Rhythmyx

Implementing the
Relationship Engine

6.5.2

Copyright and Licensing Statement

All intellectual property rights in the SOFTWARE and associated user documentation, implementation
documentation, and reference documentation are owned by Percussion Software or its suppliers and are
protected by United States and Canadian copyright laws, other applicable copyright laws, and
international treaty provisions. Percussion Software retains all rights, title, and interest not expressly
grated. You may either (a) make one (1) copy of the SOFTWARE solely for backup or archival purposes
or (b) transfer the SOFTWARE to a single hard disk provided you keep the original solely for backup or
archival purposes. You must reproduce and include the copyright notice on any copy made. You may not
copy the user documentation accompanying the SOFTWARE.

The information in Rhythmyx documentation is subject to change without notice and does not represent a
commitment on the part of Percussion Software, Inc. This document describes proprietary trade secrets of
Percussion Software, Inc. Licensees of this document must acknowledge the proprietary claims of
Percussion Software, Inc., in advance of receiving this document or any software to which it refers, and
must agree to hold the trade secrets in confidence for the sole use of Percussion Software, Inc.

The software contains proprietary information of Percussion Software; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information and
intellectual property contained herein is confidential between Percussion Software and the client and
remains the exclusive property of Percussion Software. If you find any problems in the documentation,
please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of Percussion Software.

Copyright © 1999-2007 Percussion Software.
All rights reserved

Licenses and Source Code

Rhythmyx uses Mozilla's JavaScript C API. See http://www.mozilla.org/source.html
(http://www.mozilla.org/source.html) for the source code. In addition, see the Mozilla Public License
(http://lwww.mozilla.org/source.html).

Netscape Public License
Apache Software License
IBM Public License

Lesser GNU Public License

Other Copyrights

The Rhythmyx installation application was developed using InstallShield, which is a licensed and
copyrighted by InstallShield Software Corporation.

The Sprinta JDBC driver is licensed and copyrighted by I-NET Software Corporation.

The Sentry Spellingchecker Engine Software Development Kit is licensed and copyrighted by Wintertree
Software.

The Java™ 2 Runtime Environment is licensed and copyrighted by Sun Microsystems, Inc.

http://www.mozilla.org/source.html
http://www.mozilla.org/source.html

The Oracle JDBC driver is licensed and copyrighted by Oracle Corporation.

The Sybase JDBC driver is licensed and copyrighted by Sybase, Inc.

The AS/400 driver is licensed and copyrighted by International Business Machines Corporation.
The Ephox EditLive! for Java DHTML editor is licensed and copyrighted by Ephox, Inc.

This product includes software developed by CDS Networks, Inc.

The software contains proprietary information of Percussion Software; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information and
intellectual property contained herein is confidential between Percussion Software and the client and
remains the exclusive property of Percussion Software. If you find any problems in the documentation,
please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of Percussion Software.

AuthorlT™ is a trademark of Optical Systems Corporation Ltd.

Microsoft Word, Microsoft Office, Windows®, Window 95™, Window 98™, Windows NT®and MS-
DOS™ are trademarks of the Microsoft Corporation.

This document was created using AuthorlT™, Total Document Creation (see AuthorlT Home -
http://www.author-it.com).

Schema documentation was created using XMLSpy ™.

Percussion Software

600 Unicorn Park Drive

Woburn, MA 01801 U.S.A.

781.438.9900

Internet E-Mail: technical_support@percussion.com
Website: http://www.percussion.com

http://www.author-it.com/

Contents

Implementing Relationships in Rhythmyx 3
Components of Rhythmyx RelationShiPsocveieiiiiiiece e 4

P OPEITIES ...ttt etttk bbb bbb bbb R bR bbbt b e nn 4

ClONING ottt Error! Bookmark not defined.

L0 (01013 o TSP P TPV TP 4

=Tt TR S PP URURURRRRIN 5

Example of Relationships iN ACHION ..ottt et 6
FOrcing Items 10 PUDIIC........coiiiie e bbb 8

Advanced Example: Translations........cccccieiiiiiiiie s re e 10

L P Lo Sy g T o (o ToT= = [o SRS 13
Promotable Relationship PrOCESSINGcoviiiiiiriisieee ettt 13

Mandatory Relationships and WOIKFIOWS...........cvoiiiiiiie i 17
Relationship Dialogs 19
New Relationship TYPE WIZAIU..........ooiiiiiiieieee ettt ettt 20
RelationShip TYPE EAITONoiuiiiee bt bbbt 22
Relationship Type Editor, General Tab ..o e 23

Relationship Type Editor, Properties Tab.........ccccciviiviieiiiinc st 25

Relationship Type Editor, Cloning Tab........ccccciiiiiiiie e 27

Relationship Type Editor, Effects Tah ..ot 29

Relationship Effects Execution Contexts Dialog.........cccoceverviiiirieeieiescse e 30

RUIE EQIOF ...ttt et b e e b e bbb et b ettt sbe e et e abenrereas 31
Maintaining Relationship Types 33
Creating a BasiC RelatioNSNID TYPE ..ottt e be st nee 34
Adding Properties to the RelationShip TYPEooi i s 35
Editing Properties of a RelationShip TYPEooiiiiiiiieee e 36
Deleting a RelatioNShiP TYPE .o.vviiiiiicieiecie ettt s e e et ee s b e besaeeteeteeaeeree e enrees 37
Defining Conditions for Exits, Effects, and CloNINg ProCeSSES........cuiviviviiciieiiie et 38
Planning Clone FIeld OVEITIAES.......ccciiiiiiececeeie sttt sttt st et e besbeeteenesneeree e e e s 39
Modifying Relationship Configurations 41
Simple Reconfiguration: Adding Forced Transition to a Mandatory Relationship..........cccccoocevvieicinnnne 42
Advanced Reconfiguration: Conditional Cloning Based on the Locale of a Translationcccccc.c.... 46
Overriding Content Item Fields in Clones 51
Implementing Clone Field OVEITIAES.ccvoiiiiiiice ettt s re e e es 52
Example Implementation of Clone Field OVEITIAEScccvcviveieiciese s 53
Overriding the SYS_title FIEIcveieie e et 54

Overriding the CommUNItY FIeld...........ccooiiieiieiccc e 56

(@Y LTy g 10 [T I ANox £ o RO 57

i Contents

Writing Effects 63
TS0 0] 0] L 1 (o SRS 64
Default Relationships 71
ACTIVE ASSEIMDIY ...ttt bbbttt et b e bt e bt s bt bt e bt e aeenb e e e ebeebeebeeb e et enee e nas 72
ACEIVE ASSEMDBIY = MANUBIONY ...ttt b e bbbt e e e 74
(o] [0 G Oa] 1) (-] o OSSOSO 76
LT O o] o) PSP UUROPRTPPRTN 78
PrOMOLANIE WEISIONeiviiiiiticitie ettt bbbttt ettt e st et b et eee 80
TRANSIALION ...ttt et b e et b e ekt s bkt n bt b e s bt b e nb et b e b e te b et e b et 82
Translation - MANUALOTYccviiiiieee ettt e reese e e e e bestesrestesneeneeneeneen 85
Default Effects 89
[I N Eo AV 0] [0 (=T = i Tt OSSP 90
[SR N Fo AV 0] [0 [T O Tod 1T OSSR 91
A Ao [0 [FoT g = Io] o] o =T USSR 92
R A 1O [0 4 ot 1] £ SR 93
R A)\ 111 Y2 USRS 94
VAT (0] 1410] (=SS 95
SYS_ PUBIISHIMANUALOIYcveiiecieie ettt st teene e s e e e bentesnesresneenee e enes 96
SYS_TOUChPArentFOIAEIETTECE......c.v i e 99
SYS_UNPUBIISNIMANTALOTYoveiiiitiieiiiect bbbt 100
SYS_VAIIHALE. ...ttt bbb bbbt b et 101
SYS_VAHUALEFOIAREttt bbb bbbt 102

Index 103

CHAPTER 1

Implementing Relationships in
Rhythmyx

In Rhythmyx, a Relationship is a logical association between two Rhythmyx objects. Rhythmyx functions
that use Relationships include:

Active Assembly (the association between a Content Item and its related content is a
Relationship)

Folders (the association between a folder and a Content Item contained in it is a Relationship)

Promotable Versions (the association between the original Content Item and the new Version
is a Relationship; in this case, the Relationship has special processing, called an Effect, that
moves the original Content Item to an Archive State when the new Version becomes Public)

Globalization (when you create a new copy of a Content Item for Translation, Rhythmyx
creates a Relationship between the original and the Translation Copy; in this case, the user has
the option of specifying a Relationship that allows the two Content Items to go Public
independent of one another (non-Mandatory Relationship), or whether they must go Public
together (Mandatory Relationship).

Most commonly, the objects involved in the Relationship are Content Items, but note above that
Relationships are also used to implement the folder functionality in the Content Explorer user interface
and can be extended to incorporate other Rhythmyx objects as well.

All Rhythmyx Relationships have the following properties:

Rhythmyx only recognizes one-to-one Relationships. One-to-many, many-to-one, and many-
to-many Relationships are not valid. An object may be related to several other objects, but
each Relationship is a unique entity.

In each Relationship, one object owns the relationship (and is referred to as the owner). The
other object is the dependent in the Relationship. A dependent in one Relationship, however,
may be the owner in another Relationship. In that case, the dependent in the second
Relationship is a descendant of the owner in the first Relationship. The owner in the first
Relationship is the ancestor of the dependent in the second Relationship.

A Relationship exists as long as the owner exists and the Relationship itself is not actively
removed (such as being manually removed or automatically destroyed due to system
processing). If an object is deleted, all of its Relationships are also deleted.

4 Rhythmyx Implementing the Relationship Engine

Components of Rhythmyx Relationships

The following components comprise Rhythmyx Relationships.

= Properties (mandatory)
= Cloning options (see "Cloning™ on page 4) (optional)
= Effects (on page 5) (optional)

Properties

Relationship properties define general information about the Relationship, such as its name, its sort order,
and whether it is used in Active Assembly.

An option available for all properties of Relationships (both default properties and user-defined properties)
is to Lock the Relationship. Locking prevents processing in extensions from overriding the specified
value of the property. If a property is not specified as locked, extensions can use local values to override
specified values.

Percussion Software provides the following default properties for all Relationships:

Property Values Default | Locked | Description
Value
rs_useownerrevision yes yes Yes Defines whether to use the owner
no revision as part of the owner
locator.
rs_usedependentrevision yes no Yes Defines whether to use the

dependent revision as part of the

no dependent locator.
rs_useserverid yes yes No Specifies the user Rhythmyx uses
no when executing Effects. If the

value of this property is yes
(default), Rhythmyx uses
RXSERVER. If the value of this
property is no, Rhythmyx uses the
current user. Rhythmyx throws an
exception if the current context
does not specify a user.

You can also add custom properties (User Properties) for Relationships.

Cloning

Cloning options specify whether you can clone the Relationship when cloning the Content Item. You can
either enable or disable cloning for a specific Relationship.

Chapter 1 Implementing Relationships in Rhythmyx 5

If you enable cloning, you can specify whether to create a shallow clone or a deep clone. A shallow clone
duplicates only the Relationships to the dependents (and owners) of the Content Item you are cloning. A
shallow clone is typically used for simple copies of Content Items, such as the creation of a new
promotable Version (see "Promotable Relationship Processing” on page 13) of an Item.

A deep clone duplicates all of the Relationships associated with a Content Item, including Relationships to
descendants (dependents of dependents) and ancestors (owners of owners); for more information,
Dependency Relationship Processing. A common use of this option is to create Translation Copies of
Content Items in globalized environments, when you need to be sure that all the content associated with an
item is translated. In both cases, you can specify conditions to determine when that type of cloning is
permitted.

You can enable either shallow or deep cloning, or enable both. If you enable only one form of cloning for
a Relationship, Rhythmyx always uses that type of cloning when processing the Relationship. If you
enable both types of cloning, you must specify conditional processing to determine which type of cloning
will occur when processing the Relationship. Rhythmyx executes the first type of cloning whose
conditions evaluate as TRUE. Thus, since shallow cloning is processed before deep cloning, if a situation
where the conditions for both types of cloning evaluate as TRUE, Rhythmyx would create a shallow clone
of the Relationship, since the shallow cloning option comes before the deep cloning option.

Finally, you can specify whether to allow user-defined cloning properties to override default properties
with the same name in the Relationship.

Effects

Effects are Rhythmyx extensions available only for Relationship processing. Use Effects to provide
processing for Relationships after they have been created. (Use EXxits to provide processing when creating
Effects). An Effect defines a series of instructions executed when the Effect is triggered. The Conditions
assigned to the Effect determine when it will be triggered. A common Condition assigned to an Effect is
to trigger it only when a Content Item is Transitioning into a specific State, or when a Transition cannot
occur. For example, in a globalized environment, you might want to inform Translators when a
Translation Copy of a Content Item has been created. In that case, you would assign the Effect sys_Notify
to the Relationship, and add conditions that specified it was triggered when the command equaled
relate/create. The graphic below shows an example:

Custom Effects:

Type Rule Op

Conditional |PSX¥Paramisys_command=relate OF ..|
Conditional |PSXParamisys_command=relatelcreate

Figure 1: Example Using Conditions to Define Trigger for an Effect

6 Rhythmyx Implementing the Relationship Engine

Example of Relationships in Action

To understand how Relationships work in Rhythmyyx, lets look at some examples. Let us begin with a

simple HTML page that consists of some text and a graphic: . This page consists of two
Content Items, the system's Article Content Item that contains the text and the system's Image Content
Item that is used to manage the Image file. The two Content Items are associated through an Active
Assembly Relationship.

Article Content Item

Active Assembly
Relationship

— Al

Image Content ltem
Figure 2: Active Assembly Relationship

The Active Assembly Relationship is a very basic Relationship. It simply points to a Content Item to
insert into a Slot in a specific Variant of a Content Item. At assembly, the individual Content Items will
be formatted, then the HTML page will be formatted with a reference to the image.

Now, let us suppose we want to ensure that the Article cannot go Public unless the associated graphic is
also ready to go Public. The Active Assembly Relationship does not meet our needs because it does not
put any constraints on the two Content Items. Each can go Public independent of the other. The Article
will be Published if it is Public, but depending on the Authorization Type of the Content List, the Image
may or may not be Published.

Chapter 1 Implementing Relationships in Rhythmyx 7

To ensure that the Article cannot go Public unless the associated Image is ready to go Public, we use the
Active Assembly — Mandatory Relationship.

Article Content Item g

Pending ———m Public

Active Assembly
Mandatory Design State
Relationship
s
A

Image Content ltem
Figure 3: Active Assembly - Mandatory Relationship with Dependent not in a Public State
The Active Assembly — Mandatory Relationship includes the Effect sys_PublishMandatory:

~Effects
Direction Effect (I
Down syvs_PublishMandatary(no,) -
Down syvs_LInpublishMandatongno,)
—Descriptian

Figure 4: Configuration of the sys_PublishMandatory Relationship

8 Rhythmyx Implementing the Relationship Engine

This Effect prevents a Content Item from going Public if the associated Content Item in the Relationship is
not also Public. The Direction configured for the Effect determines whether the Effect will be triggered by
the Owner or the Dependent in the Relationship. In this case, the Direction is Down, which means the
Effect is triggered by the Owner and checks whether the Dependent is Public. Thus, in our case, if the
Image Content Item is not Public, we cannot Transition the Article to Public. The Article will wait in the
Pending State until the Image Content Item (as well as all other Dependents in Mandatory Relationships)
has entered the pending State. When all of these Dependents enter the Pending State, we will be able to

Transition the Article to Public.
Article Content ltem g

Pending ——m Public

Active Assembly
Mandatory Public

Relationship
— A

Image Content ltem

Figure 5: Active Assembly - Mandatory Relationship with Dependent in a Public State

Forcing Items to Public

Sometimes, you may want to use one action to move multiple Content Items (for example, a system's
Article Content Item and its associated Image Content Items and other Dependent Content Items) to
Public.

Article Content Item

Pending ————= Public

Active Assembly
Mandatory Pending ————m Public

Relationship
— A

Image Content ltem

Figure 6: Forcing a Dependent Content Item to Public

Whether one action Transitions multiple Content Items is controlled by the forceTransition parameter of
the sys_PublishMandatory Effect. If the value of this parameter is no, then the Dependents in the
Relationship will not be Transitioned with their Owners. If the value of this parameter is yes, then all
Dependents that use that Relationship Type will be forced to Transition along with the Owner.

Chapter 1 Implementing Relationships in Rhythmyx 9

You must also specify the name of the Transition that you want Rhythmyx to use to Transition the
Dependent Content Item. In the case of the Active Assembly — Mandatory Relationship, since the
Direction is Down, you must specify a value for the dependentTransitionName parameter. (NOTE: If
you do not specify a Transition, Rhythmyx uses the Default Transition from the State to make the
Transition.) The following graphic shows an example reconfiguration:

effects x|

Effects [%] oK

relationshipfsys_PublishMandatony

A
W ove Cancel
x|

Help

~Parameters

MHame Walue
farceTransition Ve S -n|

mwnerTransitiontlame

dependentTransitiontarme

Ad

—Description

This is the internal name of the transition to use if
the dependent needs to be transitioned. If not supplied,
the first transition with the 'default' property [(in
alpha order) is used.

Figure 7: Reconfiguration of the sys PublishMandatory Relationship to a force a Dependent Content Item
to Public

With this configuration, if all Dependent Content Items have reached a Pending State (the State prior to
the Public State), transitioning the Article Content Item to Public will force all of the Dependent Content

Items in the Pending State to Public as well.

10 Rhythmyx Implementing the Relationship Engine

Advanced Example: Translations

Let us now assume that we work in a internationalized environment, and we want to translate our Content
Item into French and Japanese. Let us also assume the following:

= We do not need a different graphic when we translate to French, but we do need a different
graphic when we translate to Japanese.

= QOur system includes an Article Content Type

= The English Article Content Item can go Public regardless of the current State of the Japanese
Translation.

= The English Article Content Item can only go Public if the French Content Item is ready to go
Public as well.

To meet these differing objectives, we will use the Translation — Mandatory Relationship to create the
French translation, but we will use the Translation Relationship to create the Japanese translation.

Note that to accomplish these objectives, we also need a slight modification to the default configuration of
the Cloning properties of the Active Assembly Relationship. The default Cloning properties of the Active
Assembly Relationship call for deep cloning (cloning of both the Relationship and the associated Content

Item) if cloning is triggered by a Relationship in the Translation Category.

For the purpose of this exercise, we will assume that this condition has been removed. Instead, we will
assume conditions based on the Locale of the Translation Content Item:

= If the Translation goes to the French Locale, Rhythmyx will shallow clone the Active
Assembly Relationship.

= If the Translation goes to the Japanese Locale, Rhythmyx will deep clone the Relationship.

Using the Translation - Mandatory Relationship to Create the French
Translation Content Item

To create the French Translation, we use the Create > Translation - Mandatory action in Content
Explorer. This action clones our English Article Content Item, and links the English Article (Owner) to
the clone (Dependent) using a Translation — Mandatory Relationship. The Relationship links the English
Content Item to its French Dependent so you can use Impact Analysis to track it. The Relationship also
prevents the creation of more than one Translation Dependent for any Locale in the system.

Like the Active Assembly — Mandatory Relationship, configuration of the Translation — Mandatory
Relationship includes the sys_PublishMandatory Effect. The Direction specified for the Effect in this case
is Up, which prevents the English Content Item from going Public unless the French content Item is
already public.

As noted above, we have changed the cloning properties of the Active Assembly Relationship to create a
shallow clone in the French Locale. Both the English Content Item and its French Dependent will use the
same graphic.

Chapter 1 Implementing Relationships in Rhythmyx 11

The following graphic illustrates the French Translation:

Publish only
English Article . if FrlE'”‘"‘h _
Content Item et e L
Fublic

[
I
I
I
I
I
I
I
I
4

Active Assembly |
Relationship

Image
- Content Item

r

|

|

Translation - Mandatony | Active

Relationship I Assembly
: Relationship
|
|
|

— =

1t

Fublish Mow

French Article
Content ltem

Figure 8: Creating the French Translation Content Item

Using the Translation Relationship to Create the Japanese Translation
Content Item

To create the Japanese Translation, we use the Create — Translation action in Content Explorer. As in the
French example, this action clones the English Article Content Item and links the English Article to the
clone, but this time uses Translation Relationship. Unlike the Translation — Mandatory Relationship, this
Relationship does not include the sys_PublishMandatory Effect. Therefore, the two Content Items can go
Public regardless of the State of the other Content Item in the Relationship.

As noted above, we have changed the cloning Properties of the Active Assembly Relationship to create a
deep clone in the Japanese Locale. Thus, when Rhythmyx clones the Active Assembly Relationship from
the English Content Item, to its graphic, it also clones the Image Content Item. This clone of the Active
Assembly Relationship points to the cloned image Content Item.

12 Rhythmyx Implementing the Relationship Engine

The following graphic illustrates the Japanese Translation:

Enaglish Article

tent It
Content ltem Publish now

fii

Active Assembly :
Felationship

English
Image
Content Item

Translation
Relationship
i L
— Publish Now
Japanese Article | ——
Content Item |
|
|
|
|
: = Japanese
______ ... Image
Active i\ Content Item
Assambly
Relationship

Figure 9: Creating the Japanese Translation Content Item

Chapter 1 Implementing Relationships in Rhythmyx 13

Relationship Processing

Relationships are created in two ways. Users may add Relationships explicitly through their actions. For
example, a user that creates an Active Assembly association is creating a Relationship. Similarly, a user
that assigns a Content Item to a folder in Content Explorer is also creating a Relationship. Rhythmyx can
also create Relationships automatically. A Workflow Action, for example, might create a Relationship by
creating a new Translation Copy of a Content Item.

Rhythmyx uses three tables to manage and store Relationships. The PSX_RXCONFIGURATIONS table
stores configurations for Relationship Types. The Relationship records themselves are stored in the
PSX_RELATIONSHIPS table. The PSX_RELATIONSHIPPROPERTIES table stores additional
attributes used to process Relationships.

Several Rhythmyx subsystems (such as Workflow or Content Editors) can process Relationships, but all
processing is generic, independent of the subsystem in which the processing occurs. The properties of a
Relationship can determine when and how it is processed, but the majority of the processing is defined by
the Effects associated with the Relationship, which define the processing that occurs, and by the
conditions that trigger those effects. Effects may be triggered at the following times:

= When the Relationship is created or destroyed;
= When a Content Item is checked in or checked out;
= When a Content Item is Transitioned from one State to another;
= When a Content Item is cloned.
The points when an Effect may be triggered are called execution contexts. Each Effect must specify the

execution context for which it runs. In the example Effect (on page 64), the execution context is
Transitions, as defined by the following code:

Promotable Relationship Processing

A Promotable Relationship is a Relationship between a Content Item (Owner) and a clone (Dependent) of
the item in which the clone will supersede the original when the clone becomes Public. The clone is
typically called a new Version of the owner.

The sys_Promote Effect is used to implement Promotable Relationships processing. When the Dependent
Content Item enters a Public State the first time, the sys_Promote Effect replaces the Owner with the
Dependent. To execute the replacement:

= The Owner is Transitioned, using either the Transition specified in the transitionName
parameter of the sys_Promote Effect or the default Transition from the Public State. The
Transition used should move the original Owner to an Archive State.

= Updates all Relationships in which the Owner in the Promotable Relationship was specified as
the Dependent to specify the newly-promoted Dependent in the Promotable Relationships as
the Dependent.

14 Rhythmyx Implementing the Relationship Engine

= Removes all Clonable Relationships from the Owner in the Promotable Relationships.

= Updates all other Relationships that specified the Owner in the Promotable Relationships as
the Owner to specify the newly-promoted Dependent in the Promotable Relationship as the
Owner.

To illustrate how Promotable Versions work, let us examine the following sequence.

Let us begin with a Content Item that is currently Public. In general, Promotable Versions are most useful
when you want to make a significant change to a Content Item that is already Public, such as major
revision of the text of the Content Item. For minor revisions, such as correcting misspelled words, you
would use the Quick Edit Transition to make the Content Item editable briefly while you make the
correction. If the Content Item has not yet become Public, you would make the changes directly to the
Item itself rather than creating a new Promotable Version of the Item.

For our purposes, our Public Content Item is Item 742 in the graphic below. Item 742 was created by
copying Content Item 507 (Item 507 is the New Copy Owner of Item 742; Item 742 is the New Copy
Dependent of Item 507) . In addition, another copy of Item 742 was created (Item 823; Item 742 is the
New Copy Owner of Item 823; Item 823 is the New Copy Dependent of Item 742) for other reasons. In
addition, we have a Translation of Item 742 into French.

Item 742 is the Dependent in an Active Assembly Relationship, with Content Item 498 as it’s Owner.
Item 742 itself owns an Image in an Active Assembly Relationship.

The following graphic illustrates the current Relationships of Content Item 742:

B —— Promotable Version

—————— - Active Assembly
- Mew Copy

——— i — Translation

—_———— Folder
Folder ™ ltem 742
(Public)
. E
- i \
I
=7 i \
- Fs
Activa &
Aszambl
li}'«-neryI French New Copy SEW C;P!-'l
: Image Translation Qwner vl
(Iterm 489) ltam 507 Itesrn 832

Figure 10: Initial Relationships of Item 742

Chapter 1 Implementing Relationships in Rhythmyx 15

When we create a new Promotable Version of Item 742, a clone of Item 742 (Item 914) is created, and the
Active Assembly Relationship between Item 742 and its Active Assembly Dependent image is also
cloned, as illustrated in the following graphic:

 — Promotable Version
______ - Active Assembly
- Mew Copy
——— e Translation
—_———— Folder
Folder ™ item 742
(Public)
- -
Activa -
Aszambl
i:r.'«-nlﬁer}I French New Gopy S&Egg: t
(Item 489) Translation Owner ltem 832
] Iterm 507 ol

Iterm 914
(Promotable Version
Dependent
of Itam 742)

Figure 11: Relationships following the Creation of the Promotable Version Content Item (914)

When the Promotable Version Content Item (914) goes Public, Item 742 is Transitioned to the Archive
State. The Active Assembly Relationship in which Item 742 was the Dependent is now re-pointed to
make Item 914 the Dependent. The clonable Active Assembly Relationship between Item 742 and its
Dependent image is deleted. The Active Assembly Relationship between Item 914 and the Image (which
was a clone of the Relationship between Item 742 and the image) is not changed. When Item 914 is
Published, the image will be included.

The remaining Relationships to Item 742 are re-pointed to Item 914. Thus, in the New Copy Relationship
to Item 507, in which Item 742 was the Dependent, Item 914 is now the Dependent. At the same time, the
New Copy Relationship to Item 832 and the Translation Relationship to the French Translation, in both of
which Item 742 was the Owner, Item 914 is now the Owner.

16 Rhythmyx Implementing the Relationship Engine

The following graphic illustrates the state of all Relationships after all Promotable Version processing is
complete.

——. Promotable Version

______ - Active Assembly
- Mew Copy

——— e — - Translation

— ————» Folder
Folder ™ ltem 742
(Public)
Active
Assambl
D.\-nery French New Copy Sﬂfgg: t
Image Translation Qwner P
(Iterm 489) lterm BT Itesrn 832
=
\ A
A |
b
, \ .'f
LY
. . /
\‘ Item 914
(Promotable Version
Dapandent
of ltem 742)

Figure 12: Relationships following the promotion of Content Item 914 to Public

NOTE: While you can create multiple Versions (promotable clones) of a Content Item, only the first
clone to be Transitioned to Public will supersede the Owner. Any other promotable clones that are
Transitioned to Public will be made Public as if they were not in a Promotable Relationship (nhone of the
other Relationships will be re-pointed and the promoted Content Item will not supersede the currently
Public item. Note that a superseded Owner that is returned to Public acts in the same manner as a
competing clone; it becomes Public as if it were not in a Promotable Relationship, none of the other
Relationships are re-pointed and it does not replace the currently Public Content Item.

Chapter 1 Implementing Relationships in Rhythmyx 17

Mandatory Relationships and Workflows

If you choose to implement a mandatory Relationship, you must pay special attention to your Workflows.

Since mandatory Relationships require that the Owner and Dependent in the Relationship both go Public
together, a poorly designed Workflow can allow content to become trapped, unable to progress to Public.
Best Practice when designing Workflows that might be used by a mandatory Relationship is to include
“pending” State immediately prior to the Public State. This State acts as a marshalling area for Content
Items for which all work is effectively complete and which are ready to go Public, but which must wait for
Dependent Content Items to reach the same State before they can make the final Transition to Public.

Another issue to consider is whether you want to force Transitions on Content Items. You might want to
force Transitions in two cases:

= Several Content Items are waiting in a “pending” State. When you Transition one of them,
you want to Transition all of them.

= A Content Item is in a “pending” State, but it’s Dependent is not there yet. You want both to
go Public regardless of the current State of the Dependent Content Item.

To facilitate forced Transitions, you need to specify one of the Transitions from a State as the Default
Transition. To make a Transition the Default Transition, choose Y from the Default Transition drop list
on the when defining the Transition on the Edit Transition page in Content Explorer. (Note: If you
specify more than one Transition as the Default Transition from a State, Rhythmyx uses the first
Transition from the State in alphabetical order among those specified as a Default Transition.)

You will need an Effect to implement your forced Transition. For example of an Effect that forces a
Transition, see the sys_PublishMandatory Effect (see "sys_PublishMandatory" on page 96).

19

CHAPTER 2

Relationship Dialogs

The Rhythmyx Workbench provides two dialogs for maintaining Relationship Type:

= The Relationship wizard (see page 20) is used to create new Relationships

= The Relationship Type editor (see page 22) is used to complete a Relationship Type or to
change its configuration
Another dialog, the Relationship Effects Execution Contexts dialog, is used to define the processing
context in which the Relationship Effect processing will occur.

20 Rhythmyx Implementing the Relationship Engine

New Relationship Type Wizard

The New Relationship Type wizard allows you to create a new Relationship type object that appears in the
System Design view; however, the Relationship is not usable until you complete the Relationship Type
editor.

To access the New Relationship Type wizard:

= In System Design view, right-click on the Relationship Types folder and choose New >
Relationship Type.

= From the Menu bar choose File > New > Other. In the Select a Wizard dialog, choose
Relationship Type.

¥ New Relations hip Type

Create new Relationship Type

€3 Mame is a required field,

Relationship Tvpe name: |

Label: |

Descripkion:

Cateqory |ackive Assembly

< Back | |

Figure 13: New Relationship Type Wizard

Field Definitions
Relationship type name - Required. System name for Relationship type.

Chapter 2 Relationship Dialogs 21

Label - Required. Name displayed to users for Relationship type.
Description - Description of Relationship type.

Category - The category of the Relationship. Options are Active Assembly, New Copy, Folder, Promotable
Version, Translation.

Display Name Internal Name
Active Assembly rs_activeassembly

NOTE: Relationships in this Category
require the following User Properties:
sys_slotid, sys_variantid, and sys_sortrank.

New Copy rs_copy
Folder rs_folder
Promotable Version rs_version

Translation rs_translation

22 Rhythmyx Implementing the Relationship Engine

Relationship Type Editor

Although the Relationship Type object is completed in the New Relationship Type wizard, the
Relationship Type editor includes the fields required to make it functional. Users also use the Relationship
Type editor to edit existing Relationship Types.

To access the Relationship Type editor:

= After completing the New Relationship Type wizard (see page 20), click [Finish].
= Right-click on the Relationship Type object in any view that displays it and select Open.

= Double-click on the Relationship Type object in any view that displays it.
Using the Relationship Type editor, you can:

= Add properties to the Relationship Type (see "Adding Properties to the Relationship Type"
on page 35)

= Edit properties of the Relationship Type (see "Editing Properties of a Relationship Type" on
page 36)

The Relationship Type editor includes four tabs:

= General tab (see "Relationship Type Editor, General Tab™ on page 23)

= Properties tab (see "Relationship Type Editor, Properties Tab" on page 25)

= Cloning tab (see "Relationship Type Editor, Cloning Tab" on page 27)

= Effects tab (see "Relationship Type Editor, Effects Tab" on page 29)

Chapter 2 Relationship Dialogs 23

Relationship Type Editor, General Tab

When a Relationship type opens in the Relationship type Editor, the General tab displays the values of
common Relationship properties for this Relationship type.

Use this tab to:

= add general properties of the Relationship type (see "Adding Properties to the Relationship
Type" on page 35).

= edit general properties of the Relationship type (see "Editing Properties of a Relationship
Type" on page 36).

T Activedssembly X = 0

Relationship Type name: ActiveAssembly

Relationship Tyvpe label: Descripkion:
| Active Assembly

Cateqaory: J Relationship Type properties:
[ame

ORRKOR|=

Use owner revision
Use dependent wersion
Lse server ID

Local dependency

Skip promokion

Property description:

Defines whether or nok ko use the owner revision as
part of the owner locator,

General | Properties | Cloning | Effects

Figure 14: Relationship Type editor, General tab

24 Rhythmyx Implementing the Relationship Engine

Field Definitions
Relationship Type label - Required. Name displayed to users for Relationship type.

Category - The category of the Relationship. Read-only for system Relationships. For a list of default
categories, see New Relationship Type wizard (see page 20).

Description - Description of Relationship type.
Relationship Type Properties
Use owner revision - Specifies whether to use the owner's revision ID as part of the owner locater key.

Use dependent revision - Specifies whether to use the dependent's revision ID as part of the dependent
locater key.

Use server ID - Specifies whether to use the server ID (rxserver) for executing effects. If set to No, the
current user is used instead of the server ID.

Local dependency - Specifies whether the Multi-Server Manager should treat the dependent as a local
dependency. (See the Rhythmyx Multi-Server Manager documentation for more information.)

Skip promotion - Specifies whether to repoint the Relationship to the depended object in a Promotable
Version Relationship when the depended it promoted to Public. If checked, the Relationship is not
repointed. If unchecked, the Relationship is repointed.

Property Description - Read only. Description of the selected Relationship Type Property.

Chapter 2 Relationship Dialogs 25

Relationship Type Editor, Properties Tab

The Relationship Type editor Properties tab displays custom properties assigned to the Relationship Type.
Use these properties for processing custom effects.

Note: Effects are extensions that execute during a Relationship's life cycle. For more information about
effects, see the document Implementing the Relationship Engine.

Use this tab to:
= add custom properties to the Relationship Type (see "Adding Properties to the Relationship
Type" on page 35).

= edit custom properties of the Relationship Type (see "Editing Properties of a Relationship
Type" on page 36).

T Activefssembly X =0

Relationship instance properties:

| Name | Value |

 rs_inlinerelationship

sys_folderid

sys_siteid

sys_slotid

sys_sortrank 1
sys_variantid

Property description:

Marks a relationship as an inline link relationship, It's value is the field name and possibly the
row id. IF this praperty is missing (null or empty), the relationship is nat treated as inling link
relationship.

General |Properties | Cloning | Effects

Figure 15: Relationship Type editor Properties tab

26 Rhythmyx Implementing the Relationship Engine

Field Definitions
Relationship instance properties - Table of custom properties for Relationships.

Name - The name of the property.
Value - Value of the property, if a value is assigned.

Property Description - Description of the selected Property.

Chapter 2 Relationship Dialogs 27

Relationship Type Editor, Cloning Tab

The Relationship Type editor Cloning tab displays rules and conditions for cloning (copying) in the edited
Relationship Type.

Use this tab to
= set cloning rules and conditions (see "Adding Properties to the Relationship Type" on page
35)
= edit cloning rules and conditions (see "Editing Properties of a Relationship Type" on page
36)
T Translation X =0
Clu:-ning_
r Condition, ..

I Deep cloning Condition. ..

i

Clone Field overrides:

Field | LDF | c

sys_title sys_CloneTitle([{0}] Copy of {1}, ... C

sys_communityid sys_clonewerrideField], fsvs_krFi... C
i
C

sya_wiorkflowid sys_cloneCwerrideField(. . fsvs_trFi...
sys_lang sys_Likeral(PSkSingleHtmlParamet. .

Description:

This LIDF Formats a content ikem kitle For a new clone, It gueries CMS relationships in order
to determine how many clones already exist of an original itern [owner, then, given java
MessageFormat string with or without insertion items and one or more dynamic parameters,
formats the final title For a new cloned ikem, <pre= <p:= Parami: (required)
MessageFaormat string, ie: [{0F]Copy $clone_count of {1} where: <px= {0} wil be
replaced by a replacement value supplied ko this UDF in a Paramz, which For example
could be a sys_lang html param, <p> $clone_count is a special keyword, if present
then this UDF will replace it with a number that represents a number of clones, or with
an empky string if there are no cones yek {creating a first clone), <p> {1} wil be
replaced by a replacement value supplied ko this UDF in a Param3, which For example
could be a sys_title html param, <p= Finally the result For the above example could ook
like this: [Fr-Fr]Copy of myContent <px Paramz; (required if {0} is used) any replacemant
wvalue that will be inserted intao insert ikem {0}, <p> Param3: (required if {1} is used) any
replacement value that will be inserted into insert item {1}, <p=>etc. </pre= Note: if

General | Properties | Cloning | Effects

Figure 16: Relationship Type editor Cloning tab

28 Rhythmyx Implementing the Relationship Engine

Field Definitions

Shallow cloning - Clone Relationships to dependents, and only make a copy of the original Content Item.
In the cloned Relationships, point to the original dependent Content Items.

[Condition] - Activates the Rule Editor to specify conditional properties for cloning condition.

Deep cloning - Clone Relationships to descendants (dependents and their dependents, and so on). Make a
copy of the original Content Item and each descendant. In the cloned Relationships, point to the copies of
the descendants.

[Condition] - Activates the Rule Editor to specify conditional properties for cloning condition.

Clone field overrides - The values in this table define which system fields have new values set in the cloned
Relationship and how that value is set.

Field - Specifies a field for which to set a new value. Clicking in the field activates a drop list. Options
are all system fields.

Udf - Specifies the UDF that is used to define the new value for the field. Options are all UDFs registered
in the system.

C - Activates the Rule Editor to specify conditional properties for activating the field override.
Description - Read only. Description of the selected clone process.

Chapter 2 Relationship Dialogs 29

Relationship Type Editor, Effects Tab

An effect is a Java extension that runs at some point in a Relationship's lifetime (for example, when a
certain transition occurs, an effect may cause users in certain Roles to be notified). The Relationship Type
editor Effects tab lists the effects associated with a Relationship and the conditions (contexts) under which
they are executed.

Use this tab to:
= Add the effects associated with a Relationship and the conditions under which they are
executed. (see "Adding Properties to the Relationship Type" on page 35)

= Edit the effects associated with a Relationship and the conditions under which they are
executed. (see "Editing Properties of a Relationship Type™ on page 36)

T FolderContent X o
Relationship effects;
Execution Conkesxt J Direction | Effeck | C
Pre-Construction,Pre-Destruction Down sys_TouchParentFolderEffect) C
Pre-Construction,Pre-Destruction Either rxs_MavFolderEffect() C
an
£ | >
Description:
This effect is used to touch the items that are the dependents of a Folder relationship,
This effect is meant to be run in the contexts of {@link
IPSExecutionContext#RS_PRE_COMSTRUCTION! and {@link
IPSExecutionContext#RS PRE _DESTRUCTIONY, It will only touch the dependents who
are in public or guick-edit state, It "touches" the last modified date for the dependents
and their fctive Assembly relationship parents, so that they will be picked up by the
nexk incremental publishing, For Folder dependents, it touches all ikem descendents of
the folders, but not the Folder themselkves,
General ' Propetties | Cloning | Effects

Figure 17: Relationship Type editor Effect tab

30 Rhythmyx Implementing the Relationship Engine

Field Definitions
Relationship effects - Table of effects for this Relationship.

Execution Context - Condition that triggers execution of the effect. Click [...] to choose the execution
context in the Relationship Effects Execution Context dialog (see "Relationship Effects Execution
Contexts Dialog" on page 30).

Direction - Specifies when to trigger the Effect. Options are: Down (triggers the Effect only when the
Content Item activating the Effect is the Owner in the Relationship), Up (triggers the Effect only when the
Content Item activating the Effect is the Dependent in the Relationship), and Either (triggers the Effect
regardless of which Content Item activated the Effect).

Effect - The name of the Effect. When you click in a blank field, Rhythmyx displays a drop list showing
all Effects not currently associated with the Relationship. When you click [...], the Exit Properties dialog
opens.

See the document Implementing the Relationship Engine for information about the default effects that
Rhythmyx provides.

C Click on the (=] icon to activate the Rule Editor to specify conditional properties for running the effect.

Description - Read only. Displays the description of the selected Effect.

Relationship Effects Execution Contexts Dialog

The Relationship Effects Execution Contexts dialog allows you to specify the Execution Contexts in
which an Effect will be invoked for the Relationship. Execution Contexts determine when the associated
Effect will be invoked. The following Execution Contexts are available:

= Pre-Construction

The Effect will be invoked before a Relationship of this Relationship Type is constructed.
= Pre-Destruction

The Effect will be invoked before a Relationship of this Relationship Type is destroyed.
= Pre-Update

The Effect will be invoked before the data for a Relationship of this Relationship Type is
updated.

= Pre-Clone

The Effect will be invoked before creating a clone of a Content Type that includes a
Relationship of this Relationship Type.

= Pre-Workflow

The Effect will be invoked before executing a Workflow Transition
= Post-Workflow

The Effect will be invoked after executing a Workflow Transition.
= Pre-Checkin

The Effect will be invoked before checking in a Content Item that includes a Relationship of
this Relationship Type.

Chapter 2 Relationship Dialogs 31

= Post-Checkout

The Effect will be invoked after checking out a Content Item that includes a Relationship of
this Relationship Type.

To access this dialog. click in the Execution Contexts column in a row on the Effects (see "Relationship
Effects Execution Contexts Dialog" on page 30) tab of the Relationship Type editor, then click the browse
button.

Iﬁi Effect Execution Contexts

iy g Ised conkexts:
Past-Checkaut
Post-iiarkflow
Pre-Checkin
Pre-Clone
Pre-Construction
Pre-Destruckion
Pre-lJpdate
Pre-wiorkflow

Ik | Cancel

Figure 18: Relationship Effects Execution Contexts dialog

Field Definitions
Available contexts table - lists all unused Contexts.

Used contexts table - lists all Contexts in which the Relationship will be used.

Use the arrow keys to move Contexts to or from the Used Contexts table. Click [OK] to save the Used
Contexts and return to the Effects (see "Relationship Effects Execution Contexts Dialog" on page 30) tab
of the Relationship Type editor

Rule Editor

Use the Rule Editor to specify the conditions that trigger an Exit or Effect, or that permit a specific type of
Cloning.

You can write simple Rules in the Rule Editor itself. For example, you can write a rule that tests an
HTML parameter against a literal value right in the Rule Editor. However, more complicated Rule,
particularly Rules that require reference to other objects in the system, may require an Extension. For
example, if you wanted to evaluate whether a Slot contains a certain number of Content Items, the Rule
Editor does not have the facilities to perform the check. You would have to write an extension to evaluate
this rule. The extension must be a UDF that generates a boolean value (in other words, either TRUE or
FALSE.

32 Rhythmyx Implementing the Relationship Engine

To access the Rule Editor, double click on the |:| icon in the C column on the Cloning, Exits, or Effects
panel of the Relationship Editor.

Rule Editor]|

Type Rule Qp

]2 Cancel Help |

Figure 19: Rule Editor
Columns
Type Drop List. Specifies the type of Rule. Two options are available: Condition and Extension.

Rule Defines the Rule. If the Type is Condition, you must specify the conditions to me met (for example,
psx-locale=fr=fr) in this column. Use the Conditional Property dialog to specify the conditions. If the
Type is Extension, you must specify the extension to produce the result. The extension must result in a
boolean value (in other words, either TRUE or FALSE).

Op Specifies a boolean operator to join multiple rules. Options are AND or OR, or null.

33

CHAPTER 3

Maintaining Relationship Types

You can create (see page 34), modify (see page 36), or delete (see page 37) any Relationship under the
User node of the Relationship Editor. You can modify Relationships under the System node, but you
cannot add new Relationships to this node or delete Relationships from it.

Most Relationships define an association between Content Items. If you want users to be able to act on
the Relationship, you need to create a new Action Menu Entry for the Relationship. For details, see
"Customizing Action Menus" in Implementing the Rhythmyx Business User's Interface.

34 Rhythmyx Implementing the Relationship Engine

Creating a Basic Relationship Type

To enter the minimum amount of information to create a Relationship Type that appears in System Design
view, complete the New Relationship Type wizard.

For a graphic of the wizard and definitions of the fields discussed below, see New Relationship Type
Wizard (see page 20).

To create a Relationship Type:

1

o O b~ W

In System Design view, right-click on the Relationship Types folder and choose New >
Relationship Type.

The New Relationship Type wizard opens.

In Relationship Type name, enter an internal name for the Relationship Type.
The Relationship Type name is automatically entered in Label.

Optionally, change the display name in Label.

Optionally, in Description, enter a description for the Relationship Type.

In Category, choose a category for the Relationship.

Click [Finish].

The Relationship Type is created and appears in the Relationship Types section of the System
view. The New Relationship Type wizard closes and the Relationship Type editor (see page
22) opens.

Now you can:

configure properties of the Relationship Type (see "Adding Properties to the Relationship
Type" on page 35) in the Relationship Type editor.

close the Relationship Type editor, and use the default properties for the Relationship or
continue configuring the Relationship Type at a later time.

Chapter 3 Maintaining Relationship Types 35

Adding Properties to the Relationship Type

For graphics of the Relationship Type editor, instructions on opening it, and definitions of the fields
discussed below, see the Relationship Type Editor (see page 22) section including the topics on each tab.

To add properties to a Relationship:

1 Inthe Relationship Type editor, click the General tab (see "Relationship Type Editor, General
Tab" on page 23).

Check any of the Relationship Type properties that you want to apply to the Relationship
Type. Uncheck any of the Relationship Type properties that are checked by default.

2 Click the Properties tab (see "Relationship Type Editor, Properties Tab" on page 25). Add
any custom properties to be used when processing effects. For each property enter a Name,
and Value, and optionally a Property Description.

3 Click the Cloning tab. To clone the Relationship when an item is copied, check Allow cloning.

a)

b)

c)

To allow shallow cloning, check Shallow cloning. To include a condition when Shallow
cloning occurs, click [Condition] and fill in the Rule editor.

To allow deep cloning, check Deep cloning. To include a condition when Deep cloning
occurs, click [Condition] and fill in the Rule editor.

To set new values for system fields in the cloned copies, fill in the Clone field overrides
table:

0 Inthe Field column, choose a system field.
o In the Udf column choose a UDF to define the new value for the field.

0 Click in the C column to open the Rule Editor for specifying the condition
under which the field is overridden with the value that the Udf generates.

4 Click the Effects tab. Enter effects for the Relationship Type in the Relationship effects table.
For each effect that you enter:

d)

e)
f)

9)

In Execution Context, click [...] to display the Relationship Effects Execution Context
dialog (see "Relationship Effects Execution Contexts Dialog™ on page 30) and move the
Execution Contexts in which you want to invoke the Effect for Relationships of this
Relationship Type from the Available contexts field to the Used contexts column.

In Direction, choose when to trigger the effect.

In Effect, choose an effect. Click [...] to open the Exit Properties dialog. Add parameters
for the effect if required.

In C, click on the [ZTicon to activate the Rule Editor to specify conditional properties for
running the effect.

5 Save and close the Relationship Type editor.

Now you can:

= Associate the Relationship Type with a Menu Entry.

36 Rhythmyx Implementing the Relationship Engine

Editing Properties of a Relationship Type

When you edit a Relationship Type, you can modify any of the information accessible from the
Relationship Type editor.

For graphics of the Relationship Type editor and definitions of the fields discussed below, see the
Relationship Type Editor (see page 22) section including the topics on each tab.

To edit a Relationship Type:

1

Right-click on the Relationship Type object in the System Design View and select Open.
The Relationship Type editor opens.

On the General tab (see "Relationship Type Editor, General Tab" on page 23), you can
change:

Relationship Type label

Category (you cannot change the Category of a System Relationship)

Description

Relationship Type properties

On the Properties tab (see "Relationship Type Editor, Properties Tab" on page 25) you can:
= Change the Name, Value, Type, and Property Description of any property.
= Choose the row for any property and click [X] to delete it.

On the Cloning tab you can:

o0 Check or uncheck Shallow cloning and/or click [Condition] to edit the
condition under which it is applicable in the Rule Editor.

0 Check or uncheck Deep cloning and/or click [Condition] to edit the condition
under which it is applicable in the Rule Editor.

0 Add, edit, or remove Clone field overrides for system fields. Change any of the
values under Field and UDF in the table or click the C column to edit the
condition under which the override is applicable in the Rule Editor.

5 On the Effects tab (see "Relationship Type Editor, Effects Tab" on page 29) you can:

= Change the Execution Context, Direction or Effect for any effect or click the C column
to edit the condition under which the effect executes in the Rule Editor.

= Add an effect in the first empty row. See Adding Properties to a Relationship Type
(see "Adding Properties to the Relationship Type" on page 35) for information on
adding an effect.

= Select an effect and choose [*] or [V] to change the order in which it is executed.

= Select an effect and choose [X] to remove it.

6 Save and close the editor.

Chapter 3 Maintaining Relationship Types 37

Deleting a Relationship Type

To delete a Relationship Type:

1 In System Design view, right-click on the Relationship Type and choose Delete.

The Relationship Type is deleted.

38 Rhythmyx Implementing the Relationship Engine

Defining Conditions for Exits, Effects, and
Cloning Processes

When adding an an Effect to a Relationship, you can specify conditions that trigger that extension. You
can also define conditions for both the deep and shallow cloning processes.

To define conditions for an extension or cloning process:

1 Double-click the (=] icon in the row of the Effect or cloning process to which you want to add
conditions.
Rhythmyx displays the Rule Editor.

2 Toadd a Rule as a Condition:
a) In the first blank row on the Rule Editor, click in the Type field and choose Conditional.
b) Double click in the Rule column of the same row to activate the Rule field.
¢) Click on the browse button (...).
d) Rhythmyx displays the Conditional Properties dialog.

e) Click in the Variable column, then click the browse button to display the Value Selector.
Specify the Value for the Variable.

f) Inthe Op column, choose an operator.

g) Click the Value column, then click the browse button to display the Value Selector.
Specify the Value for the Value.

h) If you want to add another condition, click in the bool field and choose the boolean
operator for the additional condition. Options are AND and OR. Note that if you add
multiple conditions on this dialog, they are treated as a single Rule on the Rule Editor. In
other words, the result of the entire set of conditions is treated as the result of the Rule.

i) Click [OK] to save the condition.
3 To specify an Exit to process the Rule:
a) In the first blank role on the Rule Editor, click in the Type field and choose Extension.

b) Double-click in the Rule field of the same column and select the extension you want to
use for the Rule. The extension should be a UDF that generates a boolean result (in other
words, eithe TRUE or FALSE).

4 If you want to add another Rule, click in the Op column of the Rule and choose the boolean
operator you want to use to process the additional rule. Options are AND and OR.

5 Click [OK] to save your rules.

Chapter 3 Maintaining Relationship Types 39

Planning Clone Field Overrides

Before implementing clone field overrides, decide which fields you want to override and how you want
them to change. Only system fields (fields defined in the ContentEditorSystemDef.xml) are eligible for
override; fields defined in shared and local definition XML files are not eligible to be overridden.

Some typical overrides are:

Name Internal Name Common Change
Community sys_communityid Change the ID to put the Content Item in a new Community.
Workflow sys_workflowid Change the ID to put the Content Item into a different Workflow.

(You generally don’t have to change the State because clones are
always created in the initial State of any Workflow.)

Locale sys_lang Change the Locale of the Content Item.

Title sys _title Add some form of increment to the title to indicate where in the
sequence of clones it falls. For example, you may want the title to
include the phrase “Copy X of Y copies”.

Rhythmyx ships with two UDFs that can perform these simple overrides:

= sys cloneFieldOverride
This UDF calls a Rhythmyx resource that generates an XML document from which you
can derive new values for a field.

= sys CloneTitle

This UDF adds text to the title of the clone indicating where in the sequence of clones it
falls; for example, “Copy X of Y™
If you want a more complicated override than these UDFs provide, you will need to write your own UDF
to perform the override processing.

41

CHAPTER 4

Modifying Relationship
Configurations

The Rhythmyx installation provides a number of default Relationships that help the system operate.
These default Relationships should generally meet your needs, but you will probably want to reconfigure
them to match the functionality you want in your Content Management System.

42 Rhythmyx Implementing the Relationship Engine

Simple Reconfiguration: Adding Forced
Transition to a Mandatory Relationship

To illustrate a simple reconfiguration, let us modify the default Active Assembly — Mandatory
Relationship to force associated Content Items to Public.

Mandatory Relationships are Relationships in which both Content Items in the Relationship must go
Public together. Mandatory Relationships are implemented through the sys_PublishMandatory and

sys_UnpublishMandatory Effects. These Effects provide the processing that determines whether the
Content Items in a Relationship can go Public.

In the default Active Assembly — Mandatory, these are the only two Effects assigned. The Direction
configured for each is Down. In other words, if a Content Item has an Active Assembly — Mandatory
Relationship to another Content Item, when the Owner in the Relationship makes a Transition to Public,
this Effect will be triggered to check whether the Dependent in the Relationship is Public. If the
Dependent makes this Transition, the Effect does not check on the current State of the Owner.

Relationship Editor x|
~Effects

A Relationships Directian Effect
B4 Systern

-] Mew Copy

-] Promaotable Yersion
-] Active Assembly
-4 Active Assembly - and
-El User Properties
B Claning

-El Reqguestpre-proces
-El Result document pr

Down =ys_PuhlishMandatory(ng,) -
Down =yvs_lnpublishMandatory(no,)

+-] Translation
=] Translation - Mandatory

Description

4] | v

e | Delete |

(0]54 | Appaly | Cancel | Help |

Figure 20: Effects Configured for the Active Assembly - Mandatory Relationship

Chapter 4 Modifying Relationship Configurations 43

Let us focus on the sys_PublishMandatory Effect. This Effect has three parameters:

Parameter Description
forceTransition Mandatory. Specifies whether to try to force the other Content Item in the
Relationship to make a Transition if it is not currently Public.

ownerTransitionName Optional. Specifies the name of the Transition to use to force the Owner
in the Relationship if it is not already Public.

dependentTransitionName Optional. Specifies the name of the Transition to use to force the
Dependent in the Relationship if it is not already Public.

In the default configuration, the value of the forceTransition parameter is no, meaning that the dependent
is not forced to Public when the Owner is Transitioned to Public. In this configuration, the other two
parameters are irrelevant, so they are blank.

Effects |

Effects |24 %] Ok
relatiohshiprsys_PublishMandatony Al
W ove Cancel
ll Help
~Parameters
Mame Yalue
farceTransition no |

mwnerTransitiontlame
dependentTransitionMame

Al

~Description

the other item cannot be put into a public state, an j
exception iz thrown and the item being processed is

not allowed to transition. . The effect will return -
immediately for any context except R3 PRE WOREFLOW. o

Figure 21: Default Configuration of the sys_PublishMandatory Effect of the Active Assemby - Mandatory
Relationship

44 Rhythmyx Implementing the Relationship Engine

Let us now suppose that whenever a Content Item has an associated graphic, we want to force the graphic
to go Public with its owner. The Active Assembly — Mandatory Relationship provides this functionality,

but we will need to modify the configuration, changing the value of the forceTransition parameter to yes,

and entering the name of the Transition we want to use to force the Dependent Public.

Since we want to use this Relationship for graphics, let us examine the Images Workflow:

/3 Rhythmyx Workflow Editor - Preview Workflow - Microsoft Internet Explorer =101]

Art Attachdd

Approve

w

Reject

rF

Approve

Unpublish

sh

lgnore Pu

b
L4

Retrieve
P
v

Reqguest Artwork QA Approval Public Archived Quick Edit
+[o =16 +[o

STATE DIAGRAM

Workflow name : Images
Workflow ID: 3

Adld Statel —
< | o

Figure 22: Images Workflow

In this Workflow, two Transitions move Content Items to the Public State:

= The Approve Transition from the QA State
= The Publish Transition from the Quick Edit State

We can ignore the latter Transition, because Quick Edit is a special State used for minor edits to Content
Items that are already Public. This fact leaves us with the Approve Transition to the Public State. We will
enter Approve as the value of the dependentTransitionName parameter of the sys_PublishMandatory
Effect.

(Note that sys_PublishMandatory Effect generates an error if a Transition cannot move a Content ltem to
Public. Thus, we do not need to be concerned that there is another Transition with the name “Approve”.
This Transition moves a Content Item from the Approval State to the QA State, and would cause an error
if Rhythmyx attempted to force this particular Transition. Only the Approve Transition from QA to
Public will move a Content Item.)

Chapter 4 Modifying Relationship Configurations 45

The following graphic illustrates the reconfigured Effect:

Efects x|
Efferts | |>(| Ok
relationshipfsys_PublishMandatory Al

bl ove Cancel
—I Help
~Parameters
MHame Walue
farceTransition Ve s |
oweherTransitionbame
dependentTransitionMarme Approve
=l
~Description
the other item cannot be put into a public state, an ;I
exception is throwm and the item being processed is
not allowed Lo transition. . The effect will return
immediately Lor any context except BRI _PRE WOREFLOW. -

Figure 23: Reconfiguration of the sys_PublishMandatory Effect to force a Dependent Content Item to
Public using the Approve Transition

The sys_UnpublishMandatory Effect would be reconfigured in the same fashion.

46 Rhythmyx Implementing the Relationship Engine

Advanced Reconfiguration: Conditional
Cloning Based on the Locale of a
Translation

More advanced reconfiguration may require conditional processing to determine whether cloning occurs
or an Exit or Effect is triggered. Let us examine the reconfiguration required to facilitate the processing
described in the Advanced example of Relationship processing (see "Advanced Example: Translations
on page 10). In this example, when we create a Translation, we want to change the conditions under
which we clone Active Assembly Relationships. Thus, even though we are reconfiguring to facilitate
Translations, we will be modifying the configuration of the Active Assembly Relationship. Specifically,
we will be modifying the Cloning Properties.

Let us begin with the default configuration of the Active Assembly Relationship.

Relationship Editor |
—Cloning
_‘J Felationships ~Cloning options
- 4 System ;
-] New Copy v Allow cloning
-] Pramatahle Yersion
i v Locked
=14 Active Assemlbly g
----- Fl User Properties —canditi
onditions
----- Sfcioning]
----- El Requestpre-proc E Mame C
----- B Result document [+ |rz_cloneshallow C
----- El Effects vl |r=_clonedeep (o]
=4 Active Assembly - Ma
""" B User Properties —Clane Field Overrides
""" B Cloning
----- B Requestpre-proc Field LDF |
----- Bl Resultdocument |
----- Fl Effects
& | Translation
[+ | Translation - Mandat
-] Folder Cantent
..... J ser _I
—Description
1 I b
[ey | [De(ete |
()54 | Apply | Cancel Help

Figure 24: Default Cloning Configuration of the Active Assembly Relationship

Chapter 4 Modifying Relationship Configurations 47

Cloning is enabled for this Relationship, and both shallow cloning (cloning only the Relationship itself)
and deep cloning (cloning the Relationship and the Dependent Content Item in the Relationship) are
allowed. Conditional processing has been defined for both shallow and deep cloning. For shallow
cloning, a single condition has been defined, processed in the Rule Editor:

x|
Type Rule Op
Conditional |(PEX0riginatingRelationshipPropeyicat... -
]2 Cancel Help |

Figure 25: Default ShallowCloning Conditions for the Active Assembly Relationship
The following specific rule has been defined:

Variable Operator Value Boolean
PSXOriginatingRelationshipProperty/Category = rs_promotable OR
PSXOriginatingRelationshipProperty/Category = rs_copy

If category of the Originating Relationship (the Relationship that is triggering the creation of the clone) is
either Promotable (category=rs_promote) or Copy (category=rs_copy), then Rhythmyx will make a
shallow clone (clone only the Active Assembly Relationship).

For deep cloning, we also have a single condition. The rule for this condition is:

Variable Operator Value Boolean
PSXOriginatingRelationshipProperty/Category = rs_translation

If the Category of the Originating Relationship is Translation (category=rs_translation), then Rhythmyx
will create a deep clone (clone both the Active Assembly Relationship and the Dependent Content Item in
the Relationship).

In the example, we stated that we will use the same graphic in the Canadian French Locale that we use in
the default US English Locale. Therefore, when Translating to the Canadian French Locale, we can use
shallow cloning: when we create a Translation for the Canadian French Locale, we will create a new
Relationship that points to the same Dependent Content Item that is used in the US English Locale.

48 Rhythmyx Implementing the Relationship Engine

To accomplish this goal, we can add another condition to the shallow cloning condition.

If the Category of the Originating Relationships is Translation AND
If the Locale of the new Content Item is Canadian French.

You must use the internal value for the Relationship Category. The internal value for the Translation
Category is rs_translation. The locale is stored in the HTML parameter sys_lang. (Note that while the
variable sys_lang is also available as Content Item Data, we are not actually working with a Content Item
when cloning a Relationship, so we must use the HTML parameter.)

Translated into Rhythmyx terms, we will have the following Rule:

Variable Operator Value Boolean
PSXOriginatingRelationshipProperty/Category = rs_translation AND
PSXParam/sys_lang = fr-ca

We could add these additional Rules to the existing Rules, but since it is a more complex statement, it
makes more sense to add it as a new Rule. Since we now have multiple Rules, we need to define some
Boolean processing for them. We cannot use the AND connector between these two Rules. If we used
that connector, the Originating Relationship would have to be in two Categories (Copy and Translation; or
Promote and Translation), and a Rhythmyx Relationship can have only one Category. Thus, we must use
the OR connector. The following graphic illustrates the final configuration:

Rule Editor x|

Type Fule 2
Conditional [(PEX0riginatingRelationshipPropertycat.. 0OF -
Ll (P S OriginatingRelationshipPropertyicat.. I

(]34 Cancel Help |

Figure 26: New ShallowCloning Conditions for the Active Assembly Relationship

Next, we need to address the Japanese Locale. When translating to the Japanese Locale, we want a new
graphic. Thus, we need a deep clone, which copies both the Active Assembly Relationship and the
Dependent Content Item in the Relationship.

Chapter 4 Modifying Relationship Configurations 49

As we noted above, the default conditions for deep cloning the Active Assembly Relationship already call
for deep cloning when the category of the Originating Relationship is Translation. We want to add
another rule to this condition, specifying that, in addition to the existing rule, the Locale of the Translation
must be Japanese (ja-jp):

Variable Operator Value Boolean
PSXOriginatingRelationshipProperty/Category = rs_translation ~ AND
PSXParam/sys_lang = ja-jp

This configuration is more restrictive than the default configuration. In the default configuration, any
clone created when the originating Relationship was in the Translation Category would be a deep clone.
Now, only clones to the specified ja-jp Locale will be deep cloned. If you want to allow deep cloning in
other Locales, you will need to add more Rules defining those Locales. If neither condition is evaluated
as TRUE (in other words, if we create a Translation Content Item in a locale other than fr-ca or ja-jp), then
no clone of the Active Assembly Relationship is created.

51

CHAPTER 5

Overriding Content Item Fields In
Clones

When you clone a Content Item (such as to create a new Translation Content Item), you frequently want to
change the value in a field on the clone. When a Business User creates the clone manually, the user can
modify the field in the clone. When you create a clone automatically, such as automatically generating a
Translation Content Item, you probably want to change the value in certain fields automatically in the
process. Use Clone Field Overrides to automate these changes. Clone field overrides can automatically
update fields in a clone with new values.

When defining a Relationship type in the Relationship Editor, you can specify the fields you want to
override. The override processing itself is performed by a UDF you specify for the field. You can also
specify conditional processing to determine whether or not to override the field.

52 Rhythmyx Implementing the Relationship Engine

Implementing Clone Field Overrides

To implement a field override:

1
2

On the Relationship Editor, click the Cloning node.

Double-click in the first empty row in the Fields column and select the field you want to
override from the drop list. Options are all system fields.

Double-click in the UDF column and select the UDF you want to use to modify the field in the
clone.

Rhythmyx displays the UDF Editor.

Enter Values for each parameter you want to use in the UDF. Note that some parameters are
mandatory while others are optional.

Click the [OK] button on the UDF Editor.
Rhythmyx returns you to the Relationship Editor.

If you want to add conditions to the field override, click the [=] button to display the Rule
Editor. For details about adding rules, see Defining Conditions for Exits, Effects, and Cloning
Processes.

Repeat steps 2-6 for all fields you want to override.

Click the [Apply] button to save your changes.

Chapter 5 Overriding Content Item Fields in Clones

53

Example Implementation of Clone Field

Overrides

To illustrate how clone field overrides work, let us examine the implementation of the default Translation

Relationship shipped with Rhythmyx. The following graphic illustrates the Cloning properties of the

Translation Relationship:

@ Relationship Editor El
~Claning
_4 Relationships ~Cloning options
=14 System _
-] New Copy [Allow eloning
_| Prqmntable Yersion ¥ Locked
-] Active Assembly
-] Active Assembly - Ma —Canditions
=1+ _4 Translation
B UserPropetties E MName ¢
- [l [|rs_cloneshallow
- [E Reguest pre-proc [|rs_clonedeep
-~ [Resultdocument
[Effects ~Clone Field Overrides
-] Translation - Mandat _
[+] Folder Content Field UDF i
=4 User sys_title sys_CloneTitle 0] Copy 0. N
E...‘Jgampm sys_communityid [sys_cloneQverrideFieldd is...
-~ [E User Properties sys_workflowid [sys_cloneOverrideFieldi js...
..... B cCloning svs_lang svs_Literal{PSXSingleHtml...
- [E Reguest pre-proc -
-~ [Resultdocument
] Effects ~Desctiption
] | 3
P ey | [elete
0] Apply | Cancel | Help

Figure 27: Default Cloning Coniguration of the Translation Relationship

When creating a clone using the Translation Relationship, Rhythmyx will modify the following fields:

= sys title
= sys_communityid
= sys_workflowid

54 Rhythmyx Implementing the Relationship Engine

= sys lang
Let us examine some of these overrides.

Overriding the sys _title Field

To create a new title, the sys_CloneTitle UDF is applied to the sys_title field.

x

Cloning |24 %] Ok
relationshiprsys_CloneTitle Al
W ove Cancel
ll Help
~Farameters
MHarme Yalue
Pattern [0y Copy of {1} |

Insertionlternd |PEXSingleHtmIParameterisys_lang

Inserttionlternt |PEXContentternStatusiCONTENTSTATUS TITLE
Inserttionltern2
Inserttionltern3

Al

~Description

item {1}. <p> etc. </prex MNote: if the nuwmber of j
{inzerts} in the MezssageFormat string does not match

the mumber of paremeters (after format) giwven to this —
UDF, then it will throw the PiConversionException. l

Figure 28: Default Coniguration of the sys_CloneTitle UDF for the Translation Relationship

This UDF creates a new title according to the pattern specified in the Pattern parameter. You can insert
any string in this pattern. To add variable values derived from the data in the Content Item, use the
variables 0-3 in curly braces (“{}”) to specify the insertion of a value derived from the Insertionltem
parameter specified by the numeric value. You can also use the $clonecount macro, which will insert
the count of this clone among all the clones created from the Owner Content Item.

In this case, the pattern is
[{0}]1 Copy of {1}

Chapter 5 Overriding Content Item Fields in Clones 55

Since we are working with the Translation Relationship, it might make sense to change this pattern to use
the term “translation” rather than “copy”:

x

Cloning [%] oK
relationshipfsys_CloneTitle Al
bl ove Cancel
ll Help
~Parameters
Mame Yalue
Pattern [0y Translation of {1} A|

Insertionlternd |PSXESingleHtmIParametersys_lang

Insertionltermn |FEXContentlitermStatus/CONTENTSTATUS TITLE
Insertionltem
Insertionltem3

Ad

—Description

item {1}. <p> etcC. </pre> MNote: if the number of j
{finzerts]} in the MessageFormat string does not match
the munber of paremeters (after format) giwven to this
IDF, then it will throw the PiConwersionException.

4

Figure 29: Modifying the Pattern parameter of sys_CloneTitle UDF from "Copy" to "Translation”

The InsertionltemO parameter specifies that we will insert the value of the sys_lang HTML
parameter into the Pattern, and the Insertionlteml parameter specifies that we will insert the Title
(CONTENTSTATUS.TITLE) of the Owner Content Item.

The final output of this UDF will be something like this: [es-mx] Translation of Title.

56 Rhythmyx Implementing the Relationship Engine

Overriding the Community Field

To update the Community, we use the sys_cloneOverrideField UDF.

x

Cloning |24 %] Ok
relationshiprsys_cloneCverrideField Al
W ove Cancel
ll Help
~Parameters
Mame Walue
LItl fesyws_trFieldOwerriderTranslationFieldOwverride xmil ..|

FieldElemMame |Communityld

ParamMame1 sys_contentid

Faramialuel FEXContenttemStatus/CONTENTSTATUS . COM. ..
ParamMame2 sys_lang

Paramialuez PSxSingleHtmIFarametersys_lang

=
~Description

=]
FEest of the parameters are the parameter name-wvalue
pairz that are required fo rthe resource Lo generate
the field walue. B

Figure 30: Default Coniguration of the sys_cloneOverrideField DF for theCommunity in the Translation
Relationship

This UDF queries a Rhythmyx resource for an XML document, and selects one node of this document as
the new value for the field. The Url parameter specifies the resource. In this case the resource we query is
Jsys_trFieldOverride/TranslationFieldOverride.xml. This default resource queries the
AUTOTRANSLATION table for Translation configuration data. The following table shows the
mappings of this resource:

Backend XML
PSX_AUTOTRANSLATION.COMMUNITYID TranslationFieldOverride/Entry/Communityld

PSX_AUTOTRANSLATION.CONTENTTYPEID TranslationFieldOverride/Entry/ContentTypeld

Chapter 5 Overriding Content Item Fields in Clones 57

Backend XML
PSX_AUTOTRANSLATION.LOCALE TranslationFieldOverride/Entry/Locale
PSX_AUTOTRANSLATION.WORKFLOWID TranslationFieldOverride/Entry/Workflowld

The sys_contentid (PSXContentltemStatus/fCONTENTSTATUS.CONTENTID) and sys_lang
(PSXSingleHtmIParameter/sys_lang) parameters are used in the WHERE table on the Selector for the
query:

Variable Op | Value Bool
CONTENTSTATUS.CONTENTID = PSXSingleHTMLParameter/contentid AND
PSXAUTOTRANSLATION.LOCALE = PSXSingleHTMLParameter/sys_lang

This UDF definition will extract the value of the Communityld element from the resulting XML document
and insert that value as the Community ID for the new Content Item.

Overrides in Action
Now let us look at these overrides in action. Our implementation includes the following:

= anes-mx Locale

= a Central American Marketing Community
= aBrief Content Type

= an Article Workflow

= An Auto Translation configuration for the Brief Content Type in the Central American
Marketing Community:

Edit Configuration

Content Type : Locale Brief : Mexican Spanish
Cormmunity; |Central American Mﬂrketingj
Content Type: Brief
workflow: |Spanish Translﬂtiunj
Locale: Mexican Spanish

Save Cancel |

Figure 31: Example Auto Translation Configuration for the Brief ContentType in the Central American
Markeing Community

Rhythmyx Implementing the Relationship Engine

In the Article Workflow, the Approve Transition from QA to Public includes the
sys_createTranslation Workflow Action:

ID:
*#Label:

Description:

*Trigger:
Frarmi-5S5tate:

To-5tate:

Approval Type:

*Approvals Required:

Comment:
Default Transition:
Workflow Action:

Transition Role:

SavE |

Role (ID)

Subject (Motfication State Role

D)

Workflows > Article > QA > Approve

3

|f-\pprwe

|Appruve
QA3)

IPuinc vI

|Specified Humherj

I-I [Required if Appraval Type is zet to "Specified

Mumber")

|Opti|:|nal j
I ¥l vI

|5y5_u::reateTransIﬂtiDns j

|—AII roles — j

Transition Roles
Hew Transition Role

Mo entries found.

Transition Motifications
Hew Transition Motification
Additional Recipient
Recipient Type List
Mo entries found.

CC List

Figure 32: Approve Transition configured with the sys_createTranslation Workflow Action

Chapter 5 Overriding Content Item Fields in Clones 59

Now, let us create a Brief Content Item:

2} Rhythmyx - - Edit Content - Microsoft Internet Explorer |._||E|E|
* System - -
Title: |Lorem ipsurn dolor sit amet |
* Title: |L0rem ipsum dalar sit amet |
* Start G
Date: |z005-08-02 |
89 Edit View Insert Formab Tools Table
¥ ELABR LT 0o P SR LK@ 2oL AT HEE
Q%“Nmmal leriaI lept vHB I u AB|§§§|EEE ';:_E*;:_Eléb 1;i|x’ ¥,
* callout: | Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh
euismod tincidunt ut laoreet dolore magna aliquarn erat volutpat. Ut wisi enin ad minim
werdatn, quis nostrud exercitation ulliarm corper suscipit labortis nisl ut aliguip ex ea
corrnodo consequat. Duis autern veleum iriure dolor in hendrerit in wilputate welit esse
Design | Code |
2] i

Figure 33: Example Brief Content Item

60 Rhythmyx Implementing the Relationship Engine

The following graphic shows this Content Item in Content Explorer:

Community ; [efsud

B Rhykhmyx - Content Explorer - Microsoft Internet Explorer | - ||:I|£l
| Fle Ede Wiew Faveeites Took Help -
| =Bade = = - @[] | @search [GFavories (fHstory | She S 18 - 5 B3 &
J-ﬁlﬁ’ﬂ |ﬂ bk filocathast 9202 Ry thmyglses_cmainpags, hitmd ﬂ ol thl-u. =
. User @ odmint
RhythmyX Rake b

Percussion Software Content Publishing Workflow T
{15 Engliih

et Wi Explorar Hedp ntent Pa ot Matenias

(W] Sites I=) " Ham E
=2 Fakdars [Leren ipsum dolor 5t a.,
- (] Central Amercan Marke
o e keting Matevials
= ﬂ Whews
- & My Conent
[+ Checkad Out By Me
15 & inbax
- cla Outboo:
i 4 Recent
-l Sesson
- 8 Communiy Corkent
- Al
=3 Al orkent
g Al

L. 7. R

|
&7 Applet com,peroussin, o PaCantertEx plorerApol started [1B Local nanet v

Figure 34: Example Brief Content Item in Content Explorer

Note the Community, Workflow, and Locale in the Properties of this Content Item.

a Rhythmyx - Lorem ipsum dolor sit amet - Properties - Microsoft IntErnenER - |EI|£|

2

Content Properties

Content Titde

(1D) Creator Created On Last Modifier Last Modified On
Larern ipsurn _ _
dolor =sit adrminl Har 33:329004 adminl Mar 533:221004
arnet [(242) .)
State(ID]) Public Checked Dut Assignees(Type)

[S I .
QA3 @ Ehnot chedcad Adrnin
out @ QA
Community Workflow Locale
Cefault (10] Article (1) US English

Figure 35: Properties of the example Brief Content Item

Chapter 5 Overriding Content Item Fields in Clones 61

When we Transition this Content Item to Public, a Translation Item will be created automatically. It will
have the name "[es-mx] Translation of Lorem ipsom dolor sit amet”. (Note that the Translation is
automatically added to the same folder at the Owner Content Item; to add it to a different folder, you
would need to write a new Effect for the Translation Relationship that would add it to a different Folder.)

A Rhythmyw - Content Explorer - Microsoft Internet Explorer oy] 54
] Fle Edit View Favorbes Tods Help -
| weBeck - = - @[] | Disearch [lFavorites Prstory Bh- S0 0 - H B A

| Aideass: [htt: o alhost 032 Rhythmyscjsys_ex/mainpage himl =] @ea | |tinks ™

User : sdmind
Roles : Acd=in

Community : Dafal
Lacale © 15 Fglih

Rhythmyx

Percussion Soffwara Comtent Puldizhing Wokflow | System

Conbent View Site BXplorer Help

= -8 stes {Cantent Type
=Y Folders Translake Hrisf

Fi- 20 Ceritral unerican Market (B las [erief

=& My Conters
-y Checked Ouk By Me
¥ oF Inbos
-l Outbax
Wi Recent
*- iy Session

= 4l Community Conteri:
- Al

=@ Al Content

G Wl
ro B P b s
| Iii
&7 Applet: com. pencussion, o, PSContertExplorerAppket started [| B8 Localintranet r

Figure 36: es-mx Translation of the example Content Item

Note that the Community, Workflow, and Locale have changed in the Translation Item:

72} Rhythmyx - [es-mx] Translation of Lorem ipsum dolor sit amet - Properties - Microsofiin B [e
.
Content Properties —I
Content Tite (1D) Craator Created On Last Modifies Last Modified On
[es-rx] Translation o } ' - _
of Larerm ipzurm dolar adrminl 4] ;;:1"__,””4 admini M '6'.‘..5:'1‘__.'.'.4
sit amat [346] e S
State (ID) Public Checkad Out Assignees(Typa)
.
Translatel1) @ ?E_'ﬁ'jr. chediad out Adrmin
2 Author
Comnunity Workflow Locale

Central Arnericar

ek Tra el abi 2 o)
Markating (1001) Spanizh Tranzlation (4) Mexican Spanizh

Figure 37: Properties of the es-mx Translation of the example Content Item

63

CHAPTER 6

Writing Effects

Effects are Rhythmyx server extensions used to extend the Relationship engine. Effects are extensions of
the IPSExtension Java extension. Thus, Effects must follow all of the requirements of Rhythmyx
extensions, including thread safety. (For details about thread safety, see any standard Java reference.)
Effects must implement the IPSEffect interface. To make an Effect available in the system you must
register it. (For details about registering extensions see "Adding a New Java Extension" in the Rhythmyx
Server Administrator online Help.). When registering an Effect, you must select
com.percussion.extension.IPSEffect as the Supported Interface.

64 Rhythmyx Implementing the Relationship Engine

Example Effect

The code of the default PSValidateFolder Effect provided by Percussion Software is provided as an
example of an Effect.

/**[PSvalidateFolder.java

*

* COPYRIGHT (c) 2002 by Percussion Software, Inc., Stoneham, MA USA.

* All rights reserved. This material contains unpublished, copyrighted
* work including confidential and proprietary information of
Percussion.

*

EAAEEAEAAEXKAAAAAAAAXAAAXAAAXAAAXAAAXAAAXAAAXAAAXAAXAXAAAXAAXAAAAAAXAAAXAAAXAAAXAAAXAAAXAAXALd%

******/

package com.percussion.relationship.effect;

import com.percussion.cms. IPSCmsErrors;

import com.percussion.cms.PSCmsException;

import com.percussion.cms.objectstore. IPSComponentProcessor;
import com.percussion.cms.objectstore. IPSRelationshipProcessor;
import com.percussion.cms.objectstore.PSComponentProcessorProxy;
import com.percussion.cms.objectstore.PSComponentSummaries;
import com.percussion.cms.objectstore.PSComponentSummary;
import com.percussion.cms.objectstore.PSDbComponent;

import com.percussion.cms.objectstore.PSKey;

import com.percussion.cms.objectstore.PSProcessorProxy;

import com.percussion.cms.objectstore.PSRelationshipFilter;
import com.percussion.cms.objectstore.PSRelationshipProcessorProxy;
import com.percussion.design.objectstore.PSLocator;

import com.percussion.design.objectstore.PSRelationship;

import com.percussion.design.objectstore.PSRelationshipConfig;
import com.percussion.error._PSException;

import com.percussion.extension.PSExtensionProcessingException;
import com.percussion.extension._PSParameterMismatchException;
import com.percussion.relationship.PSExecutionContext;

import com.percussion.relationship.PSAttemptResult;

import com.percussion.relationship.PSEffect;

import com.percussion.relationship.PSEffectResult;

import com.percussion.server.lPSRequestContext;

import com.percussion.server _PSRequest;

import java.util_HashSet;
import java.util.lterator;
import java.util.Set;

import org.w3c.dom.Element;

/**

* This effect is aimed at validating a new folder based on the rules
outlined

* below:

Chapter 6 Writing Effects 65

* <p>
* The owner of the relationship must be a folder and the dependent®s
name
* must be different (case-insensitive) than the names of all other
children
* of the owner unless it is the exact same objects. A folder does not
allow
* children with duplicate names. If any validation fails, an exception
that
* terminates the processing is thrown. The effect will return
immediately for
* any context except RS _CONSTRUCTION.
* <p>
* This effect does not need any parameters.
*/
public class PSvValidateFolder extends PSEffect
{
/**
* Override the methode in the base class. This effect is meant to be
run
* RS_CONSTRUCTION context and hence will return <code>false</code>
for all
* other contexts.
*/
public void test(Object[] params, IPSRequestContext request,
IPSExecutionContext context, PSEffectResult result)
{

if (Jcontext.isConstruction())

{
result.setWarning(""'l1l1legal Context, expected to be
construction.');
return;
}

PSRelationship originatingRel =
context._getOriginatingRelationship();

if (originatingRel == null
Il 'originatingRel._getConfig().getName() -equals(
PSRelationshipConfig.TYPE_FOLDER_CONTENT))

{
result._setWarning(
"The originating relationship is not of type ""
+ PSRelationshipConfig.TYPE_FOLDER CONTENT
+)s
return;
by

Set relsProcessed = (Set)m_tlRelationshipsProcessed.get();
if(relsProcessed==null)

relsProcessed = new HashSet();
m_tHRelationshipsProcessed.set(relsProcessed);

}

66

Rhythmyx Implementing the Relationship Engine

/*
* Folder validation needs to be done only once
*/
if(relsProcessed.contains(originatingRel))
{
result._setWarning("'The relationship is already processed");
return;
}
try
{ o
PSLocator deplLocator = originatingRel.getDependent();
PSLocator ownerLocator = originatingRel.getOwner();
val idateUniqueDepName(ownerLocator, depLocator, null, request,
result);
g
finally
{
relsProcessed.add(originatingRel);
}
}
/**
* Validates the supplied dependent with the following rules:
* <p>
* The dependent®s name must be different (case-insensitive) then
* the names of all other children of the owner (folder) unless the
same
* object is already a child of the supplied owner. A folder does not
allow

* children with duplicate names.

*

* @param owner the locator of the owner folder, not
<code>null</code>.
* @param dependent the locator of the dependent item, not

* <code>null</code>.

* @param depName The name (or sys_title) of the dependent. It may be

* <code>null</code> or empty in which case it will be looked up
using

* the supplied dependent locator.

* @param request the current request, not <code>null</code>.
* @return <code>true</code> if validated, <code>false</code>
otherwise.
*/
public static boolean validateUniqueDepName(PSLocator owner,
PSLocator dependent, String depName, PSRequest request)
{

if (owner == null)
throw new 1l1legalArgumentException(*'owner may not be null');

if (dependent == null)
throw new IllegalArgumentException(*'dependent may not be
null™);

Chapter 6 Writing Effects 67

if (request == null)
throw new 1l1legalArgumentException(*'request may not be null');

PSAttemptResult result = new PSAttemptResult();
val idateUniqueDepName(owner, dependent, depName, request, result);

return (result._.getException() == null);

}

/**
* See {@link validateUniqueDepName(PSLocator, PSLocator, String,
PSRequest)}
* for description.

*

* @param ownerLocator the locator of the owner folder, not

* <code>null</code>.

* @param depLocator the locator of the dependent item, not

* <code>null</code>.

* @param depName The name (or sys_title) of the dependent. It may be

* <code>null</code> or empty in which case it will be looked up
using

*

the supplied dependent locator.

* @param result the result object into which the result of the
validation

* will be set, assume it is not <code>null</code>.

*/

private static void validateUniqueDepName(PSLocator ownerLocator,
PSLocator deplLocator, String depName, Object request,
PSEffectResult result)

{
try

IPSRelationshipProcessor relProxy = new
PSRelationshipProcessorProxy(
PSProcessorProxy.PROCTYPE_SERVERLOCAL, request);

PSRelationshipFilter filter = new PSRelationshipFilter();
filter_setOwner(ownerLocator);
PSComponentSummaries children = relProxy.getSummaries(filter,

false);
if (children.isEmpty())
{
result.setSuccess();
return;
}
// need to lookup the name if it was not supplied
if (depName == null |] depName.trim().length() == 0)
PSComponentSummary depSummary = getSummary(deplLocator,
request);

depName = depSummary.getName();
}

68 Rhythmyx Implementing the Relationship Engine

Iterator walker = children.iterator();
while (walker_hasNext())
{
PSComponentSummary childSummary =
(PSComponentSummary) walker.next();

if (childSummary.getName() .equalslgnoreCase(depName))
{
/*
* This is only an error if it is not the same item
(meaning the
* same content id). The revision is not considered for
this
* test.
*/
if (childSummary.getCurrentLocator().getld() !=
depLocator.getld())
{

PSComponentSummary summary = getSummary(ownerLocator,
request);

String parentName = summary.getName();

Object[] args =

{

depName,
parentName,
String.valueOf(depLocator.getld()),
String.valueOf(depLocator.getRevision())

}:

PSCmsException exception = new PSCmsException(
IPSCmsErrors.FOLDER_REL_ERROR_DUPLICATED_CHILDNAME,

args);

result.setError(exception);
result.setkKeys(new PSKey[] { deplLocator });

return;

}
}
}

result._setSuccess();

catch (PSException ex)
{

}

result.setError(ex);

}

/**
Get the summary information for the supplied locator.

@param locator The locator, assume not <code>null</code>.

@param request The current request, assume not <code>null</code>.

ook ok ok % % ¥

@return The summary info, never <code>null</code>.

Chapter 6 Writing Effects 69

*

* @throws PSException if an error occurs while retrieving the
summary info.
*/
private static PSComponentSummary getSummary(
PSLocator locator,
Object request) throws PSException
{

PSComponentSummary summary = null;

IPSComponentProcessor compProxy =
new PSComponentProcessorProxy(
PSProcessorProxy.PROCTYPE_SERVERLOCAL,
request);
Element[] summaries =
compProxy . load(
PSDbComponent.getComponentType(PSComponentSummaries.class),
new PSKey[] { locator });
if (summaries == null |] summaries.length < 1)

Object[] args =
{

String.valueOf(locator._getld()),
String.valueOf(locator.getRevision())

}:
throw new PSCmsException(1PSCmsErrors.FAILED GET_SUMMARY,
args);

}

PSComponentSummaries depSummaries =
new PSComponentSummaries(summaries);
summary = (PSComponentSummary)depSummaries.iterator().next();

return summary;

}

//1Implementation of the interface method
public void attempt(Object[] params, IPSRequestContext request,
IPSExecutionContext context, PSEffectResult result)
throws PSExtensionProcessingException,
PSParameterMismatchException

//Folder validation effect does not do any special processing
result.setSuccess();

}

//1Implementation of the interface method

public void recover(Object[] params, IPSRequestContext request,
IPSExecutionContext context, PSExtensionProcessingException e,
PSEffectResult result)
throws PSExtensionProcessingException

//Folder validation effect does not need to recover anything
result.setSuccess();

70 Rhythmyx Implementing the Relationship Engine

/**

* Thread local storage of the processed relationship. This is just
to

* avoid unnecessary processing of the same relationship for each
current

* relationship. We need to validate the originating folder
relationship

* only once not while processing each relationship around the
original

* owner item.

*/

private static ThreadLocal m_tlRelationshipsProcessed = new
ThreadLocal () ;

CHAPTER 7

Default Relationships

Percussion Software provides the following default Relationships with Rhythmyx:

= Related Content

= Dependent Related Content
= Translation

= Dependent Translation

= New Copy

= Promotable Version

= Folder Content

72 Rhythmyx Implementing the Relationship Engine

Active Assembly

The Active Assembly Relationship creates a simple association between the owner and the dependent,
including Inline Links and Inline Images. User's create an Active Assembly Relationship whenever they
use Active Assembly to associate one Content Item with another.

General Properties
Name - Active Assembly. Non-editable.
Label - Active Assembly. Non-editable.
Category - Active Assembly. Non-editable.
System Properties: (all may be edited)

rs_useownerrevision - Specifies whether to use the owner's revision ID as part of the owner locator
key. Yes. Locked.

rs_usedependentrevision - Specifies whether to use the dependent’s revision ID as part of the
dependent locator key. No. Locked.

rs_expirationtime - If this relationship can expire, this property specifies the expiration date/time. If
this relationship cannot expire, this property is set to null. Null (relationship cannot expire).

rs_useserverid - Specifies whether to use the server ID (rxserver) for executing effects.. If set to No,
the current user is used instead of the server ID. Yes.

rs_islocaldependency - Specifies whether the Multi-Server Manager should treat the dependent as a
local dependency. (See the Rhythmyx Multi-Server Manager documentation for more
information.) Yes.

rs_skippromotion - Specifies whether to repoint the Relationship to the depended object in a
Promotable Version Relationship when the depended it promoted to Public. If checked, the
Relationship is not repointed. If unchecked, the Relationship is repointed. No

User Properties (all may be edited) User property values are always filled at runtime. Note that any custom
Relationship in the Active Assembly Category must include these User Properties.

sys_slotid - Slot ID in which relationship is used. None.

sys_sortrank - Sort rank within Slot. 1.

sys_variantid - Variant ID. None.

rs_inlinerelationship - specifies that the Active Assembly Relationship
Cloning Properties (all may be edited)

Allow Cloning - Whether or not relationship may be cloned. Yes.

Locked - Whether local processing can override cloning properties. Yes.

rs_cloneshallow - Whether or not shallow clones of the Relationship may be created. Yes, if activating
Relationship Category is Promotable Version or New Copy; otherwise, no.

rs_clonedeep - Whether or not deep clones of the Relationship may be created. Yes if activating
Relationship Category is Translation; otherwise, No.

Chapter 7 Default Relationships

73

Clone Field Overrides None
Request Pre-processing (Pre Exits)
None. Any number may be added.
Result Document Processing (Post EXits)

None. Any number may be added.
Effects

None.

74 Rhythmyx Implementing the Relationship Engine

Active Assembly - Mandatory

Slight modification to the Active Assembly Relationship that prevents a Content Item from going Public
unless all descendants related through this Relationship Type are Public, or can go Public. Use this
Relationship when you want to ensure that a Content Item cannot go Public unless the Dependent Content
Item in the Active Assembly is also Public.

General Properties
Name - Active Assembly - Mandatory. Non-Editable.
Label - Active Assembly - Mandatory. Non-Editable.
Category - Active Assembly.
System Properties: (all may be edited)

rs_useownerrevision - Specifies whether to use the owner's revision ID as part of the owner locator
key. Yes. Locked.

rs_usedependentrevision - Specifies whether to use the dependent revision ID as part of the dependent
locator key. No. Locked.

rs_expirationdate - If this relationship can expire, this property specifies the expiration date/time. If
this relationship cannot expire, this property is set to null. Null (relationship cannot expire).

rs_useserverid - Specifies whether to use the server ID (rxserver) for executing effects.. If set to No,
the current user is used instead of the server ID. Yes.

rs_islocaldependency - Specifies whether the Multi-Server Manager should treat the dependent as a
local dependency. (See the Rhythmyx Multi-Server Manager documentation for more
information.) Yes.

rs_skippromotion - Specifies whether to repoint the Relationship to the depended object in a
Promotable Version Relationship when the depended it promoted to Public. If checked, the
Relationship is not repointed. If unchecked, the Relationship is repointed. No

User Properties (all may be edited) User property values are always filled at runtime. Note that any custom
Relationship in the Active Assembly Category must include these User Properties.

sys_slotid - Slot ID in which relationship is used. None.
sys_sortrank - Sort rank within Slot. 1.

sys_variantid - Variant ID. None.

Cloning Properties (all may be edited)
Allow Cloning - Whether or not relationship may be cloned. Yes.
Locked - Whether local processing can override cloning properties. Yes.

rs_cloneshallow - Whether or not shallow clones of the Relationship may be created. Yes, if activating
Relationship Category is Promotable Version or New Copy; otherwise, no.

rs_clonedeep - Whether or not deep clones of the Relationship may be created. Yes if activating
Relationship Category is Translation; otherwise, No.

Chapter 7 Default Relationships

75

Clone Field Overrides None
Request Pre-processing (Pre Exits)
None. Any number may be added.
Result Document Processing (Post EXits)

None. Any number may be added.
Effects

sys_PublishMandatory: Direction: Down
forceTransition: No
ownerTransitionName: Null
dependentTransitionName: Null

sys_UnpublishMandatory: Direction: Down
forceTransition: No
ownerTransitionName: Null

dependentTransitionName: Null

76 Rhythmyx Implementing the Relationship Engine

Folder Content

The Folder Relationship associates a Folder with a Content Item in the Folder. Rhythmyx creates an
instance of this Relationship type whenever a user adds a Content Item to a Folder.

General Properties
Name - Folder Content. Non-editable.
Label - Folder Content. Non-editable.
Category - Folder. Non-editable.
System Properties: (all may be edited)

rs_useownerrevision - Specifies whether to use the owner revision ID as part of the owner locator
key. No. Locked.

rs_usedependentrevision - Specifies whether to use the dependent revision ID as part of the dependent
locator key. No. Locked.

rs_expirationdate - If this relationship can expire, this property specifies the expiration date/time. If
this relationship cannot expire, this property is set to null. Null (relationship cannot expire).

rs_useserverid - Specifies whether to use the server ID (rxserver) for executing effects.. If set to No,
the current user is used instead of the server ID. Yes.

rs_islocaldependency - Specifies whether the Multi-Server Manager should treat the dependent as a
local dependency. (See the Rhythmyx Multi-Server Manager documentation for more
information.) No.

rs_usecommunityfilter - Specifies whether Dependent Content Items available to the Relationship are
filtered based on the Community of the user logged in to the system. Yes. Locked.

rs_skippromotion - Specifies whether to repoint the Relationship to the depended object in a
Promotable Version Relationship when the depended it promoted to Public. If checked, the
Relationship is not repointed. If unchecked, the Relationship is repointed. Yes.

User Properties User property values are always filled at runtime.
None. Any number may be added.
Cloning Properties (all may be edited)
Allow Cloning - Whether or not relationship may be cloned. Yes.
Locked - Whether local processing can override cloning properties. Yes.
rs_cloneshallow - Whether or not shallow clones of Relationships may be created. No.

rs_clonedeep - Whether or not deep clones of Relationships may be created. Yes when Activating
Relationship Name is "Translation - Mandatory"; otherwise, no.

Clone Field Overrides None
Request Pre-processing (Pre-EXxits)
None. Any number may be added.

Chapter 7 Default Relationships 77

Result Document Processing (Post-EXxits)

None. Any number may be added.
Effects
sys_TouchParentFolderEffect: Direction: Down

rxs_NavFolderEffect: Direction: Either Conditions:
PSXSingleHtmIParameter/rxs_disableNavFolderEffect=y

78 Rhythmyx Implementing the Relationship Engine

New Copy

A New Copy Relationship creates an association between an owner Content Item and its clone. The
primary purpose of this Relationship is to ensure that no more than one New Copy clone of a Content Item
exists. Use this Relationship when you want to have a clone of a Content Item that co-exists with the
original Content Item (rather than superseding it when reaching Public, as occurs using the Promotable
Version Relationship). Rhythmyx creates an instances of this Relationship type whenever a user creates a
new Copy of a Content Item (in other words, when the user chooses Create > New Copy from an Action
Menu).

General Properties
Name - New Copy. Non-editable.
Label - New Copy. Non-editable.
Category - New Copy. Non-editable.
System Properties: (all may be edited)

rs_useownerrevision - Specifies whether to use the owner's revision ID as part of the owner locator
key. Yes. Locked.

rs_usedependentrevision - Specifies whether to use the dependent's revision ID as part of the
dependent locator key. No. Locked.

rs_expirationtime - If this relationship can expire, this property specifies the expiration date/time. If
this relationship cannot expire, this property is set to null. Null (relationship cannot expire).

rs_useserverid - Specifies whether to use the server ID (rxserver) for executing effects.. If set to No,
the current user is used instead of the server ID. Yes.

rs_islocaldependency - Specifies whether the Multi-Server Manager should treat the dependent as a
local dependency. (See the Rhythmyx Multi-Server Manager documentation for more
information.) No.

rs_skippromotion - Specifies whether to repoint the Relationship to the depended object in a
Promotable Version Relationship when the depended it promoted to Public. If checked, the
Relationship is not repointed. If unchecked, the Relationship is repointed. No

User Properties User property values are always filled at runtime.
None. Any number may be added.
Cloning Properties (all may be edited)
Allow Cloning - No.
Locked - Whether local processing can override cloning properties. Yes.
rs_cloneshallow - Whether or not shallow clones of relationship may be created. Not applicable.
rs_clonedeep - Whether or not deep clones of relationship may be created. Not applicable.

Chapter 7 Default Relationships 79

Clone Field Overrides

Field UDF Conditions
sys_title sys_CloneTitle None
Parameters
Name Value
Pattern Copy ($clone_count) of {0}

Insertionltem0 PSXContentltemStatus/
CONTENTSTATUS.TITLE

sys_communityid sys_Literal None
Parameters
Name Value
Default PSXContentltemStatus/
CONTENTSTATUS.COMMUNIT
YID
overrideParameterName sys_communityid_override
sys_workflowid sys_Literal None
Parameters
Name Value
Default PSXContentltemStatus/WORKFLO
w

APPS.WORKFLOWAPPID
overrideParameterName sys_workflowid_override
Request Pre-processing (Pre-Exits)
None. Any number may be added.
Result Document Processing (Post-Exits)

None. Any number may be added.
Effects

sys_AddCloneToFolder

Direction: Down

80 Rhythmyx Implementing the Relationship Engine

Promotable Version

A Promotable Version Relationship creates an association between an owner Content Item and its clone,
which specifies that when the clone reaches the public State, the owner is transitioned to the archive State.
Use this Relationship when you want a clone of a Content Item to supersede the original Content Item
when the clone goes Public. Rhythmyx creates an instance of this Relationship Type when a user chooses
Create > New Version from an Action Menu.

General Properties
Name - Promotable Version. Non-editable.
Label - Promotable Version. Non-editable.
Category - Promotable Version. Non-editable.
System Properties: (all may be edited)

rs_useownerrevision - Specifies whether to use the owner's revision ID as part of the owner locator
key. Yes. Locked.

rs_usedependentrevision - Specifies whether to use the dependent's revision ID as part of the
dependent locator key. No. Locked.

rs_expirationdate - If this relationship can expire, this property specifies the expiration date/time. If
this relationship cannot expire, this property is set to null. Null (relationship cannot expire).

rs_useserverid - Specifies whether to use the server ID (rxserver) for executing effects.. If set to No,
the current user is used instead of the server ID. Yes.

rs_islocaldependency - Specifies whether the Multi-Server Manager should treat the dependent as a
local dependency. (See the Rhythmyx Multi-Server Manager documentation for more
information.) No.

rs_skippromotion - Specifies whether to repoint the Relationship to the depended object in a
Promotable Version Relationship when the depended it promoted to Public. If checked, the
Relationship is not repointed. If unchecked, the Relationship is repointed. No

User Properties User property values are always filled at runtime.
None. Any number may be added.
Cloning Properties (all may be edited)
Allow Cloning - No.
Locked - Whether local processing can override cloning properties. Yes.
rs_cloneshallow - Whether or not shallow clones of the Relationship may be created. Not Applicable.

rs_clonedeep - Whether or not deep clones of the Relationship may be created. Not Applicable.

Chapter 7 Default Relationships

81

Clone Field Overrides

Field UDF

Conditions
sys_title sys_CloneTitle

None

Parameters

Name Value

Pattern PV Copy ($clone_count) of {0}

Insertionltem0 PSXContentltemStatus/
CONTENTSTATUS.TITLE

sys_communityid sys_Literal None

Parameters

Name Value
pl PSXContentltemStatus/fCONTENT

STATUS.COMMUNITYID

sys_workflowid sys_Literal None

Parameters

Name Value
pl PSXContentltemStatus/WORKFLOW

APPS.WORKFLOWAPPID
Request Pre-processing (Pre-EXxits)

None. Any number may be added.
Result Document Processing (Post-EXxits)

None. Any number may be added.
Effects

sys_Promote
Direction: Up.
transitionName Null
sys_AddCloneToFolder

Direction: Down

82 Rhythmyx Implementing the Relationship Engine

Translation

The Translation Relationship associates an owner Content Item with a clone of itself. When Rhythmyx
clones the owner, it also clones all of its dependents, and they form Translation Relationships with the
owner dependents. Use this Relationship when you want to create a clone that will be translated to
another language and will be published independent of the Owner Content Item.

General Properties
Name - Translation. Non-editable.
Label - Translation. Non-editable.
Category - Translation. Non-editable.
System Properties: (all may be edited)

rs_useownerrevision - Specifies whether to use the owner's revision ID as part of the owner locator
key. Yes. Locked.

rs_usedependentrevision - Specifies whether to use the dependent's revision ID as part of the
dependent locator key. No. Locked.

rs_expirationdate - If this relationship can expire, this property specifies the expiration date/time. If
this relationship cannot expire, this property is set to null. Null (relationship cannot expire).

rs_useserverid - Specifies whether to use the server ID (rxserver) for executing effects.. If set to No,
the current user is used instead of the server ID. Yes.

rs_islocaldependency - Specifies whether the Multi-Server Manager should treat the dependent as a
local dependency. (See the Rhythmyx Multi-Server Manager documentation for more
information.) No.

rs_skippromotion - Specifies whether to repoint the Relationship to the depended object in a
Promotable Version Relationship when the depended it promoted to Public. If checked, the
Relationship is not repointed. If unchecked, the Relationship is repointed. No

User Properties User property values are always filled at runtime.
None. Any number may be added.
Cloning Properties (all may be edited)
Allow Cloning - Whether or not relationship may be cloned. No.
Locked - Whether local processing can override cloning properties. Yes.
rs_cloneshallow - Whether or not shallow clones of the Relationship may be created. Not applicable.

rs_clonedeep - Whether or not deep clones of the Relationship may be created. Not applicable.

Chapter 7 Default Relationships

83

Clone Field Overrides

Field UDF Conditions
sys_title sys_CloneTitle None
Parameters
Name Value
Pattern [{0}] Copy of {1}

Insertionltem0 HTMLSingleParameter/sys_lang
Insertionlteml PSXContentltemStatus/
CONTENTSTATUS.TITLE

sys_communityid sys_CloneFieldOverride None
Parameters
Name Value
Url .Isys_trFieldOverride/

TranslationFieldOverride.xml

FieldElemName Communityld

ParamNamel sys_contentid

ParamValuel PSXContentltemStatus/
CONTENTSTATUS.
CONTENTID

ParamName?2 sys_lang

ParamValue2 HTMLSingleParameter/

sys_lang

84 Rhythmyx Implementing the Relationship Engine

Field UDF Conditions
sys_workflowid sys_CloneFieldOverride None
Parameters
Name Value
Url ..Isys_trFieldOverride/

TranslationFieldOverride.xml

FieldElemName Workflowld

ParamNamel sys_contentid

ParamValuel PSXContentltemStatus/
CONTENTSTATUS.
CONTENTID

ParamName?2 sys_lang

ParamValue2 HTMLSingleParameter/
sys_lang

sys_lang sys_Literal None
Parameters

Name Value
pl HTMLSingleParameter/sys_lang

Request Pre-processing (Pre-Exits)

sys_TranslationConstraint - This Exit runs before creating a new Translation Copy. It prevents
creation of multiple Translation Copies of the owner in the same Language.

Result Document Processing (Post-EXxits)

None. Any number may be added.
Effects

None.

Chapter 7 Default Relationships 85

Translation - Mandatory

Slight modification to the Translation Relationship that prevents a Content Item from going Public unless
all descendants related through this Relationship Type are Public, or can go Public. Use his Relationship
when you want to create a clone of a Content Item that will be translated and you want to prevent the
original Content Item from going Public until the clone is also ready to go Public.

General Properties
Name - Translation - Mandatory. Non-editable.
Label - Translation - Mandatory. Non-editable.
Category - Translation. Non-editable.
System Properties: (all may be edited)

rs_useownerrevision - Specifies whether to use the owner's revision ID as part of the owner locator
key. Yes. Locked.

rs_usedependentrevision - Specifies whether to use the dependent's revision ID as part of the
dependent locator key. No. Locked.

rs_expirationdate - If this relationship can expire, this property specifies the expiration date/time. If
this relationship cannot expire, this property is set to null. Null (relationship cannot expire).

rs_useserverid - Specifies whether to use the server ID (rxserver) for executing effects.. If set to No,
the current user is used instead of the server ID. Yes.

rs_islocaldependency - Specifies whether the Multi-Server Manager should treat the dependent as a
local dependency. (See the Rhythmyx Multi-Server Manager documentation for more
information.) No.

rs_skippromotion - Specifies whether to repoint the Relationship to the depended object in a
Promotable Version Relationship when the depended it promoted to Public. If checked, the
Relationship is not repointed. If unchecked, the Relationship is repointed. No

User Properties User property values are always filled at runtime.
None. Any number may be added.
Cloning Properties (all may be edited)
Allow Cloning - Whether or not relationship may be cloned. Yes.
Locked - Whether local processing can override cloning properties. Yes.
rs_cloneshallow - Whether or not shallow clones of the Relationship may be created. No.

rs_clonedeep - Whether or not deep clones of the Relationship may be created. Yes if the activating
Relationship Category is Promotable Version; otherwise, no.

86

Rhythmyx Implementing the Relationship Engine

Clone Field Overrides

Field UDF Conditions
sys_title sys_CloneTitle None
Parameters
Name Value
Pattern [{0}] Copy of {1}

Insertionltem0 HTMLSingleParameter/sys_lang
Insertionlteml PSXContentltemStatus/
CONTENTSTATUS.TITLE

sys_communityid sys_CloneFieldOverride None
Parameters
Name Value
Url ..Isys_trFieldOverride/

TranslationFieldOverride.xml

FieldElemName Communityld

ParamNamel sys_contentid

ParamValuel PSXContentltemStatus/
CONTENTSTATUS.
CONTENTID

ParamName2 sys_lang

ParamValue2 HTMLSingleParameter/

sys_lang

Chapter 7 Default Relationships

87

Field UDF Conditions
sys_workflowid sys_CloneFieldOverride None
Parameters
Name Value
Url .Isys_trFieldOverride/

TranslationFieldOverride.xml

FieldElemName Workflowld

ParamNamel sys_contentid

ParamValuel PSXContentltemStatus/
CONTENTSTATUS.
CONTENTID

ParamName?2 sys_lang

ParamValue2 HTMLSingleParameter/
sys_lang

sys_lang sys_Literal None
Parameters

Name Value
pl HTMLSingleParameter/sys_lang

Request Pre-processing (Pre-Exits)

sys_TranslationConstraint - This Exit runs before creating a new Translation Copy. It prevents
creation of multiple Translation Copies of the owner in the same Language.

Additional pre-exits may be added.
Result Document Processing (Post-EXxits)

None. Any number may be added.
Effects
sys_PublishMandatory: Direction: Up
forceTransition: No
ownerTransitionName: Null

dependentTransitionName: Null

88 Rhythmyx Implementing the Relationship Engine

sys_UnpublishMandatory: Direction: Up
forceTransition: No
ownerTransitionName: Null

dependentTransitionName: Null

89

CHAPTER 8

Default Effects

Percussion Software provides the following default Effects with Rhythmyx:

sys_AddCloneToFolder (on page 92)

sys_isCloneExists (on page 93)

sys_Notify (on page 94)

sys_Promote (on page 95)

sys_PublishMandatory (on page 96)
sys_TouchParentFolderEffect (on page 99)
sys_UnpublishMandatory (see "sys_PublishMandatory" on page 96)
sys_Validate (on page 101)

sys_ValidateFolder (on page 102)

rxs_NavFolderEffect (on page 90)

rxs_NavFolderCache (see "rxs_NavFolderEffect” on page 90)

90 Rhythmyx Implementing the Relationship Engine

rxs_NavFolderEffect

This effect is used in Rhythmyx internal implementations.

Chapter 8 Default Effects 91

rxs_NavFolderCache

This effect is used in Rhythmyx internal implementations.

92 Rhythmyx Implementing the Relationship Engine

sys_AddCloneToFolder

This Effect associates a new clone of a Content Item with the Folder or Folders in which the Owner in the
Relationship resides. The Effect runs when:

= The context is Relationship creation;

= The request includes the HTML parameter sys_folderid, with a value that is not null and not
empty (if the request includes multiple values for this parameter, the clone will be added to
each specified Folder); and

= The Relationship that is being processed is the Relationship that originally created the clone.
(This requirement ensures that Effect will only be processed once in the life of the
Relationship.)
This Effect is assigned to Relationships that allow users to create clones directly in the Content Explorer
interface, such as the New Copy and Promotable Version Relationships.

Note that the Effect does not check whether the clone is already associated with any of the specified
Folders.

Chapter 8 Default Effects 93

sys_isCloneExists

This Effect prevents cloning of a Translation Relationship if a Translation Relationship already exists to a
Content Item in the target Locale.

94 Rhythmyx Implementing the Relationship Engine

sys_Notify

Generates a Notification to all assignees for items that match the parameters of the Effect.

Parameters

Name Description Required?
workflowid The ID of the Workflow for which to generate the Notification Yes

stateid The ID of the Workflow State for which to generate the Notification Yes
transitionid The ID of the Transition for which to generate the Notification Yes

username The username for which to generate the Notification Yes

Chapter 8 Default Effects 95

sys_Promote

When the Content Item enters a Public State the first time, it replaces the other Content Item in the
Relationship. To execute the replacement:

= Transitions the original Content Item, using either the Transition specified in the
transitionName parameter or the default Transition. This Transition should move the original
Content Item to an Archive State.

= Updates all Relationships that specified the original Content Item as the Dependent to specify
the newly-promoted Content Item as the Dependent.

= Removes all Clonable Relationships from the original Content Item

= Updates all other Relationships that specified the original Content Item as the Owner to
specify the newly-promoted Content Item as the Owner.

Parameters
Name Description Required?
transitionName Internal name (value of the Trigger field of the Edit Transition page) of the No

Transition to use to Transition the Content Item to another State. If no
value is provided for this parameter, the first Transition (alphabetically by
the value of the Trigger field) in the State for which the value of the
Default property is "yes" is used.

96 Rhythmyx Implementing the Relationship Engine

sys_PublishMandatory

This Effect is used in processing mandatory Relationships. It prevents Transition of the Content Item that
activated the Effect to a Public State unless the other Content Item in the Relationship is already in a
Public State.

If the value of the forceTransition parameter is "yes", and either a Transition for which the value of the
Trigger field matches the value of the appropriate TransitionName parameter or a Default Transition is
specified from the current State of the associated Content Item to the Public State of that Content Item's
Workflow, the associated Content Item will be Transitioned to the Public State along with the original
Content Item. If the associated Content Item cannot be Transitioned to a Public State, Rhythmyx
generates an error and the original Content Item is not allowed to make the Transition. The following
flowchart illustrates the processing of this Effect:

Chapter 8 Default Effects

97

Transition o
Public

Run
sys_PublishMandatory
Effect

Relatiocnships to other

False -

Content ltam?

True

Other Content Items

True

Fublic?

False Bllow Transition to
Fublic
forceTransition Yes

Specified Transition
available?

Default
Transition Lo
Public?

Mo Transition;
Display error message
to user

Yas l
Transition

Associated I
Content [tems

voo

Mer

M

Figure 38: Processing of the sys_PublishMandatory Effect

98 Rhythmyx Implementing the Relationship Engine

Parameters

Name
forceTransition

ownerTransitionName

dependentTransitionName

Description Required?

Boolean flag (""yes" or "no") that specifies whether the Content Item Yes
associated in the Relationship will be forced to make the Transition, if the
Transition is possible.

If the value of this parameter is "no" and the associated Content Item is
already in a Public State, the Transition of the original Content Item fails.

Internal name (value of the Trigger field of the Edit Transition page) of the No
Transition to use to Transition the associated Content Item to another

State if that Content Item is the Owner in the Relationship. If no value is
provided for this parameter, the first Transition (alphabetically by the

value of the Trigger field) in the State for which the value of the Default
property is "yes" is used.

Internal name (value of the Trigger field of the Edit Transition page) of the No
Transition to use to Transition the associated Content Item to another

State if that Content Item is the Dependent in the Relationship. If no

value is provided for this parameter, the first Transition (alphabetically by

the value of the Trigger field) in the State for which the value of the

Default property is "yes" is used.

Chapter 8 Default Effects 99

sys_TouchParentFolderEffect

This Effect runs when a Content Item is added to or removed from a Folder. The Effect touches all other
Content Items in the Folder (and in any Subfolders) that are in a Public or Quick Edit State, updating the
Last Modified Date to the current date. Touching these Content Items ensures that they will be re-
published during the next Incremental Publish run.

100 Rhythmyx Implementing the Relationship Engine

sys_UnpublishMandatory

This Effect is used in processing mandatory Relationships. It prevents Transition of the Content Item that
activated the Effect from a Public State unless the other Content Item in the Relationship is already in a
non-Public State.

If the value of the forceTransition parameter is "yes", and either a Transition for which the value of the
Trigger field matches the value of the appropriate TransitionName parameter or a Default Transition is
specified from the current State of the associated Content Item to a non-Public State of that Content Item's
Workflow, the associated Content Item will be Transitioned to the Public State along with the original
Content Item. If the associated Content Item cannot be Transitioned to a non-Public State, Rhythmyx
generates an error and the original Content Item is not allowed to make the Transition.

Parameters

Name Description Required?

forceTransition Boolean flag ("yes" or "no") that specifies whether the Content Item Yes
associated in the Relationship will be forced to make the Transition, if the
Transition is possible.

If the value of this parameter is "no" and the associated Content Item is
already in a non-Public State, the Transition of the original Content Item
fails.

ownerTransitionName Internal name (value of the Trigger field of the Edit Transition page) of the
Transition to use to Transition the associated Content Item to another
State if that Content Item is the Owner in the Relationship. If no value is
provided for this parameter, the first Transition (alphabetically by the
value of the Trigger field) in the State for which the value of the Default
property is "yes" is used.

dependentTransitionName Internal name (value of the Trigger field of the Edit Transition page) of the No
Transition to use to Transition the associated Content Item to another
State if that Content Item is the Dependent in the Relationship. If no
value is provided for this parameter, the first Transition (alphabetically by
the value of the Trigger field) in the State for which the value of the
Default property is "yes" is used.

Chapter 8 Default Effects 101

sys_ Validate

Use this Effect to perform validation on Rhythmyx objects in Relationships. Use conditional statements
for the Effect to perform the validation.

You must define conditions inverse to the condition you want to validate. For example, if you want to
implement a Content Item validation (the request fails if the owner is not a Content Item), you would you
would make this Effect the first Effect in the Relationship and define the following conditional statement
for the Effect:

PSXContentltemStatus/CONTENTSTATUS.OBJECTTYPE 1= 1
(The objecttypeid of Content Items is "1".)

Parameters
Name Description Required?
errorMessage The text Rhythmyx displays if the object fails the validation. This text No

can be internationalized.

102 Rhythmyx Implementing the Relationship Engine

sys_ValidateFolder

NOTE: This Effect is deprecated in Rhythmyx Version 5.7. New installations of Rhythmyx 5.7 and later
do not include a registration for this Effect. During upgrade from earlier versions to Rhythmyx Version
5.7, the Effect will be flagged as deprecated in the Extension registration.

This Effect validates that the Owner in the Relationship is a Folder and that the Dependent in the
Relationship, if it is a Folder, has a name unique among all child Folders of the Owner. If the object fails
this validation, Rhythmyx displays an error message.

Parameters
None

103

Index

A

Active Assembly « 72
Active Assembly - Mandatory « 74
Adding Properties to the Relationship Type * 23,
24, 25, 30, 31, 32
Advanced Example
Translations » 13, 43
Advanced Reconfiguration

Conditional Cloning Based on the Locale of a

Translation « 43
C

Cloning « 4,5, 6
Components of Rhythmyx Relationships ¢ 4
Creating a Basic Relationship Type « 29, 30

D

Default Effects « 89

Default Relationships « 71

Defining Conditions for Exits, Effects, and
Cloning Processes * 34

Deleting a Relationship Type ¢ 29, 33

E

Editing Properties of a Relationship Type « 23,
24, 25, 29, 32

Effects+ 4,7

Example Effect » 16, 64

Example Implementation of Clone Field
Overrides 51

Example of Relationships in Action « 8

F

Folder Content » 76
Forcing Items to Public » 11

Implementing Clone Field Overrides « 50
Implementing Relationships in Rhythmyx ¢ 3

M
Maintaining Relationship Types ¢ 29

Mandatory Relationships and Workflows « 20
Modifying Relationship Configurations 37

N

New Copy * 78
New Relationship Type Wizard « 21, 22, 23, 24,
30

@)

Overrides in Action « 56

Overriding Content Item Fields in Clones « 49
Overriding the Community Field « 54
Overriding the sys_title Field ¢ 52

P

Planning Clone Field Overrides ¢ 35
Promotable Relationship Processing ¢ 5, 6, 17
Promotable Version « 80

Properties 4

R

Relationship Dialogs « 21

Relationship Effects Execution Contexts Dialog
26, 27, 31

Relationship Processing « 16

Relationship Type Editor « 21, 23, 30, 31, 32

Relationship Type Editor, Cloning Tab ¢ 23, 25

Relationship Type Editor, Effects Tab « 23, 25,
32

Relationship Type Editor, General Tab « 23, 31,
32

Relationship Type Editor, Properties Tab « 23,
24,31, 32

Rule Editor 28

rxs_NavFolderCache « 91

rxs_NavFolderEffect « 89, 90

S

Simple Reconfiguration
Adding Forced Transition to a Mandatory
Relationship « 38
sys_AddCloneToFolder « 89, 92
sys_isCloneExists « 89, 93
sys_Notify « 89, 94
sys_Promote * 89, 95
sys_PublishMandatory « 20, 89, 96
sys_TouchParentFolderEffect » 89, 99
sys_UnpublishMandatory ¢ 100
sys_Validate « 89, 101
sys_ValidateFolder ¢ 89, 102

104 Index

T

Translation « 82
Translation - Mandatory « 85

U

Using the Translation - Mandatory Relationship
to Create the French Translation Content Item
« 14

Using the Translation Relationship to Create the
Japanese Translation Content Item « 15

W
Writing Effects « 63

	Implementing Relationships in Rhythmyx
	Components of Rhythmyx Relationships
	Properties
	Cloning
	Effects

	Example of Relationships in Action
	Forcing Items to Public
	Advanced Example: Translations
	Using the Translation - Mandatory Relationship to Create the French Translation Content Item
	Using the Translation Relationship to Create the Japanese Translation Content Item

	Relationship Processing
	Promotable Relationship Processing

	Mandatory Relationships and Workflows
	Relationship Dialogs
	New Relationship Type Wizard
	Relationship Type Editor
	Relationship Type Editor, General Tab
	Relationship Type Editor, Properties Tab
	Relationship Type Editor, Cloning Tab
	Relationship Type Editor, Effects Tab
	Relationship Effects Execution Contexts Dialog
	Rule Editor

	Maintaining Relationship Types
	Creating a Basic Relationship Type
	Adding Properties to the Relationship Type
	Editing Properties of a Relationship Type
	Deleting a Relationship Type
	Defining Conditions for Exits, Effects, and Cloning Processes
	Planning Clone Field Overrides

	Modifying Relationship Configurations
	Simple Reconfiguration: Adding Forced Transition to a Mandatory Relationship
	Advanced Reconfiguration: Conditional Cloning Based on the Locale of a Translation

	Overriding Content Item Fields in Clones
	Implementing Clone Field Overrides
	Example Implementation of Clone Field Overrides
	Overriding the sys_title Field
	Overriding the Community Field
	Overrides in Action

	Writing Effects
	Example Effect

	Default Relationships
	Active Assembly
	Active Assembly - Mandatory
	Folder Content
	New Copy
	Promotable Version
	Translation
	Translation - Mandatory

	Default Effects
	rxs_NavFolderEffect
	rxs_NavFolderCache
	sys_AddCloneToFolder
	sys_isCloneExists
	sys_Notify
	sys_Promote
	sys_PublishMandatory
	sys_TouchParentFolderEffect
	sys_UnpublishMandatory
	sys_Validate
	sys_ValidateFolder

	Index

