system integer sys_DropDownSingle Hidden,
Required

Workflow sys_workflowid system integer sys_DropDownSingle Hidden,
Optional

Locale sys_lang system text (16) sys_DropDownSingle Hidden,
Optional

 sys_currentview system text sys_HiddenInput Hidden,
Optional

WebDAV
Owner

webdavowner shared text (255) sys_HiddenInput Hidden,
Optional

Event

 Field Field Name Source Type
(Size)

Control Rules

System Title sys_title system text (255) sys_EditBox Required

Title displaytitle shared text (512) sys_EditBox Required

Start Date sys_contentstartdate system datetime sys_calendarsimple Required

Expiration Date sys_contentexpirydate system datetime sys_calendarsimple Optional

Reminder Date sys_reminderdate system datetime sys_calendarsimple Optional

Keywords keywords shared text
(1024)

sys_textarea Optional

Description description shared text
(1024)

sys_textarea Optional

Callout callout shared text (max) sys_textarea Optional

Body body shared text (max) sys_EditLive Optional

Event Start
Date

event_start local datetime sys_calendarsimple Optional

Event End Date event_end local datetime sys_calendarsimple Optional

Event Location event_location local sys_table Required

Event Type event_type local text (255) sys_DropDownSingle Optional

File Name filename shared text (512) sys_EditBox Hidden,
Optional

Suffix sys_suffix system text (50) sys_EditBox Hidden,
Optional

Community sys_communityid system integer sys_DropDownSingle Hidden,
Required

Workflow sys_workflowid system integer sys_DropDownSingle Hidden,
Required

 Chapter 9 Ally's Development Plan 135

 Field Field Name Source Type
(Size)

Control Rules

Locale sys_lang system text (50) sys_DropDownSingle Hidden,
Required

 sys_currentview system text sys_HiddenInput Hidden,
Optional

WebDAV
Owner

webdavowner shared text (255) sys_TextArea Hidden,
Optional

 sys_hibernateVersion system integer sys_HiddenInput Hidden,
Optional

Event Location Child Set

Field Field Name Type (Size) Control Rules

Event City event_city text (50) sys_editBox Optional, Show in Summary

Event State event_state text (50) sys_editBox Optional, Show in Summary

Event Address event_address text (255) sys_textArea Optional

Event Contact event_contact text (255) sys_textArea Optional

136 Modeling and Design of a Rhythmyx Content Management System

Global Template
The Global Template will have a typical "C-clamp" structure, and include Rhythmyx Navigation Content
Types in Slots to compose a top navigation bar, left navigation links, bottom navigation links, and
breadcrumbs. The top banner of the Global Template will include a static logo image, a search control,
and a drop list for selecting a region or country.

Figure 78: Global Template

 Chapter 9 Ally's Development Plan 137

Managed Navigation
Managed Navigation uses the Navon, NavTree, and NavImage Content Types that are installed with
Rhythmyx's FastForward.

Managed Navigation is implemented through use of the Site Folder structure in Rhythmyx, which will
contain the appropriate navigational Content Types. The Site Folder structure also corresponds to the
publishing locations on the Site. Detailed information regarding Managed Navigation concepts is included
in additional documentation.

The Site structure in Content Explorer (and on the published Site) will include the following folders:

Figure 79: Site Folders for Managed Navigation

It will also include other folders that store Content Items that do not appear in navigation elements of the
Site, such as an Images folder for storing images that appear on the Site.

138 Modeling and Design of a Rhythmyx Content Management System

Publishing

Site Folder
The Web Site's structure will be controlled using the Site Folder functionality in Rhythmyx. The plan for
the initial Site Folder Structure is the following, although additional folders may be added during
implementation. The Files and Images folders will not contain navigation components, but will store files
and images for use on Web pages.

Figure 80: Initial Site Folder Structure

Delivery Type
No custom Delivery Types are required. The standard filesystem and database Delivery Types will be
used.

Sites
Two Sites will be defined, one for file system publishing and the other for database publishing. Both will
use the same Site Folder root.

File system Site:

Name Value

Site Name Enterprise_Investments

 Chapter 9 Ally's Development Plan 139

Description Represents the Enterprise Investments web
site

Rhythmyx Path //Sites/EnterpriseInvestments

Global Template EI Global Template

Published URL http://127.0.0.1:9911/EI_Home

Published Path ../EI_Home.war

Database publishing Site

Name Value

Site Name Enterprise_Investments_DB

Description Database publishing Site for Enterprise
Investments

Rhythmyx Path N/A

Global Template N/A

Published URL N/A

Published Path N/A

Content Lists
For each site, the following Content Lists will be defined:

Description File system
name

Database Name

Incremental publish rffEiIncremental rffEiIncremental_DB

Full publish, binary only rffEiFullBinary rffEiFullBinary_DB

Full publish, nonbinary only rffEiFullNonbinary rffEiFullNonbinary_DB

Demand publish (Publish Now rffEiPubilshNow rffEiPubilshNow_DB

Editions

Name Content Lists Incremental? Priority Behavior Description
EI_Incremental rffEiIncremental Yes Normal Unpulbish then

publish
Publishes new and modified Content
Items in the specified Site Folders

EI_Full rffEiFullBinary

rffEiFullNonbinary

No Normal Unpublish, then
Publish

Publishes all currently Public
Content Items in the specified Site

EI_Full_Nonbinary rffEiFullNonbinary No Normal Unpublish then
Publish

Publishes all currently Public
nonbinary Content Items in the
specified Site.

EI_Publish_Now rffEiPublishNow No High Publish Publishes the Content Items currently
selected by the user.

EI_Incremental_DB rffEiIncremental_DB Yes

140 Modeling and Design of a Rhythmyx Content Management System

Content Lists
The initial Content Lists that will support Ally's publishing system are the following:

 Full Binary - includes all binary Content Items that are ready to be published

 Full Non-binary - includes all non-binary Content Items that are ready to be published

 Incremental - includes all new and modified Content Items that are ready to be published

 Unpublish - includes all published Content Items that are ready to be unpublished (archived)

 Event Items to Database - includes all Event Content Items that are ready to be published
Location Schemes (Delivery Locations)

Purpose Location Scheme Example

location to publish Content Items
during file system publishing

site folder path +Template prefix +
"item" + sys_contentid + (stored
suffix or .html)

AboutEnterpriseInvestments/GENi
tem486.jpg

location that published content
items will use in links for
accessing other content items

/EI_Home + site folder path
+Template prefix + "item" +
sys_contentid + (stored suffix or
.html)

/EI_Home/AboutEnterpriseInvest
ments/GENitem486.jpg

representation of what has been
published to database for use in the
database publishing log

item + content id + .xml item455.xml

Additional Database Publishing Details
The purpose of publishing Event Content Items to a database is to include pages on the Site that allow
users to query the database on parameters such as city, date, and event type to dynamically display
matching events. Users can link on matching events to see the P - EI Event (see page 124) page for the
event. The Template for the page that queries the Event target database will be created during
implementation.

The target database resides on the same MSSQL Server as the Rhythmyx database, EIServer, and is
named targetdb. Content is published to it over port 1433.

 Chapter 9 Ally's Development Plan 141

Workflow
Standard Workflow:

Names listed under each transition are Roles that will be assignees of the "from" State of the Transition.

Figure 81: Ally's Final Workflow

Reader Roles:

 in Draft State - Editor Role

 in Review State - Author and QA Roles

 in Pending State - Author, Editor, and QA Roles

 in Publish State - Author, Editor, and RxPublisher Roles

 in Quick Edit State - Author and Editor Roles

 in Archive State - Author Role

142 Modeling and Design of a Rhythmyx Content Management System

Aging Details:

 an Age to Public Transition occurs after the Content Item's Start Date has passed

 an Age to Archive Transition occurs after a Content Item's End Date has passed.

 an Age to Pending Transition occurs after 3 days.
Notification Details:

 a reminder notification is sent to Roles in the Public State after the Content Item's Reminder
Date has passed.

 a reminder notification is sent to Roles in the Review State telling them that an item will
automatically move to the Pending State in three days if they do not act on it. (sent first day
item is in State)

 a reminder notification is sent to Roles in the Review State telling them that an item will
automatically move to the Pending State in two days if they do not act on it (sent second day
item is in State)

 a reminder notification is sent to Roles in the Review State telling them that an item will
automatically move to the Pending State in two days if they do not act on it. (sent third day
item is in State)

 a notification is sent to Roles in the Archive State after an Age to Archive transition.

 a notification is sent to Roles in the Archive State after an Expire transition

 a notification is sent to Roles in the Draft State after a Rework transition. The Notification
will include the Editor's comment.

Ad hoc Assignees:

 Author Role in Draft State
Required Comments:

 Rework Transition. The comment will be included in the Notification sent.
Required Approvals:

 Approve Transition - Web Admin and Editor are both required approvers.
Simple Workflow:

Names listed under each transition are Roles that will be assignees of the "from" State of the Transition.

 Chapter 9 Ally's Development Plan 143

Figure 82: Ally's Simple Workflow

Reader Roles:

 in Draft State - Editor Role

 in Pending State - Author, Editor, and QA Roles

 in Public State - Author, Editor, and RxPublisher Roles

 in Quick Edit State - Author and Editor Roles

 in Archive State - Author Role
Aging Details:

 an Age to Public Transition occurs after the Content Item's Start Date has passed

 an Age to Archive Transition occurs after a Content Item's End Date has passed.
Notification Details:

 a reminder notification is sent to Roles in the Public State after the Content Item's Reminder
Date has passed.

 a notification is sent to Roles in the Archive State after an Age to Archive transition.

 a notification is sent to Roles in the Archive State after an Expire transition

144 Modeling and Design of a Rhythmyx Content Management System

Communities and Roles
Communities and Community Roles

The following Communities will be configured initially, although the implementation process may reveal
that more Communities are needed to support the management of the Enterprise Investments Site.

 Enterprise Investments

 Enterprise Investments Admin
Each Community will have a corresponding Community Role associated with it; EI_Members for
Enterprise Investments and EI_Admin_Members for Enterprise Investments Admin.

Workflow Roles

The initial Workflow Roles consist of those used in the Standard and Simple Workflows:

 Author

 Administrator

 Web Admin

 Editor

 QA Specialist

 RxPublisher

 145

C H A P T E R 1 0

Next Steps

Once you have drafted your development plan, you have completed the modeling and design process.
While it is likely that you will revise the plan during implementation of your system, the modeling and
design process is essentially over at this point.

You can now begin implementation. For details about implementation, see the Rhythmyx Implementation
Guide.

 147

Index

A

About Modeling and Design • 7
Ally's Development Plan • 12, 51, 58, 80, 117
Assigning Properties to Fields • 61
Assigning Properties to Local Fields • 73
Assigning Properties to Shared Fields • 62, 70
Assigning Properties to Sharedimage Fields • 69

C

Choosing the Web Pages' Look and Feel • 87
Communities • 95, 105, 106
Communities and Roles • 144
Content Type • 20, 47
Content Types • 132

D

Database Publishing • 115
Decomposing Four Similar Pages • 38, 51, 73,

124
Decomposing the Events Page • 17, 44, 54
Decomposing the Image Snippet and Other

Snippets • 81
Decomposition of pages • 27, 38, 44, 81
Defining Locations and URLs • 114
Defining the Workflow Process for Content

Types • 96
Designing Communities • 105
Designing Templates and Slots • 12, 35, 48
Designing the Global Template and Managed

Navigation • 12, 85
Designing the Site's Managed Navigation • 88
Determining a Publishing Schedule • 113
Determining Fields for the Event Content Type •

52, 58, 115
Determining Fields for the Generic Content

Type • 49, 52, 54, 55
Determining Fields for the Image Content Type •

55, 69
Development Plan • 117

E

Establishing Publishing Requirements • 12, 109

Event • 16, 44, 52

F

Fields • 47, 49, 52, 55, 59, 62, 73
shared • 47, 59

G

Getting Ready for Modeling and Design • 11
Global Template • 85, 87, 136

I

Implementation Roadmap • 8, 10
Initial Assessment of Content Types • 12, 20
Initial Evaluation of the Web Site • 19
Initial Web Page Decomposition • 12, 27, 49, 64

L

Look and Feel • 87

M

Managed Navigation • 137
Managed Navigation • 85, 88, 92
Mapping Out The Site • 12, 14
Modeling and Design • 7, 10, 11, 12, 13
Modeling and Design in the Rhythmyx

Implementation Roadmap • 10

N

Next Steps • 145

O

Organizing Shared Field Sets • 59
Our Modeling and Design Sample • 13

P

Planning Community and Workflow Roles • 106
Planning Database Publishing • 115
Planning Roles, Communities, and Workflows •

12, 48, 95
Planning Site Folders for Managed Navigation •

92, 109
Preparing • 11
Preparing for Modeling and Design • 11
Process (modeling and design) • 12
Publishing • 109, 110, 113, 114, 115, 138

148 Index

Publishing/database publishing • See
Database Publishing

R

Refining Content Types and Shared Fields • 12,
47

Revisions from the Original Site • 16
Rhythmyx Implementation Roadmap • 8
Roadmap • See Implementation Roadmap
Roles • 95, 106

S

Sample used in this document • 13
Selecting the Content to Publish • 110
Shared Field Sets • 121
Shared Fields • 62

modeling and design • 47, 59
Site Folders • 92
Sites • 14

revisions in design • 16
Slots • 35
Slots and Templates • 124, 140
Steps • 12
Steps in the Modeling and Design Process • 12
System Architecture • 118
System Fields • 119

T

Templates • 27, 35, 38, 44, 81

W

Workflow • 141
Workflows • 95, 96, 106

	About Modeling and Design
	Rhythmyx Implementation Roadmap
	Modeling and Design in the Rhythmyx Implementation Roadmap

	Preparing for Modeling and Design
	Steps in the Modeling and Design Process
	Our Modeling and Design Sample
	Mapping Out The Site
	Revisions from the Original Site

	Initial Evaluation of the Web Site
	Initial Assessment of Content Types
	Initial Web Page Decomposition

	Designing Templates and Slots
	Decomposing Four Similar Pages
	Decomposing the Events Page

	Refining Content Types and Shared Fields
	Determining Fields for the Generic Content Type
	Determining Fields for the Event Content Type
	Determining Fields for the Image Content Type
	Organizing Shared Field Sets
	Assigning Properties to Fields
	Assigning Properties to Shared Fields
	Assigning Properties to Sharedimage Fields
	Assigning Properties to Local Fields

	Decomposing the Image Snippet and Other Snippets

	Designing the Global Template and Managed Navigation
	Choosing the Web Pages' Look and Feel
	Designing the Site's Managed Navigation
	Planning Site Folders for Managed Navigation

	Planning Roles, Communities, and Workflows
	Defining the Workflow Process for Content Types
	Designing Communities
	Planning Community and Workflow Roles

	Establishing Publishing Requirements
	Selecting the Content to Publish
	Determining a Publishing Schedule
	Defining Locations and URLs
	Planning Database Publishing

	Ally's Development Plan
	System Architecture
	System Fields
	Shared Field Sets
	Slots and Templates
	Content Types
	Global Template
	Managed Navigation
	Publishing
	Additional Database Publishing Details

	Workflow
	Communities and Roles

	Next Steps
	Index

