Rhythmyx

Concepts Guide

5.7

Copyright © 1999-2005 Percussion Software.
All rights reserved

The software contains proprietary information of Percussion Software; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information and
intellectual property contained herein is confidential between Percussion Software and the client and
remains the exclusive property of Percussion Software. If you find any problems in the documentation,
please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of Percussion Software.

Author[T™ is a trademark of Optical Systems Corporation Ltd.

Microsoft Word, Microsoft Office, Windows®, Window 95™, Window 98™, Windows NT®and MS-
DOS™ are trademarks of the Microsoft Corporation.

This document was created using AuthorlT™, Total Document Creation (see AuthorlT Home -
http://www.author-it.com).

Percussion Software

600 Unicorn Park Drive

Woburn, MA USA 01801

781.438.9900

Internet E-Mail: technical support@percussion.com
Website: http://www.percussion.com

http://www.author-it.com

Contents

Document Introduction 5
The Basics of Content Mana@eMENtcoeiiiieieieieierteete sttt et et e ettt ese et eseeeasesaeeseeseeneeneeneensenes 6
Content Management in RRYtRMYXccooiiiiiiiiiiiiiieiciieie ettt sseennees 7
Rhythmyx and Item-based Content Management............c.cccveeeereerieerieeieeiieseeseeseeeeeereesseesseesseessesssesseessens 8
USING the CONCEPLS GUIAECeevieiieiiieiiietiecieitet ettt et e e ae st e stee st ebeesseessesssessaeseessesssesssesssesseenseenseans 9

Rhythmyx Concepts 11

CONLENE TEIMS ..eivviiiiiieeiit ettt ettt et e et e et e e e e et e e teeesbeeesteaesseesssaeesseessseessseesssaeanseeenseeenseeas 11
(703311311 A 4 o TP 11
TEIMPLALES ...eeeueeeeiie ettt ettt ettt et e et e et e et e e st e e e taeeesbeeesseessseensseessseesseensseesseesseenseeensaeenseen 12
VIATTANES ..cntiiiii ettt ettt ettt ettt e h e e bt e h e bt e bt e et sat e bt bt et et eateenteeetenneenaean 13
CONENE EAITOTS ...c.eiieiieiteete sttt ettt et b ettt et ettt s b bt ebeeneennenaens 14
ACHIVE ASSCIMDLY ..ottt ettt ettt ettt e et e taesteesbeesbeesaeeseeereebeenbeenseenbeesaenseenaeas 15
CONENTE EXPLOTET ...cvviviiiieiieie ettt ettt et ettt et et e be e b e esseesaessaesseesseenseessesseenseenseans 17
FOLACTS ..ttt ettt st b ettt e ettt be b ettt e eaens 18
VIEWS .ttt ettt b ettt b e bbbt e h e ettt h bt bt a bt a et b e bt eh e bbbt et enen 19
REIALIONSIIPS ...ttt ettt ettt e et e s e e b e enaessaesseesseeseenseeneenseenseenseans 19
PUDLISIINE ...ttt ettt ettt et e et et e e et e e e ene e eneeeneenneeneens 20
W OTKETOW ..ttt ettt e et e e et e e st e e eabeessbeeessaessbeessbaessseesssaeasseesssaensseesnseennses 21
RIS ..ttt ettt et h ettt et n e e h e et e e st e bt e neeeneeeneeeneenneeteens 22
COMUITIUINTTIES .ttt ettt ettt ettt ettt st s b et e et e s et eb e et e bt en bt en bt emtesbee s bt enbeenaeeneesseenaeenseenseans 23
LLOCAIES. ettt etttk h ekt e bt Rt e et et et e be ekt ebeeheene et ennenen 23

NI o) s KRR 23

i Rhythmyx Concepts Guide

Rhythmyx Logical Architecture and Processing 25
CONLENT ENZING ...ttt ettt b ettt s e e s et et et es e e bt e e bee b e e bt enaeeneeeaee 26
RelationShip EN@INE......ccuiiiiiiiiiiiiieie ettt ettt sttt et e e b e esaeesaessaesaessaessaeseensesnsenns 31
WOTKEIOW ENZINE.....ociiiiiiiiiieiieiieiece ettt st ae e et e s seesseebeesseesbessaessaeseenseensennns 35
ASSCIMDLY ENZINEGviiiiiiiiiiiiiciieeie ettt e et e e teesae e beesbeesseessessaesaenseenseeseesseesseeseenseens 38
PUDLISHING ENZINE ..ottt ettt ettt e b et e et e e st e st enseenseenseesaesseenseenseenseenes 41

Clients and Interfaces 45
WOTKDENCR ...ttt ettt ettt ettt et e st e e et e et e e beeteenteeneesneeeneenseenseans 46
SEIVET AGMUNISIIALOTiutitietitt ettt ettt ettt et ettt e st e st ese e e e b e ebeeteebeeseeseemeenseseaeeabeeseeseeneensenseas 49
IMUIE-SEIVET IMANAZET......ceeiiietieieeiie ettt et ettt b e bt e bt et s ae e s et e bt e bt es e eseesbe e bee bt enaeeneeeaee 56
CONLENE EXPIOTOT.....vviiiiieiiieeiieecte ettt ettt et e sttt e s b e e s te e e s sbe e saeessbeenseeessbeensseesssaenseeessseensseesseenssaenns 57
WED SEIVICES APttt bt eh ettt ettt sb bt et ees et enees 58

Convera Full-Text Search Engine 59

Rhythmyx Modules 61
(0707311 117 101 4SS PSP 63

Enterprise Content CONMECTOTecvieiiiieriieiiienieesteeeteesteeteeetaeeseeesaeeseessseessseessseessseessseennsees 63
WOTA COMMECLOT ...ttt ettt sttt ettt et b e b et e st emeesbee s bt e bt e bt enaesseesaeenaeenneans 64
BEA WebL0gic POrtal CONMECTOTcuiiiieieiieiceiieiieieie ettt ettt ese e e e sse e e 65
IBM Websphere Portal CONNECIOT.c.ciiirierieeiieiieeieeeieeieeve e see e eseesaeseesseesaeeseesseessesseenseens 66
Oracle Portal COMMECTOTc..euiiiiirtiiteeiceei ettt sttt ettt sb e bttt ebe et e naens 66
RhythmyX EXPress POItalccvooiiiiiiiiiieccit ettt sttt ettt baesseenseenseens 67

Rhythmyx FastForward for Web Content Management 69

Physical Architecture, Deployment, and Scaling 71
RhythmyxX Physical ATCRILECIUIEcc.eiuiitiiiiitiieieiieee ettt ettt et 72
DEPIOYMENE SCENMATIOS ...neuveteetieteetteitete ettt ettt et et e te et eeteeteeseeseeneasse s eateaseeeeeseeneansensanseaseaseeseeneansensenses 74

Rhythmyx System COMPONENLScccuieiiiiiriieriieriiett ettt ettt sttt e e e enaeens 74
Multi-tiered ENVITONIMENTcc.oiuiiiiiiiiiiieiieieiesestese ettt ettt et nae s 76
Configuration Options for Development, Testing, and Production Tiers..........ccccuerueverierenenennns 78
Scaling the Rhythmyx Publishing Environment..............cccocoeviivienieniieiieieeieseeie e 80
Guidelines for Expanding a Rhythmyx SyStem.........c.cccuiiiiiieiiiiiiiiieiieseee e 81
Tomcat Web APPLICAION SEIVETccuiiiiieiieiiieiietieieeie ettt et eee st ettt ae et e st e sseenseensessaesseesseenseenseenes 82
DIALADASE. ...ttt bbbt bbbt a ettt et bt bbbt it et enaen 83

Data Protection 85
SECUITEY ettt ettt ettt e et et a ettt e b e b e bt em et e a bt e et e e h e e ea e et e em et en et e heeeb e e ebe e b e et e e bt et e et eaee 86
BACKUD ettt ettt ettt h e et et a e he e he e b e ent e reeeaeenaeenbeesbeetaeesaeeraebeenneenneenes 87

ATCRIVING ...ttt ettt ettt e e b e esb e e st e s saesbe e beesseessesseeeseeseenseenseesseessenseeseas 87
PUIZINE ..ottt ettt e et e e st este e s e esbeesseesbesseeesa e seesseensesnsesseeeseeseenseens 87
Backup RecoOMMENAAtiONScoueiiieiiieiiiie ettt ettt esseeaeeneesneesseenseenseens 87

Chapter1 Document Introduction iii

System Requirements 89
SEIVET SIAC ...ttt ettt 89
CLENE SIAC ...ttt ettt 90
PUBLISHET ...ttt 90
RhythmyX REPOSITOTYccuviiiriiiiiieiieiieie sttt ettt st et 91
Optional Rhythmyx Full Text Search Engine components:cceceeverieiieneeneenie e 91
POTtal CONMECTOTScviiuiiiiiiiitieteeceit ettt ettt sttt ettt et et et ae bt s bt ebe bt eaeennenens 91
Index 93

CHAPTER 1

Document Introduction

Rhythmyx is an Enterprise Content Management solution that provides a combination of out-of-the-box
capabilities and customization options that enable companies to build high-impact, tailored functionality
that evolves as their needs grow. A robust, scalable system, Rhythmyx manages Web and portal content,
documents, digital assets, and scanned images. To provide greater efficiency and flexibility, Rhythmyx
optimizes content delivery for multiple channels and enables customers to maximize the value of their
content by providing content reuse capabilities.

Concepts Guide

This guide provides an overview of Rhythmyx for managers, system administrators, and implementers
who are new to the product. It introduces the concepts and architecture of Rhythmyx, and provides
guidance for installation and deployment.

After reading this document, you should have a basic understanding of Rhythmyx. Users who require
more detailed information after reading this document may find the following Rhythmyx documents
useful:

= For complete documentation of Workflows in Rhythmyx, see the document Maintaining
Workflows in Rhythmyx or see the CMS Online Help, accessible from the CMS interface.

= For complete documentation of Publishing in Rhythmyx, see the document Implementing
Publishing in Rhythmyx or see the CMS Online Help, accessible from the CMS interface.

= For complete documentation of System Administration in Rhythmyx, see the CMS Online
Help, accessible from the CMS interface.

= For complete documentation of Rhythmyx Content Explorer, see the Content Explorer Online
Help, accessible from Content Explorer.

= For help planning and designing your Rhythmyx system, see the document Modeling a CMS.
= For a guide to Rhythmyx's Multi-Server Manager, see the document Multi-Server Manager.

= For a guide to Rhythmyx's Enterprise Content Connector, see the document Enterprise
Content Connector.

= For a guide to Rhythmyx's BEA WebLogic Connector, see the document Rhythmyx
Connector for BEA WebLogic 8.1 Portal.

= For a guide to Rhythmyx's IBM WebSphere Connector, see the document Rhythmyx
Connector for IBM WebSphere Portal.

= For information about using WebDAV with Rhythmyx, see the document Implementing
WebDAV in Rhythmyx.

6 Rhythmyx Concepts Guide

The Basics of Content Management

Content management refers to a set of applications and capabilities that enable easier maintenance and
publishing of items of data, such as documents or Web content. Content Management can refer just to
Web content (Web Content Management or WCM) or documents (Document Management or DM), but
usually refers to a broader set of content that is published to a variety of locations (Enterprise Content
Management or ECM).

Enterprise Content Management (ECM) enables organizations to:

= manage information resources that are created and stored in countless places;
= deliver multiple types of targeted content to specific audiences;

= support easier content reuse throughout the content lifecycle.
An ECM system offers a strategic framework for storing enterprise content and communicating that
content through multiple channels to multiple audiences. After being published, content may be delivered
to customers through various types of applications including e-commerce, sales automation, customer
relationship management, supply chain management, or employee portals.

Chapter1 Document Introduction 7

Content Management in Rhythmyx

The Rhythmyx Content Management System manages content through the automation of content creation,
maintenance, and delivery, enhanced with features such as content reuse, delivery to multiple sites,
intelligent relationships between content, and simple content assembly for business users. One of
Rhythmyx's key features is content reuse, which it achieves by separating content and formatting, enabling
users to create a variety of outputs using the same data. Business users can assemble the same Content
Items multiple times using different formats and include the Content Items in the output formats of other
content. This enables Rhythmyx output pages to contain many Content Items assembled together.

Another key feature of Rhythmyx is its ability to publish content to multiple sites. Rhythmyx allows any
number of applications to be used to present published content to consumers since the content delivery
mechanism (a portal, Web server, or other application) is not connected or “coupled” to Rhythmyx. This
“decoupled delivery” not only offers companies flexibility in choosing delivery applications, but also
simplifies the process of delivering content to multiple media.

Rhythmyx provides all of its users with the interfaces and mechanisms they need to accomplish their
tasks:

= Content contributors (business users) perform their work through the Content tab of Content
Explorer, which provides a graphical user interface for creating content and assembling it into
outputs. In addition, content contributors can author content through Microsoft Word or any
other application that produces files in formats uploadable to Rhythmyx.

= Implementers and CMS Administrators use the functionality provided on Content Explorer's
Workflow, Publishing, and System tabs to configure Rhythmyx's components to meet their
companies' needs, and use Rhythmyx's Server Administrator to maintain the Rhythmyx
Server, security, and user settings.

= Designers customize their companies' applications and interfaces through the Rhythmyx
Workbench and use Rhythmyx's Multi-Server Manager to move components between
development, testing, and production Rhythmyx Servers.

8 Rhythmyx Concepts Guide

Rhythmyx and Item-based Content
Management

Rhythmyx provides item-based content management, breaking all content into granular pieces that can be
assembled, used and reused in many ways. With item-based content management, users can contribute,
manage, preview and rearrange any type of content, regardless of how it will be assembled and used in the
future.

Rhythmyx output pages can contain many Content Items assembled together. For example, a job posting
may contain an image, a job description, a benefits description, and a legal disclaimer. Rhythmyx treats
each of these as a basic item. Page-based systems force users to treat this content as a single entity,
causing them to reenter the same information into their system on each page that displays it. Rhythmyx
allows content to be broken into its basic Content Items, which are then managed individually. Therefore,
if the legal department needs to change the disclaimer on the bottom of all job postings, the change need
only be applied once to the source item. The change is then automatically reflected across all job postings
and anywhere else the disclaimer is used.

Chapter 1 Document Introduction 9

Using the Concepts Guide

Different users of Rhythmyx may find particular sections of this document especially useful:

= Ifyou are going to implement Rhythmyx or you are a Web master who will administer it, the
following sections will be particularly useful to you:

Rhythmyx Logical Architecture and Processing (on page 25)
Clients and Interfaces (on page 39)

Convera Full-text Search Engine (on page 39)

Rhythmyx Express Portal (on page 39)

Connectors (on page 39)

Rhythmyx FastForward for Web Content Management (on page 39)

= Ifyou will be managing a Rhythmyx implementation, the following sections include
information that you will want to know:

Rhythmyx Concepts (on page 11)

Rhythmyx Logical Architecture and Processing (on page 25)
Convera Full-text Search Engine (on page 39)

Rhythmyx Express Portal (on page 39)

Connectors (on page 39)

Rhythmyx Modules (on page 39)

Rhythmyx FastForward for Web Content Management (on page 39)

= Ifyou are a system administrator who is adding Rhythmyx to your network and software
infrastructure, refer to the following sections:

Clients and Interfaces (on page 39)

Physical Architecture, Deployment and Scaling (see "Physical Architecture,
Deployment, and Scaling" on page 39)

Data Protection (on page 39)

System Requirements (on page 39)

11

CHAPTER 2

Rhythmyx Concepts

To help you understand Rhythmyx, this section lists and defines some of the system's major concepts.

Content Items

Content Items are the basic units of content in Rhythmyx. A Content [tem may be a page or a portion of a
page, or a chunk of data stored in a database. By defining output in terms of Content Items and related
collections of Content Items, Rhythmyx allows users to modify only the parts of a page or other output
that change and to reformat individual Content Items for multiple uses.

Content Items treat both traditional body content and metadata such as content titles and start dates as
body content. Any type of data in the Content Item can be included in the Content Item output.

Rhythmyx stores the Content Item data in database tables and formats it prior to publishing it to a Site (see
"Sites" on page 20). Each Content Item can be displayed in any number of formats and reused in multiple
locations throughout a Site. Content Items can also include links to other Content Items which can be
included in their outputs.

For more information, see Content Engine (on page 26).

Content Types

In Rhythmyx, a Content Type defines the fields and structure for storing information contained in a
Content Item. The Content Type definition also controls the behavior of the Content Editor (Web form)
(see "Content Editors" on page 14) used to create and modify the Content Items of that type. The
implementer of each Rhythmyx system defines a set of Content Types that store the different types of
information displayed on the organization's Web Site(s). For example, one Content Type might store
uploaded images while another could store promotional text. In addition to body content fields, each
Content Type also includes fields for metadata associated with the main content.

For more information, see Content Engine (on page 26).

12 Rhythmyx Concepts Guide

Templates

In Rhythmyx, as with other content management systems, templates are used to define the possible layout
and look and feel of content outputs apart from the content itself. Rhythmyx templates are typically
designed in HTML and then automatically transformed into XSLT stylesheets for use in Content
Assembler applications. However, templates behave fundamentally differently in Rhythmyx than in other
Content Management Systems. In Rhythmyx, business users select and combine fragments of formatted
content together to produce output pages and documents. Each template thus defines only a portion of the
possible output that could be generated by the system when combined with others. To control the
interaction of each template with all others in the system, Rhythmyx uses Variants (on page 13) which
both contain the template (stylesheet) itself as well as the rules for how that portion of output may be
combined with others to produce the final output.

Chapter 2 Rhythmyx Concepts 13

Variants

A Variant defines how to produce the formatted output of a Content Item. The Variant defines
transformation and formatting rules that are applied to a Content Item as well as the rules for how this
Variant interacts with other Variants when aggregating Content Items together. Each Variant is associated
with a specific Content Type, although each Content Type may have any number of associated Variants.
In Rhythmyx, Variants are built inside Content Assembler applications. These applications use stylesheet
templates as well as other instructions to produce the outputs that Variants define when Content Items are
previewed or published.

The following graphics show the same Content Item formatted as two different Variant outputs:

Figure 1: A Content Item formatted by a Page Variant

=
STAR Fund Tops §7 Billion
STAR, the top-rated local govertument itrve stiment pool, today
broke through the $7 billion barrier while setting another all-
tittie record high in total assets, Treasurer Joseph D
Stamos annouced.

Figure 2: The same Content Item formatted by a Snippet Variant
For more information, see Assembly Engine (on page 38).

- -
STAR Fund Tops $7 Billion
Summary:
STAR, the top-rated local government investment pool, today broke through the $7 billion barrier while setting another all-time record high in total
agsets, Treasurer Joseph D Btamos announced.
Eody:
ATAR, the top-rated local goverrament investment pool, today broke through the $7 billion batrier while setting another all-time record high in total
assets, Treasurer Joseph D Stamos announced.
"STAR's continued success comes as no sutprise when you consider the rock-solid foundation upon which the fund operates," Deters stated. "Our
steadfast emphasis on the safety and Hguidity of thosze public dollars has made 3TAR the fund of choice among Ohio's local government investors.”
The fund closed the day with a total asset walue of $7.001 billion.
ATAR enjoys the participation of more than 1,500 Ohio public funds managers and hasz earned a reputation of providing an extremely safe and leuid
itrvestment alternative for public entities with investing authority. The fund has earned Standard & Poot's highest rating of AAAm since 1993
Treasurer Stamos and the treasury's investment division co-administer STAR and serve as the fund's investment adwisors.
Categories:

14 Rhythmyx Concepts Guide

Content Editors

A Rhythmyx Content Editor is a form for displaying and editing Content Items of a specific Content Type.
Content Editors list and display the editable fields of a Content Item.

= | Rhythmyx - Before planning your, estate, plan to see a lawyer, - Edit Content - Microsoft Internet Explorer

Content Froperties

*
.SvStem |Bef0re planning your estate, plan to see a lawyer |

Title:

* Title: |Bef0re planning your estate, plan to see a lawyer | |

* Start 5
Expiration 5
Date: L]
Remind >
Date: I—I

Keywords:

Wwhy you need a lawyer to help with estate planning
Description:

I >

Figure 3: A Content Editor displaying a Content Item

|~

23 Rhythmyx - Before planning your estate, plan to see a lawyer, - Properties - Microsoft Internet Explorer

Content Properties
Content Title (ID) Creator Created On Last Modifier Last Modified On
Before planning your
estate, plan to see a adminl Alg 18, 2004 - 12:00 adminil Alg 18, 2004 - 12:00
lawyer (338)
State{ID) Public Checked Out Assignees{Type)
a Admin
Author
Drafti1 &
(1) 9 b= Editor
Wb Admin
Community Workflow Locale
Internet Community (1002) Standard Workflow (5) S English

Figure 4: A Content Editor's Properties page
Each Content Editor is created in a Content Editor application. Rhythmyx provides a developer interface
for designing and customizing the functions of Content Editors.

For more information, see Content Engine (on page 26).

Chapter 2 Rhythmyx Concepts 15

Active Assembly

Active Assembly enables business users to assemble collections of related content items together into the
formatted pages, documents and other output they wish the CMS to generate. Active Assembly for Pages
provides a WYSIWYG browser Ul that lets business users assemble content visually into slots. Active
Assembly for Documents provides a split pane "tree" view that lets users assemble content hierarchically.
In either case, users of Active Assembly perform searches against content in the system, then select the
Content Items they wish to combine. They also select the Variant of each Content Item to control how
that item will appear in the final assembled output.

When a user opens a Content Item into Active Assembly, and adds another related Content Item into one
of its Slots, the two items become linked by an Active Assembly Relationship. For more information, see
Relationships (on page 19).

When a Content Item is previewed or published in one of its output formats, Rhythmyx Content
Assembler applications automatically execute the Active Assembly Relationships in a process referred to
as recursive rollup. The most deeply embedded related Content Items are formatted, then the Content
Items that include them are formatted, then the Content Items that include these Content Items are
formatted, and so on until the page Content Item that includes and displays all the others is formatted. The
following diagram illustrates this process:

u
Partner Program
Overview
Technology Consulting
Partners Partners
r_omﬂ’“‘
Tagh Overview
Technology Consulting
Partners Partners
.-_ounrﬁﬂgw
T8GR Overview
fd
Tooh Overview coupsP
Tech Qverview o SHETVIEw

Figure 5: Recursive Rollup

16 Rhythmyx Concepts Guide

NOTE: Active Assembly Relationships are predefined in Rhythmyx, but implementers can modify their
specific behavior. See Relationship Engine (on page 31).

Chapter 2 Rhythmyx Concepts 17

Content Explorer

Content Explorer gives Web masters, CMS managers, and business users direct access to Content Items in
the CMS including functions such as create, approve, and copy, as well as mechanisms to assist in
organizing Content Items such as Folders, Views and Searches.

User : artizt]
Roles = artist...
Community : pefault

Rhythmyx

Percussion Software

Sites
E:] [Funds Graphic Request Image
-) Folders [Mavigation Graphic Request Image
(23 us Editorial [Metworks Image Request Image
(2 Us Marketing [Rainy Day Graphic Request Image
- 3 Views

P Community Content
- Al

& all content

g Al

@ Cther Content
) Duplicate Folder Paths
=2, Searches

‘QF Mew Search

‘W sample custom search

‘3 Defaulkt &4 New Search
‘8 Default O Mew Search
‘W sample standard search

I |

Figure 6: Content Explorer as it appears to a business user
Content Explorer includes a Navigation Tree with Folders, Views, and Searches that present Content
Items by user-defined or system-defined categories. When users click on one of these nodes in the

Navigation Tree, the Display pane to the right shows its contents.

Users can right-click on a Content Item to access an Action Menu of functions to perform on the Content
Item, such as editing and performing Workflow transitions.

18 Rhythmyx Concepts Guide

Edit
Wigw ¥
Preview]

Create] Submit

Active Assembly »

i

Active Assembly for Documents b
Impact Analysis

Remave fram Faolder

Copy URL to Clipboard

Purge

Copy

Figure 7: Action Menu

Folders

Rhythmyx Folders in the Content Explorer navigation pane are similar visually to Folders in Windows
Explorer. While Windows Explorer folders organize files, Content Explorer Folders organize Content
Items. However, underneath, Rhythmyx Folders are very different. In Rhythmyx, Folders are virtual
locations for maintaining Content Items. A Content Item is not actually stored in a folder. All Content
Items are stored in the CMS Repository (a DBMS). A Content Item "in" a folder is actually linked to the
Folder. Folders provide a method for users to arrange Content Items regardless of how they are stored.
The same Content Item may appear in multiple Folders at the same time, since what the Folder holds is
actually a link to the physical Content Item. Once an Item is altered, it is altered in the CMS as a whole,
and will appear changed in all the Folders in which it appears.

The Navigation pane in Content Explorer contains two main Folder nodes, the Sites node and the Folders
node. Folders in the Sites node are used to control the structure of Folders on a published Site.
Administrators can use Site Folder Publishing to publish the contents of Site Folders to the same folder
tree on the Site. Folders in the Folders node can be arranged in any way that is useful to the user; for
example Folders could represent projects, or workgroups, or hold all content of a given Content Type.

Content Wiew Site Explorer Help E Content Path: |/ fFolders /LIS Marketing

Mame hrCess

Sites

(21 Us web Site L] Funds Graphic
- %) Folders [Mavigation Graphic %
(£ U5 Editorial [Metworks Image %
[E&] 1= Marketing [our Producks i
= views [Rainy Day Graphic £y

& My Content
4 Checked Cut By Me
& Inbox

T S B

Figure 8: Folders in Content Explorer

Chapter 2 Rhythmyx Concepts 19

Views

Rhythmyx Views in the Content Explorer navigation pane display content sorted by parameters selected
by Rhythmyx or a system implementer. Views are useful because they arrange content by categories that
would be difficult to maintain in Folders, such as Workflow States and assigned users, and they allow
users to see Content Items that are not stored in their folders. Implementers set up the views available to
users; users can choose to display different views, but cannot modify any view.

’ D Imvesting Image
) Carmunity Conktent D our Producks

- Al

& Al Content

- Al

¢t Other Content

@4 Duplicate Folder Paths

- Views [Funds Graphic o
=& My Content [Funds Graphic o
ﬁ Checked Out By Me [Mavigation Graphic o
% [Rainy Day Graphic %

Oukbio [stacks i

Recent [Investing Image o

ﬁ Session %

o

o

D Imvesting 101

Figure 9: Content Explorer Views

Relationships

A Rhythmyx Relationship is an association between two objects in Rhythmyx (usually between Content
Items). One object is the owner and the other is the dependent. For example, in an Active Assembly
Relationship, an original Content Item is an owner, and a Content Item that is included in its output is a
dependent; in a Translation Relationship, an original Content Item is an owner, and the same Content Item
translated into another language is a dependent. A set of properties define the behavior for each type of
Relationship in Rhythmyx. For example, in one type of Relationship, the owner and dependent must both
be in a public State before either of them can be published; in another type of Relationship, when the
dependent is published, the owner is transitioned to an archive State.

Implementers maintain rules governing relationship behaviors in the Rhythmyx Workbench Relationships
Editor. For more information, see Relationship Engine (on page 31).

20 Rhythmyx Concepts Guide

Publishing

Enterprise applications that make content available to end users are content delivery applications. These
include corporate internet sites, employee intranets, e-commerce applications, and print production
systems. Typically, content delivery applications are hosted in a wide variety of application platforms
such as enterprise portal systems, Web Servers, personalization servers, or application servers. With an
ECM system in place, content applications must interact with the ECM to get the correct content. This
interaction may be defined as either "coupled delivery" or "de-coupled delivery." With coupled delivery,
each content delivery application must directly request all content from the CMS via an API. The CMS
becomes the direct content object store under all the applications. With de-coupled delivery, each content
delivery application defines its own private content object store. The CMS is configured to transfer
content from its Repository into the different content object stores defined under each of the content
delivery applications. Whenever content in the CMS changes, the CMS publishes the appropriate changes
into all the content delivery applications. This lets the delivery platform deliver only the appropriate
managed content without an active connection to the CMS.

Rhythmyx uses de-coupled delivery. Rhythmyx uses a Publisher to transfer content to each delivery
platform's repository or file system, or through platform specific APIs via Publisher plug-ins. Rhythmyx's
decoupled delivery significantly simplifies the use of multiple delivery platforms, because each platform
does not have to interface with the CMS, nor do all applications have to agree upon a common definition
or schema for storing and delivering content objects.

Sites

A Site defines a location where Rhythmyx Content Items are published. A Site may be a file system, an
ftp location, or a database repository. Sites can also refer to multiple virtual locations on the same
physical machine (such as a virtual Web folder or drive).

Site Folders in the Content Explorer navigation pane can dictate the structure of a Site. Administrators
can use Site Folder Publishing to publish the contents of a Site Folder to the same folder tree on the Site.

Editions

The Rhythmyx publishing process uses Editions to let administrators set up and manage the types of
publishing activities that can occur. Editions primarily define the content that is to be published and the
Site where it is to be transferred. Publishing of an Edition begins via a scheduler program, a workflow or
system action, or an end user manually initiating an Edition from a button in the browser interface.

An Edition specifies the publishing Site and includes one or more Content Lists to define the content to be
published. Each Content List specifies a given subset of Content Items to publish, including the sequence
in which to publish them and the directory locations at which to publish them. For example, an Edition
specifies that content is published to an Internet Site. It includes three Content Lists. Each Content List
represents a different Page Variant, and specifies that all Content Items in a public State that are
associated with that Variant be published to the Site. For Site Folder Publishing, it is more common to use
a single Content List that specifies that all Content Items under a common Site Folder root be published to
the Site specified in the Edition.

Chapter 2 Rhythmyx Concepts 21

Workflow

A Rhythmyx Workflow is a set of States that a Content Item progresses through during its lifetime.
Workflows often include the following States:

= development - In a development State, users create or modify a Content Item. It may be the
initial State of a Content Item, a State in which a contributor regularly adds data, such as
artwork, to an existing Content Item, or a State to which an approver returns a Content Item
for modification.

= approval - In an approval State, administrators or Web Masters approve an existing Content
Item for publication or reject it and return it to an earlier State for modification.

= public State - Content Items in a public State are ready to be published. During the next
publishing run, these Content Items can be selected and published to a delivery Site.
Depending on the Workflow assigned to them, Content Items in a public State may have
moved through one or more approval States before reaching the public State or may have
transitioned directly to the public State after being created.

= archive State - Content Items in an archive State are no longer publishable. Most Content
Items in a public State reach a point at which they are no longer current; at this point, a user or
automatic Transition moves them into an archive State. If a Content [tem becomes unusable
before it reaches a public State, it may also be transitioned to an archive State.

22 Rhythmyx Concepts Guide

Each Workflow includes Roles that define user access to content in each State, and Transitions or actions
that specify how content can move from one State to another.

Approve =
)

Direct to Publi
Y
Ld
Age to Public

Force to Publig
5
Ld

Age to Archiveg
Expire
)
Quick Edit
4
Reminder Transition
Return to Public
d
A
Revive
d
|
Republish pes
d
|
|
Draft Pending Public QuickEdit Archive
+[o] +[e] [+[5]
« | &l

Figure 10: Workflow diagram. Each vertical line represents a State. Each horizontal arrow represents a
Transition from one State to another. Transitions may be initiated by users, or by automated events, such
as expiration based on date.

See Workflow Engine (on page 35) for more information.

Roles

A Role defines a collection of users associated with the same permissions and access in Rhythmyx. In
Workflows, Roles are assigned permissions by State to determine which users can access content in each
State and which Transitions they can initiate. Roles also determine which portions of Content Explorer a
user can view, Folder access, and other privileges in Rhythmyx. Roles are also used to define the
members of a Community (see "Communities" on page 23).

Organizing users into Roles helps administrators manage users that have the same permissions. Instead of
managing the permissions for each user, they define a Role and the permissions for it, and then assign
users to it. Users assigned to that Role have the permissions specified for that Role. When an
administrator assigns a Role to the Access Control List of an application, the users in that Role have
access to that application.

Chapter 2 Rhythmyx Concepts 23

Communities

Communities add efficiency to a Rhythmyx System by filtering the Content Editors, Variants, Workflows,
Sites, and user interface components available to users. A Community represents a group of Roles that
require access to similar information in Rhythmyx. A Role can be associated with more than one
Community, and users belong to all of the Communities associated with their Roles. When users log in to
the CMS interface, Rhythmyx only displays Rhythmyx components associated with their Communities.

Locales

A Rhythmyx Locale is a user's login language including its regional variation, such as French Canadian or
British English. Rhythmyx uses Locales in two distinct areas. First, the user interface Locale (chosen by
the user during login) affects the language of labels seen in Content Explorer during the session. Second,
each Content Item in the system is marked with a specific Locale. By default, the Locale of newly created
items is set to that of the user interface.

Locales enable customers to deliver similar content to audiences that speak different languages. If more
than one Locale is available, the system is globalized, and it is possible for users to make Translation
Copies of Content Items. For example, a customer may require two different sites for the Canadian
market-one site in Canadian English and one site in Canadian French. Content contributors could begin
by creating the site in Canadian English, and then translators could create duplicate Canadian French
pages by creating Translation Content Items of each English page.

For information about Localizing your Rhythmyx System, see the document Internationalizing and
Localizing Rhythmyx.

Sessions

A user begins a session by logging in to Rhythmyx. When the user logs out (or the system logs the user
out) the session is finished. After logging out, a user cannot return to a previous session, but must log in
again and begin a new session.

Each session takes the login username, and if enabled, the default or login Community and Locale as user
session properties. Rhythmyx displays these user session properties and the login user's Role at the top of
Content Explorer.

The default Locale and Community are configurable. The login Locale only displays at the top of Content
Explorer with the other user session properties if the user has more than one Locale. The user can click on
Community or Locale to change it for the active session.

User : Ed Wong
Roles : idmin
Community : Intarnet
Locale : US Englizh
Figure 11: User Session information in Content Explorer
Session properties determine the login user's access to Content Items and Action Menu options and other
components of Content Explorer.

25

CHAPTER 3

Rhythmyx Logical Architecture
and Processing

Rhythmyx's components and their processes interact in a variety of ways. However, the majority of
Rhythmyx's features and operations are associated with one of five logical engines that make up the CMS:

Content Engine - Controls the creation and storage of Content Items.

Relationship Engine - Defines and processes Relationships between Content Items
Workflow Engine- Defines and controls the life cycles of Content Items.
Assembly Engine- Controls the formatting of Content Items

Publishing Engine- Implements the delivery of Content Items.

The topics in this section explain the processing of each engine and the Rhythmyx components that it

uses.

26 Rhythmyx Concepts Guide

Content Engine

The Content Engine includes the components and processes in Rhythmyx that allow users to create and
store Content Items. Users can use these components in Rhythmyx to create and modify all of their
content or can integrate them with outside applications such as Microsoft Word and Adobe PhotoShop to
create content in other applications. Rhythmyx can upload content created in other applications through
specially configured folders or one of the Connectors that Rhythmyx provides.

For information about configuring folders to upload content from other applications, see the document
Implementing WebDAV in Rhythmyx.

Architecture

The main components of the Content Engine are Content Types, Content Editors, Content Items, Content
Editor definition files, and the backend repository tables that store local, shared, and system data for
Content Items.

A Content Type defines a category of Content Item and the fields included in items of that type. It
specifies the Content Editor or form used to create and modify the Content Items of that category. The
Content Editor specified by the Content Type defines the body content and metadata fields for the Content

Type.

A Content Editor can include local, shared, and system fields which are defined in XML files. Local
fields are unique to the Content Type; an implementer defines them. Shared fields are used by more than
one Content Editor in the CMS. System fields are used in all Content Editors in the CMS. After the
Content Editor and Content Type are created, Rhythmyx creates an XML file that defines all of the
Content Editor fields and builds a backend table for storing the values of local fields. The values for
shared and system fields are also stored in backend tables.

Local, shared, and system fields may store what is traditionally distinguished as body content or metadata.
However, Rhythmyx does not distinguish between body fields and metadata fields. They are defined in the
same manner in Content Editor definition files and backend tables, and any body or metadata field can be
displayed in a Content Item's output.

Implementers create Content Editors in the Rhythmyx Workbench, either from a generic Content Editor
template, a predefined XML file, or a backend table defined for the Content Editor. Once the Workbench
creates a resource for the Content Editor, the implementer can access a Properties dialog for modifying it.
To perform more detailed customization of the Content Editor, the implementer can directly modify the
XML file associated with it.

Users view Content Editors as Web browser forms that list and display the fields and the field contents of
a Content Item. Manually entering data into a Content Editor is one way that users can create Content
Items in Rhythmyx. After entering the data, the user clicks an Insert button to upload the data into the
backend tables that store the Content Item. Users can then reopen the Content Items to view or edit them.
Users can also create Content Items in third party applications and then upload them into Rhythmyx as
specific Content Types using specially configured (WebDAV-enabled) folders or one of Rhythmyx's
Connector applications. After Rhythmyx uploads these Content Items, users can open them in Rhythmyx
Content Editors for viewing or editing.

Chapter 3 Rhythmyx Logical Architecture and Processing 27

A Content Item is an instance of a Content Type. It includes the body data and metadata for a particular
piece of content and is stored as unformatted data in the Rhythmyx database tables representing the
Content Type's local, shared, and system fields. When Rhythmyx requests the Content Item, raw data from
the database fields are inserted into a virtual XML document for further processing by the CMS. When the
processing is done, the contents of the updated virtual XML document are inserted into the database fields

for storage.

Content Editor data is
local to the Content Editor,
shared among Content
Editors, and retrieved from
the Rhythmyx system.

A Content Editor’s fields are
defined in an XML definition
file for the Content Editor.

Processing

P ey |

Loca
data

=G
Shared
data

o= |

ystem
data

XML Definition
File

A Content Editor form
displays Content Editor
fields from the Content
Editor definition file to users.
Content Editor fields are
filled manually and viewed
in Content Editor forms.

Content Editor Form

Content Editor data can also
be uploaded into the
repository from external
files.

Rhythmyx
stores
Content
Editor data in
its back end
repository.

Rhythmyx

Back End
Repository

The process of creating a Content Item in Rhythmyx can either involve a content contributor making a
request to create the Content [tem directly in Rhythmyx, or Rhythmyx ingesting a file or XML created in a
third-party application and submitted through specially configured folders (WebDAV), a Connector, or

through custom Web services API submission.

28 Rhythmyx Concepts Guide

When a content contributor makes a request from Content Explorer to create a new Content Item,
Rhythmyx determines the Content Type requested and generates a Web form for the Content Editor. The
content contributor fills in the Web form with values for the Content Editor fields and clicks an insert
button. When the insert button is clicked, Rhythmyx is directed to create the Content Item using the data

entered into the form.

(1)

U A Content
Contributor working
in Content Explorer

chooses to create a

]
By,

The new Content

new Content ltem.

IE
Rhythmyx creates a
Content Editor form
using the fields defined

in the Content Editor's
Definition file.

M

Content Editoy—_}
Definition File ™

S

ﬂtle_

(3 .\'|

Item appears in
Content Explorer

The content
contributor fills
in the form and
clicks [Insert].

Back end
repository

" Rhythmyx creates

the Content ltem by
A f :

bc de inserting the data
on the form into the
Abc .. def backend repository.

Content
Editor Form

Figure 12: Creating a Content Item in Content Explorer

Chapter 3 Rhythmyx Logical Architecture and Processing 29

The process for uploading Content Items into Rhythmyx begins when a user creates a file in a third-party
application. If the system uses WebDAYV, the user saves the file using a WebDAV-enabled client (such as
PhotoShop) or saves the file into a WebDAV-enabled folder in the underlying operating system.
Rhythmyx uses mappings from a WebDAYV configuration file to associate data from the file with a
Content Type and to the fields defined for that Content Type. For information about implementing
WebDAYV in Rhythmyx, see the document Implementing WebDAV in Rhythmyx.

Other Connectors and a Web services API are also available for ingesting content into Rhythmyx. These
all submit to the same Content Types using input field definitions and other rules from the same Content
Editor definitions as are used by the Web forms and WebDAYV submissions.

title Content Editor
— Definition File
3
Rhythmyx
__ retrieves data
| from the file
; Lt Sies Data that maps to Back End
2 .t (0\59.“ B File fields defined Repository
BT S T S in the Content
T e 5"’\10@3("\3] o Editor
Data “\eﬁ‘\ m‘!“‘o \NPJQOP' PN definition file
Fil ™ * O it
.?X\ aé\\ i A_t .!

(1 ~
’ ol Rhythmyx creates the
“abc Content Item by

inserting the file data
into the backend
repository.

A user creates a
file in an external
application

Figure 13: Creating a Content Item in an External Application
Rhythmyx uses the same components to present a Content Item for viewing or editing as it does to create a
Content Item. In this process, a content contributor makes a request to view or edit the Content Item. In
response to the request, Rhythmyx creates a virtual XML document using definitions from the Content
Editor definition file and data from the backend repository tables for the specific Content Item. Rhythmyx
applies Content Editor stylesheets that format this XML to present it in the desired form to the content
contributor for viewing or editing.

If a Content Item is edited after entering a public State, a new revision of the Content Item is created and
becomes the revision displayed as output. The former version of the Content Item is saved with the
previous revision number, but in the future, it can be restored as the current revision that is displayed as
output.

30

Rhythmyx Concepts Guide

" A content
contributor working
in Content Explorer
makes a request to
view or edita

Content Item

(2)
Rhythmyx
creates a Content
Editor form using
fields in its
definition file. It
fills the form with
Content Item data
from the backend
repository.

Back End
Repository

Content Editor \
Definition File

Figure 14:

(3)
AN
Rhythmyx returns the

completed form for
viewing or editing.

- Abc...

xyz

Viewing or Editing a Content Item

Content Editor Form

Chapter 3 Rhythmyx Logical Architecture and Processing 31

Relationship Engine

The Relationship Engine ensures that Rhythmyx understands and manages all content associations and
enforces all business rules defining those associations. The Relationship Engine includes the interfaces
for defining Relationships in Rhythmyx and the processes that implement the proper functioning of these
Relationships.

Architecture

A Rhythmyx Relationship is an association between two objects in Rhythmyx (usually two Content
Items). One object is the owner and the other is the dependent. The dependent is associated with the
owner according to rules or behaviors specified in the Relationship. Four components specify the rules
and behavior of a Relationship: properties, cloning options, exits, and effects:

= Properties - Information defining the Relationship such as its Name, Expiration Date, and
whether it is used in Active Assembly. Rhythmyx uses this information to determine actions
such as when to end the Relationship.

= Cloning Options - Rules defining whether to duplicate the Relationship and how. For
example, some Relationships may require that if the Relationship is duplicated, the dependent
object must also be duplicated; others may require that just the Relationship be duplicated.

= Exits - Java code and scripts executed when the Relationship is created. For example, an exit
may prevent Rhythmyx from creating the Relationship if an instance already exists.

= Effects - Java code and scripts executed when a Relationship is processed. For example, an
effect may require that Rhythmyx notify certain users when the Dependent in a Relationship
reaches a Public State.

32 Rhythmyx Concepts Guide

Relationship: Main Components
@

®
>
Owner Dependent
Content ltem that Content ltem that is

‘owns” the Relationship associated with owner.

Other Components

¥ il T - i _d
i e(‘(\e% /*@ /c,'\%'
eo® > >

i _ <8
Information Rules defining Java code and scripts Java code and
defining the how to duplicate executed when a scripts executed
relationship, such Relationships. Relationship is when a
as Name and created. Relationship is
Expiration Date, processed.

Figure 15: Relationship Architecture
Processing

To begin understanding how Relationships work, let us look at a simple HTML page that consists of some
text and a graphic:

Figure 16: A Page including text and a graphic
In Rhythmyx, this page consists of two Content Items, an Article Content Item that contains the text and
an Image Content Item used to manage the Image file. The two Content Items are associated through an
Active Assembly Relationship.

Chapter 3 Rhythmyx Logical Architecture and Processing 33

Article Content Item

S -

Active Assembly
Relationship

— Al

Image Content Item
Figure 17: Active Assembly Relationship
The Active Assembly Relationship is a very basic Relationship. It simply points to a dependent Content
Item to be inserted into a Slot in a specific Variant of the owner Content Item. At assembly, when the
individual Content Items are formatted, an HTML page is formatted with a reference to the image. The
browser then renders the HTML as one page.

Now, let us suppose we want to ensure that the Article cannot go Public unless the associated graphic is
also ready to go Public. The Active Assembly Relationship does not meet our needs because it does not
put any constraints on the two Content Items. Each can go Public independently of the other. If the
Article goes public and the image does not, the article will be published, but the Image will be removed.
While this ensures non-public content will not be seen, it may make the article less compelling. In some
cases, articles might depend on the image to make sense. The Relationship Engine can then be used to
manage these cases, where one piece of content is dependent on others. For example, to ensure that the
Article cannot go Public unless the associated Image is ready to go Public, we could use the Active
Assembly - Mandatory Relationship when linking the Image to the Article.

Article Content ltem

=R

BT Pendlng State —— = Public State

Active Assembly
Mandatory
Relationship

— i Design State

Image Content ltem
Figure 18: Active Assembly - Mandatory Relationship

34 Rhythmyx Concepts Guide

The Active Assembly - Mandatory Relationship includes the Effect sys PublishMandatory. This Effect
prevents a Content Item from going Public if the associated dependent Content Item in the Relationship is
not also Public. In this case, the Effect checks whether the Dependent is Public before allowing the Owner
item to go Public. Thus, if the Image Content Item is not Public, we cannot Transition the owning Article
to Public. The Article will wait in the Pending State until the Image Content Item has entered the pending
State. When this Dependent enters the Pending State, we will be able to Transition the Article to Public.
Other relationship Effects could be used to create different types of automation.

=

— Pending State p Public State

s

Article Content ltem

Active Assembly
Mandatory
Relationship

— Public State

Image Content Item

Chapter 3 Rhythmyx Logical Architecture and Processing 35

Workflow Engine

The Workflow Engine is composed of the components and procedures that define Workflows or
business processes in Rhythmyx.

Architecture

Workflows define the stages in the process of creating a Content Item and specify which users can access
the items at each stage in the process. The Rhythmyx Publisher looks at the Workflow State to determine
whether or not a Content Item is eligible to be published.

Workflows consist of States, Roles, Transitions, Transition Roles, and Notifications.

States define the different stages of a Content Item.

While a Content Item is in a certain State, only the people in Roles assigned to that State have
access to the item. In Workflows, Roles should define a set of users by the function they
perform in the process, such as “Author”, “Editor”, “Designer” and “Administrator”.

Transitions define routing paths from one state to the next. There can be multiple transitions
from one state to other states, and they may go forward, backward, and even "loop back" to
the same state. Transitions are triggered manually when an assignee takes some defined
"triggering" action on the Content Item, such as pushing the approve button or automatically,
when a specified date is reached.

Transition Roles specify the Roles that must perform a Transition on a Content Item before it
is valid, and the number of users who must perform the Transition. For example, the
Transition Role could specify that at least one person in the Editor Role and another person
from the Marketing Role must perform the Transition before it is completed.

Notifications or email messages can be assigned to certain Transitions. Rhythmyx can send
the Notifications to any email addresses or to those of Roles assigned to the before or after
States for the Transition.

36 Rhythmyx Concepts Guide

Workflow Architecture

Draft State Approval State Public State Archive State

i

Required transition roles: any one

Submit Transition Natification
Esentloa

Y

user

autside the
m Workflow

Required transition roles: all
Required transition roles: any one Approve Transition ‘ﬁ
Reject Transition |
é m .
@ Requirad transition role: Ed'rto/r/ /

rf Transition Field: Start Date Unpublish Transition
Natifications are Age to Public Transition —| ;“é E—P
sent to members of
Roles assigned to
the State that the

L

Content ltem Notifications are
transitions to. sent to members of
J(Roles assigned o Requi it .
quired transition roles:
f Egntsel?\ﬁgnit the 2 - Admin and any cther one
ransitions from. Republish Transition
/ ! -
Roles with access to content in State: Roles with access to content in State: Roles with access to content in State: Ruoles with access to content in State:
Admin, Author Admin, Editor, QA Admin, Author, Editor, QA Admin, Editor

Figure 19: Workflow Engine Architecture
The Workflow architecture diagram, the vertical lines represent the States of this Workflow: Draft,
Approval, Public, and Archive. The arrows coming from each State represent its Transitions. They point
to the State that the Content Item transitions to. The figures at the bottom of each State represent the
Roles that have access to Content Items in the State, and the figures above Transitions represent Transition
Roles. Envelopes superimposed on Transition Arrows represent Notifications. Notifications point to the
users who receive them when the Transition occurs.

Processing

When a Content Item is created and saved, it automatically enters the first State in its Workflow. Either a
Role with access to this State transitions the Content Item to the next State, or an Aging Transition
automatically moves it to the next State when a specified date or interval is reached. The Content Item
moves through each State in the Workflow in this manner until it reaches a public State. The Rhythmyx
Publisher is generally configured to publish the Content Item when it reaches a public State. Once a
Content Item is no longer valid or useful on a Web Site, a Role can transition it to an archive State, or it
may enter an archive State through an aging Transition. Content Items in the archive State are unpublished
from the Web Site and are saved for reference.

Chapter 3 Rhythmyx Logical Architecture and Processing 37

The following diagram shows the same Workflow as the diagram in the previous section, but here a
Content Item's lifecycle is also recorded. The Content Item is created and saved by a user in the Author
Role. Once it is saved, it enters the Draft State. The Author has access to the Draft State and performs a
Submit Transition on the Content Item. Since any role may transition the Content Item, it moves to the
Approval State. Since no users approve the Content Item before its Start Date is reached, on the Start
Date, an Aging Transition moves the Content Item to the Public State. The Aging Transition
automatically sends Notifications to all members of the Roles that had access to the Content Item in the
Approval State. Eventually, the Content Item is no longer current on the Web Site. An Editor, the
required Transition Role, performs an Unpublish Transition and the Content Item moves to the Archive
State. The Unpublish Transition sends a Notification to the company auditor that the Content Item is in the
Archive State.

Workflow Process

Draft State Approval State Public State Archive State

51% éf*
/RN

Required transition roles: any one
An Author

creates & Submit Transition
Content =l = =
: =I = =|
ltem. It is
now in the n th ths, the Content It
The Author performs a n three months, the em
Draft State. @ Submit Tranl;:ﬂon_ is no longer current. An Editor
The Content ltem performs an Unpublish Transition
moves to the Approval and the Content ltem moves to
State, Approve Transition the Archive State.
L .
A
In Ill l:.' A t;‘
izf::v:h:;:;:oﬁe?:;né an nt Required transition role; Editor @
g:s:‘:f::;: :;e :fn‘“:gilr':‘ 18, Unpublish Transition The
) . Transition automatically oceurs, @ Unpublish
Reject Transition and the Conternt [taim moves to = Transition
the Public State. sends a
- natification
to the email
address of
= the company
- _— auditor, who
Transition Field: Start Date is not in any
Age to Public) . Roles
Republish Transition
Transition - associated
= - with the
= Workflow.

The Age to Public
Transition sends a
notification to users in
Roles who had access
to the Content Item in o0

D
the Approval State. \ B
o 4
A / Iy o
! /AN

I N
/] I
L U W ! L
Roles with access to content in State: Roles with access to content in State: Roles with access to content in State: Roles with access to content in State:
Admin, Author Admin, Editor, QA Admin, Auther, Editor, QA Admin, Editor

Figure 20: Workflow Processing

38 Rhythmyx Concepts Guide

Assembly Engine

The Assembly Engine includes the XML and XSL files, applications, and component registrations
responsible for the aggregation and formatting of Content Items into various outputs produced by
Rhythmyx.

Architecture

The central component of the assembly engine is the Variant. Each Variant includes a template, an
associated Content Assembler application, and any number of Slots. Most Variant templates are XSL
stylesheets which format Content Item data in one of the ways it may be viewed on a Web Site. Slots are
the locations on the output where other Content Items may be included. A Variant is marked as either a
Page or a Snippet. Pages represent a complete Web Page and Snippets represent a portion of a Web Page.

Page —-

hat
|

| Content Assembler —
Application Output form

Snippet

' Slots
XSL Stylesheet in Content ©

Assembler application

Variant
Figure 21: Components of a Variant

Chapter 3 Rhythmyx Logical Architecture and Processing 39

The Content Assembler applications associated with Variants perform the process of formatting raw
content with templates. The applications extract Content Item data from Rhythmyx tables, insert the data
into XML files, and format it using the XSL stylesheet templates. Usually, implementers create one
Content Assembler application which generates output for all of a Content Types' Variants; however,
more than one assembler application may apply to a single Content Type.

Processing

To assemble a Variant of an item, Rhythmyx applies formatting to the item's local content and inserts
Snippets into the Variant's Slots. This process is referred to as recursive rollup because Rhythmyx must
also format the embedded Snippet's local content and insert additional Snippets into its Slots, and format
the local content of these Snippets and insert Content into their Slots, and so on. When the recursion is
complete, all embedded Content is formatted and inserted and Rhythmyx returns the output Page or
Snippet.

Assembly is triggered when a business user requests a preview of an assembled output of a Content Item
or a Rhythmyx Publisher requests that a Content Item be formatted as a certain output for Publishing.
When Rhythmyx receives the request, it sends a URL to the associated Content Assembler application.
The URL specifies the application to call, the Content Item to be formatted, and the Variant associated
with the output. The Content Assembler application uses this information to obtain the Content Item data
(and URLs of related Content Items) from the Rhythmyx backend tables and to select the correct XSL
stylesheet for formatting the Content Item. It inserts the Content Item data into an XML file and applies
the XSL stylesheet to it. The stylesheet formats the content as output text, in most cases, as HTML. The
stylesheet also requests the formatted Content Items that belong in each of the Slots in the output.

Each time a formatted Content Item is requested for a Slot, a URL is sent to the Content Assembler
application that creates the appropriate output and that Content Assembler application performs the
process outlined above for formatting the related Content Item. This occurs for each related Content Item
until all levels of related Content Items are included in the embedded content.

40 Rhythmyx Concepts Guide

When the entire process is complete, the Content Assembler application returns the originally requested

output for preview or processing.

- A Business user requests a
Content Item preview or the
Rhythmyx Publisher
requests that a Content
Iltem be formatted for
publishing.

Rhythmyx sends a URL request to
the Content Assembler application
that creates the output. The URL
specifies the Content Item 1D and
the ID of the Variant that creates

®

When the assembly process is
complete, the Content Assembler
returns the assembled output for
preview or publishing.

the output. Publisher .
html
http:/irxserver:9992/Rhythmyx/
caslmage/binaryimage?
sys_revision=1&sys_authtype=0&
sys_contentid=305&sys_variantid=
390&sys_context=0
xml

O

Back End
Repository

The Content Assembler
application retrieves Content

For each of its Slots, the XSL requests the
formatted Content Item that goes into the
Slot. (Steps 2 through 5 are repeated to
assemble the Content Item that is inserted
into the Slot.)

This process is repeated recursively for
each Slot in each Content Item in each
Slot, etc.

@ The Content Assembler

Item data from the backend
repository and inserts it into its
output XML.

application then applies an XSL
stylesheet to the XML that
formats it (generally as HTML).

Chapter 3 Rhythmyx Logical Architecture and Processing 41

Publishing Engine

The Publishing Engine consists of the registrations, applications, and Java code responsible for the
delivery of Rhythmyx Content Items.

Architecture

The main components of the Publishing engine are the Publishing Manager, one or more Publishers, Sites,
Content Lists, and Editions:

= A Content List specifies which Content Items to extract from the database for Publishing.

= An Edition specifies one or more Content Lists to publish and the order in which to publish
them.

= The Publishing Manager receives a publishing request, selects the Publisher to run the job,
and passes the Content Lists to publish to the Publisher. Rhythmyx sends the publishing
request to the Publishing Manager when an Edition is published.

= Publishers are applications that reside on the Rhythmyx Server or remote locations, and run
off a Tomcat Web application server or another J2EE Web application server. A Publisher
runs after it receives a request from the Publishing Manager. The Publisher is responsible for
extracting Content Items from the Rhythmyx database, assembling them to produce final
content pages, and saving or sending them to their destination.

= A Site defines a location where output will be published. A Site may be a file system or a
database or some other destination (for example, a Portal). Rhythmyx can maintain multiple
Sites on the same machine.

Content List

L DL e

QLT

Edition with Content List = =P Rhythmyx Repository

- Assembled Content
Publishing Manager Publisher Sites

Figure 22: Publishing Engine Architecture

Processing

A System Administrator can manually initiate a publishing request by clicking the [Publish] button next
to an Edition on the Editions page or schedule automatic publishing. Rhythmyx passes the publishing
request to the Publishing Manager. The Publishing Manager compiles lists of Content Items to publish,
and determines the publishing Site and the Publisher. After it compiles each content list, the Publishing
Manager issues an HTTP request via Simple Object Access Protocol (SOAP) to the location where the
Publisher resides. The request includes the compiled Content List and directs the Publisher to publish it.

After receiving a request, the Publisher
= retrieves the Content Items specified on the content list from the Rhythmyx server;

= calls the content assembler application to generate the output;

42 Rhythmyx Concepts Guide

= sends the Page(s) to the publishing Site (using HTTP or FTP depending on the
delivery type mapped to the content list resource); and finally

= sends a status document specifying the Content Items processed and any errors
encountered back to the Publishing Manager via SOAP.

Chapter 3 Rhythmyx Logical Architecture and Processing 43

The Publishing Manager updates the Rhythmyx tables.

Rhythrmy= Publishing Process

Mhen the Rhythmye Publsher Manager (at the Rhythmys: Senver)
receives the command te process an edition, it sequentialy passes the
Caortent List= assigned to that edition to its associated Publisher. If a stop
edition command is received, the Publisher will finish processing the

current Content Lt but the Publsher Manager will not pass any more
Content LEts associated with the edition.

Command to un an
edition is sent to
the Rhythrme
Server Publsher
hanager either by
manually ninning
an edition in the
Publizhing hdanager
wiewy ar from a
scheduled batch or
shell script.

Rhythrmyx Publisher hanager passes a content list to the
Rhythmyx Publisher in a 50AP envelope overthe Publisher's port
9920 by defauk on TomCat).

The Rhythmys Publisher
sequentially processes each
cantent itemn in the Content List.

Rhythmyx Publizsher passes the publication status
document in @ S0AP envelope ower the Rhythmys

port (9992 by default) back to the Rhythmme Sernver.

— |
| |
—
™=
—
Sham
ML
—
Fhythm oy Server

The Rhythmme: Senver will

update the RESITEITEWS,
R¥PUBDOCS, and
FHPUBSTATUS tables after
receiving the Publication
Status document.

Conten

@ Open FTP Connection (if using FTP Publishing.

@ Request tem ower the Rhythmoys port
(9992 by default).

i}

t List Processing

@th‘thl‘l‘l‘gﬁ{ Senrer responds with an
assembled page ower the Rhythmoys

port (9992 by default).

Fequest Next ltem (repeat steps 2-5 far all
content tems in the list).

Generate Publication Status XL

document from Publication Log file.

-

, 4
Rhythmy= Publsher

@ Wirite for put if using FTP) A=ssembled tem to Site.

Content List
HhL

@ Update Publication Laog file.

uszing FTP Publishing).

Figure 23: Publishing Process
Publishing Engine Processing

Clase FTP Connection after processing last tem (f

45

CHAPTER 4

Clients and Interfaces

Rhythmyx provides several clients and interfaces that enable users to perform the functions particular to
their Roles. In the Workbench, implementers create applications and customize the Content Explorer
interface. In the Server Administrator, administrators perform functions such as configuring back end
connections and setting up security. Business Users work in the Content Explorer interface to create
Rhythmyx content. Implementers use the Multi-Server Manager to move Rhythmyx components from one
server to another, and they customize code with Web Services when sharing information with other
applications on the Web.

46 Clients and Interfaces

Workbench

The Workbench is the Rhythmyx environment in which implementers:

= Define applications which process the data that Rhythmyx delivers or receives
through HTML pages;

= Configure Content Explorer Action Menus, Display Formats, and Content Views;

= Set up Rhythmyx Relationships.

Clients and Interfaces 47

The Workbench’s Application tab includes an Explorer that lists Rhythmyx applications and an Editor for
modifying or creating them.

@& Connected to: http://localhost :9992 - Rhythmyx Workbench =10 x|
Application Edit View Insert Tools Window Help

D |B|&| & |=|a| & |

Server Obiects | Files & sys_cxSupport [(2 x]
Applications jtdsisglserver

S G T

- [ag) svs_cxDependencyTree
- [ad) sv5_cxltemAssennbly

- [_i port
- [a) svS_civiews
- sys_DisplavFormats

(B svs_i12nSupport

By svs_Keywords

-8y svs_PortalSupport

- [a] sv5_psxAnonymousCataloger
- [ag) sv5_psxCataloger

- By svs_psHCms

- sys_psxContentEditorCataloger
- [ad) sv5_psxF TSearchSupport

- [ad) sys_pswinternalSearches

- [a sv5_psxObjectSupport

- [ag) sv5_psxRelationshipSupport

- [ad) sv5_psxSererConfig

- [ad] svs_pswiebSerices

- [a svs_psxiorklowCataloger

= p s
XML fin 2 1 »
previewsloty

iewws|otvariant

ariantxsl

delefecontent

B

seneractionurl

Default xmL

executeseneractionur 1 J
| urlredirectxs

ls£) fi [LB

- [a) sv5_pubContentLists

- [ag] sv5_pubContexts

- [ag] sv5_pubEditions

- [ad) sv5_pubPublications

- [ad) sv5_pubPublishers

- [ag] sv5_pubSites

- [ag] Sv5_pubSupport

- [ag) sv5_pubvariables —
By sys_reSupport

- [ad) svs_relatedSearch

- [ad) svs_resources

B parch

& saveserveractionurl {sys_cxSupport)

RHDUAL

| Status: Ready

Figure 24: Rhythmyx Workbench
Users click the Files tab to access files to drag and drop on the application, and may create database tabs
for accessing backend database tables to drag and drop on the application.

Users can also click the Server Objects tab to access Java exits (Java classes or scripts) to drag and drop

on an application or to access the editors for Action Menus, Content Views, Display Formats, and
Relationships:

Applications Server Objects | Fi|ESI

_4 Server Ohjects

1 Java Exits

| Relationships
ahiction Menus

B Display Formats

B Content Views

Figure 25: Server Objects Tab of Workbench
To access the editors, users click on the editor name. The editor displays a list of the objects available and
a window for viewing and modifying information about the object.

48 Clients and Interfaces

For example, clicking on the Display Formats node displays the Display Formats editor:

isplay Format Editor

| General |COIumns Communities | Properties
Label: | By Author |

Internal Mame: | |
Bl Extended Description
B Rarked Search Resutts iews & Search results by author.
Bl Relsted Content By Type
Bl Relsted Content By Yariant
5] Simple

=] [Delete]
[Ok] [Apply] [Cancel] [Help

Figure 26: The Display Formats Editor

Clients and Interfaces 49

Server Administrator

The Server Administrator is the Rhythmyx interface that the System Administrator uses to maintain the
Rhythmyx Server.

% Connected to: http://elmo:9992 - Rhythmyx Server Administrator 5 | LU| El B| C| D| - |EI|5|
Statusl Seﬂingsl Logging Directory Serices | Securiwl Searchl Mnniturl E}ctensinnsl Content E}{plorerl

Mame Schema User
Sun OKE Server Authentication |Simple Directory Manager
Active Directary Authentication Simple Administratar
Add | Edit | Delete |

Lauthentications | Directaries | Directory Sets | Role Providers |

Ok I Close | Apply | Help |

Figure 27: Rhythmyx Server Administrator
The Server Administrator separates administration tasks into nine categories displayed by its upper tabs.

Status

In the Status tab, an administrator can stop and start Rhythmyx applications and monitor their statistics.

onnected to: http:/fjperkins:9992 - Rhythmyx Server Administrator

| Status || Settings | Logging || Directory Services | Security | Search | Monitor | Extensions | Content Explarer
WL Type Statusz
Sdministration Spplication Mctive ~
Docs Application A ctive =
(e Spplication Mctive B
IX_resources Application A ctive
rx_Suppor_pub Spplication Mctive
rx_supportSiteFolder Contertlist Application A ctive
rxs_Autolhdex_cas Spplication Mctive
rxs_Autolndes_ce Application A ctive
rxs_Brief_ce Spplication Mctive
rxs_Calendar_cas Application A ctive
rxs_Calendar_ce Spplication Mctive
rxs_Category_auto Application A ctive
rxs_Category_cas Spplication Mctive
rxz Category ce Application A ctive o
’ Dretails...] [Start] [Stop] [Restart] ’ Refresh]
I Ol l ’ Close] [Sy] [Help]

Figure 28: Status Tab in Server Administrator

50 Clients and Interfaces

Settings

The Settings tab lets administrators optimize Rhythmyx’s performance by specifying idle time limits,
maximum connections, and similar settings for backend servers, the Rhythmyx Server, and Rhythmyx
applications. In addition, this tab lets the administrator enable or disable the Server Cache and set its size.

Status Seftings | Loggingl Directary Servicesl Securityl Searchl Mon'rtorl Extensionsl Contert Explorerl

Server I Driver I - = = AP
Edit Back-end Connection details x|
* odbc 1]
* a5400 0 Server and Driver information ke |
* oracle:thin 1]
. f |
* syhase u] Server. I Cancel
i el s Diriver niatne: I'd sz
* psfilesystem u] - Jit=: salserver
* et u] . — -
- Driver clazs name: et sourceforge fds jdbe Driver hd
* inetdae? oL h _I
—Connection Pooling
Mitimum Cantections: ID
. Maximum Connections: |1 ¥ Uniimited
Back-end connections I Perfarmance |E
Idle Timeout (sees): 300
Refresh Period [zecs) |18EIEI [Enabled

Figure 29: Setting Back-end Connections in the Server Administrator

Logging

In the Logging tab, an administrator can set the types of events to log, specify how long to save log files,
and query log records for information.

Connected to: hitp:#fjperkins: 9992 - Rhythmyx Server Administrator

EEX

Status Seﬂingsl'—ogging |Director\,f Services | Tecurity | Search | Monitor | Extensions | Content Explorer

Cery conditions

Type Date

[Errors [Basic user activity CVY YMMDD HHMM: 55)

D Server start D Detailed user activity Start:

[server stop] Ful user activity | |
[vwarnings Erct

[application stop
[application statistics

|:| Mutiple app. handlers

| Wi |Seﬂings

[o

I

Cloze

Apply

I J{

Help

]

Figure 30

: Logging Tab, Server Administrator

Clients and Interfaces 5

Directory Services

Directory Servers are third-party systems that store various types of user data. In Rhythmyx, Directory
Services can provide authentication. In the Directory Services tab of the Server Administrator,
administrators can register Directory Services, add authentication information for users connecting to a
Directory Service, and provide other data necessary for connecting to and using Directory Services.

% Connected to: http://elmo:9992 - Rhythmyx Server Administrator 5 | LU| El B| C| D| - |EI|5|

Statusl Seﬂingsl Logging Directory Serices | Securiwl Searchl Mnniturl E}ctensinnsl Content E}{plorerl

Mame Schema User
Sun OKE Server Authentication |Simple Directory Manager
Active Directary Authentication Simple Administratar
Add | Edit | Delete |

Lauthentications | Directaries | Directory Sets | Role Providers |

Ok I Close | Apply | Help |

Figure 31: Directory Services tab, Server Administrator

52 Clients and Interfaces

Security

The Security tab allows administrators to set up most of Rhythmyx’s security features. It includes sub-tabs
for configuring Security Providers, Roles, Server ACLs, Back-end Credentials, Encryption, and Java exit
security.

'ﬁi Connected to: http://doc2:9992 - Bhythmyx Server Administrator - |E||i|
Statusl Seﬁingsl Loggingl Directory Services SECUHY I Searchl Monﬂorl E)densionsl Content Explorerl

Matme Type I Server narne I
eh Server Weh Server Security Provider
MT Security Windows NT Security Provider
rxmaster Back-end Table Security Provider ftds: sglzerveriifidoc?
Ediit | Delete | e ...
Security Providers I Rolesl Server ACLI EBack-end Credentialsl Encryptionl Ex'rtsl

Ok | Cloze | Apply |Help

Figure 32: Security tab in the Server Administrator
In the Security Providers sub-tab, administrators register security providers and associate them with
servers or users. Security providers perform authentication for servers. For more information about them,
see Data Protection (on page 39).

In the Roles sub-tab, administrators add or edit Rhythmyx Roles and their members on the Rhythmyx
Server. Roles must be defined here before Workflows and Communities can use them.

In the Server ACL sub-tab, administrators define the level of access users and Roles have to the
Rhythmyx Server.

In the Back-end Credentials sub-tab, administrators specify user IDs and passwords for accessing the
Rhythmyx backend databases.

In the Encryption sub-tab, administrators can configure SSL encryption as the default for Rhythmyx
applications. Encryption scrambles data transmitted between servers and only allows trusted users to
unscramble it.

In the Exits sub-tab, administrators can enable or disable the Java exit sandbox. Enabling the sandbox
restricts the resources that Java exits can access; disabling the sandbox allows Java exits to access all
Rhythmyx resources.

Clients and Interfaces 53

Search

The Search tab displays default search configuration values for the Full Text Search engine. It is only
available if the Full Text Search is installed and enabled. In this tab, the administrator can change the
default values for the Search engine Server, Port, and Config directories. If multiple Rhythmyx Servers
exist, the administrator may change which one of them serves as the Admin Master to receive errors and
other administrative information. In Default Search Properties, the administrator can change the default
values for the concept search expansion level and tracing.

For more information, see the section “Search Configuration” in the Server Administrator online help.

Connected to: http:/jperkins: 9992 - Rhythmyx Server Administrator E”E|E|

Status || Seftings | Logaing || Directary Services Securi‘t\;| SE&FCh|M0nﬂor Extensions || Content Explorer

Setup (chahges require restart)

Server: | localhost |

Port | 9393 |

Config dir; | CoRhythinyxisys_searchivwareiicontiy |

Admin Master:

Defautt Search Propetties

Defautt Expansion Level: |Mos’[strongly related concepts W

|:| Enable trace output (dizplayed on console)

I DK l [Cloze] [Apply] [Help

Figure 33: Search tab, Server Administrator

54 Clients and Interfaces

Monitor

The Monitor tab lets administrators who are accessing a Rhythmyx Server remotely enter Server
commands and view the Rhythmyx Server response on a console.

onnected to: http:/fjperkins:9992 - Rhythmyx Server Administrator

Status || Settings | Logaing | Directory Services | Security Searchl MUnﬂUr|E>denSions Content Explorer

Command: | show status server H Execute]

Cornrrand outpt:

0
0

Events failed=
Events pending=
Cache Hits= 0
Cache Miszszes= 0

Timers (days:hours:nimites:seconds.millis):
Event average= 0:0:0:0.148

0:0:0:0.094

0:0:0:0.234

Event minimam=
Event maximum=

Cloze

J I

Figure 34: Monitor tab, Server Administrator

J{

I o104 Apply Help

Extensions

In the Extensions tab, administrators or implementers can maintain Java extensions and extension
handlers.

onnected to: http:/fjperkins:9992 - Rhythmyx Server Administrator

Status || Settings | Logaing || Directory Services | Security | Search || Monitor | Extensions | Cortert Explarer

Mame Deprecated Description

acd v Adds 2 supplied operands and returns the result. 5
addPossibleTransitions v Appends possible transition to each of the status document. —
authenticate lzer v Aitherticates current user for his rolels).

EazefdDecoder v Decodes a basebd string to & string, with an optional char...
collapzeHTMLParameter v Collapze a mutti-value HTML parameter by taking the first w..
concat v Concatenates operand 2 onto operand 1 and returns the ..,
dateddjust v Changes the walue of a supplied date by supplied deftas.
dateFormat v Formats the supplied date using the supplied pattern.
dateFormatEx v Forrmats the supplied date assuming the specified input pat..
defaulttPasswordFiter v Takes a plaintext string and encrypts it

i 11, | R XN o PO Y N i | nY okl doki . ok Floed i i N HEN ENECY X0 3 bt
IJava w ’ Ediit] [Delete] ’ Mesay ..
Handlers | Extensions

I QK l ’ Close] [Apply] [Help]

Figure 35: Extensions tab, Server Administrator

Clients and Interfaces 55

Content Explorer

In the Content Explorer tab, administrators can configure which Java Plugin Content Explorer uses and its
download location, and choose when to refresh the Content Explorer screen.

Connected to: http:Hjperkins: 9992 - Rhythmyx Server, Administrator Z||E|E|

Status | Settings | Logoing || Directory Services | Security | Search | Monitor E>d|3nsi0ns|cDrrterrt EXD|UFBV|

Java Plug-in Configurstion

Client 0% Erowwser Plug-in Yersion Yersioning Plug-in location
Ay Ay 1.4.2 04 Cryriatnic Hitp; Mava sun.comipr ...

Jawva Plug-in | Options

I O l ’ Close] [Apply] [Help

Figure 36: Content Explorer Tab, Server Administrator

56 Clients and Interfaces

Multi-Server Manager

Rhythmyx implementers use the Multi-Server Manager to move a Rhythmyx CMS or portions of a
Rhythmyx CMS from a source server to a target server.

L@Percussiun Rhythmyx Multi-Server Manager

- 0] x|
Action Edit Help
Server Groups | Setverdocus, Port9992, Version:5.0, Build;20030313, Connected es
4 Server Groups
E@ inetdaeT docZ:rs0:dho MName Installed Date Source Server Version Build
o B docz:mas0 Archive Mar 14, 2003

=-/_4 Source
"By Descriptars
=3 inetdaeT docus:mmaster.dbo
= docus:a99z
=14 Target
e rchivas
T Packages

doc2:9950

5.0

20030313

Figure 37: Rhythmyx Multi-Server Manager

The Multi-Server Manager guides users through each step of the installation process including selecting
elements to install, packaging the elements in an archive file, and installing the archive file's contents on

the target server.

The parts of a CMS that developers can install using the Multi-Server Manager include Action Menus,
Content Assemblers, Content Items, Content Lists, Content Types, Folders, Locales, Relationships, Sites,

Slots, and Workflows.

The Multi-Server Manager is a stand-alone tool that functions as a client and interacts with the target and
source servers. The Rhythmyx Installer loads it with other client tools into the Rhythmyx root directory.

Clients and Interfaces 57

Content Explorer

Content Explorer is the default home page when users log into the Rhythmyx CMS interface. It is the
Rhythmyx interface through which end users create, modify, and process Content Items. The Content
Explorer interface appears and functions similarly to the Windows Explorer interface: the left pane
displays a Navigation Tree and the right pane is a Display pane that lists the contents of the node selected
in the Navigation Tree. The Content Explorer also includes a Menu Bar with drop menus, and a banner
with user session properties.

: User : zdmini
Rhythmyx Roks - i
Percussion Software\ r it Community ; Default

Explorer Help

Content
[E] sites [Checked 0
- Folders [LiEuropan lingues =S Draft Article
o [lorem ipsum - Draft Article
- Views
=& My Content
B4 Checked Out By Me
& Inbox
«t Outhox
B4 Recent
P

84 Session
(= Community Content
o Al
- @ All Content
24 ol
- Other Content
=9, Searches
[P Mew Search
-2 Sample custom search
- Sample standard search
[QY Default Search

Figure 38: Content Explorer
In the Display Pane, users can select a Content Item node and right-click to open a menu of options for
acting on the Content Item.

In the Menu Bar, the Content menu displays options for working with folders, views, and saved searches
in the Navigation Tree. Users can access a menu of similar options by right-clicking on a node in the
Navigation Tree. The other Menus display options for refreshing the page, changing its appearance,
activating Rhythmyx's Site Explorer interface, and accessing Help.

At the top of Content Explorer, the Community and Locale entries link to pages that let users change these
properties.

Users' Roles determine the Content Explorer options and functions and the Content Items that they may
access.

The tabs at the top of the page are only visible to users who have access to windows other than Content
Explorer. They access the Publishing Administrator, Workflow Administrator, and System Administrator,
which allow CMS Administrators to register the Publishing, Workflow, and general System components
of the CMS. Most business users do not have access to these tabs.

58 Clients and Interfaces

Web Services API

Web Services enable applications or processes to interact based on standard Internet protocols. Rhythmyx
includes a Web Services API that serves as an interface between the Rhythmyx Server and remote client
applications or other servers. Rhythmyx Web Services let third-party applications access Rhythmyx
functionality within their own environment. For example, through Web Services a third party application
could create a Content Item or move a Content Item from one Folder to another.

Rhythmyx Web Services operates as a registered SOAP service on any J2EE application server. By
default, the Rhythmyx Installer installs it on the default Tomcat server.

The Web Services server receives incoming messages from remote client applications and Rhythmyx Web
Services messages from Rhythmyx. The messages are all in XML format. The Web Services server
processes the messages, and sends client requests to the Rhythmyx server and Rhythmyx responses to the
client application. The graphic below shows the general architecture of Rhythmyx Web Services:

Web Services Architecture

Tomcat Server
Client
APACHE

. S0OAF Rhythimys: Server
Service Wik
Services | Load
Handler
Jh i 2

Figure 39: Web Services Architecture
Each message to Rhythmyx includes a header with authentication information and a body that includes the
name of the function requested and parameters that the function requires. The structure of the message
body for each function is defined in one of the Rhythmyx Web Services XML Schema Definition (xsd)
files. These files are installed into the [Rhythmyx root]/WebServices directory.

Each schema definition file contains elements for one or more related functions. Each of these elements
defines the structure of the body portion of the request message made to Rhythmyx and the response
message sent from Rhythmyx. The response message may simply indicate that the function succeeded or
failed or may return Content Item data for modification.

59

CHAPTER 5

Convera Full-Text Search Engine

By default Rhythmyx provides a database search engine for searching Content Items. This search engine
uses the query functionality embedded in the database system.

Rhythmyx also offers a full-text search engine that uses Convera’s RetrievalWare (RW) server to include
many advanced search features such as the ability to search the content in Content Item fields and options
for searching for synonyms of search terms. The Convera server can convert over 250 different file
formats into searchable text. This search engine is available by special license and requires additional
installation steps.

Typically, the full-text search engine is installed on the same machine as the Rhythmyx master server. In
a system that runs multiple content servers, a search configuration is entered on each of these servers to
specify the location of the full-text search engine. The full-text search engine can also run on a different
machine than the Rhythmyx server either because running both servers on the same machine degrades the
performance of one or both servers, or because the full-text search indices consume too much disk space.
If the engine runs on a different machine, the Administrator must update the search configurations to
specify the new location of the full-text search engine.

For more information about deploying Rhythmyx engines, see Physical Architecture, Deployment, and
Scaling (on page 39).

x

Search for:
Dizplay Formst IRanked Search Results ;l
Mz rowes returned: |2EIEI [Unlirvited:

2H; Cancel Help |

Figure 40: Full-text Search dialog

61

CHAPTER 6

Rhythmyx Modules

As an Enterprise Content Management system, Rhythmyx offers several distinct types of applications,
such as Web Content Management (WCM), Document Management (DM), and Digital Asset
Management (DAM). Some of these capabilities are offered as Modules to enable customers to license
Rhythmyx for use in one of these specific applications. However, while Modules provide functional
feature groupings for licensing, they are transparent to both the logical architecture of the Rhythmyx
server and the actual physical software components that make up the Rhythmyx system. Thus, the
Modules included in any given Rhythmyx implementation will not impact deployment, scaling, or
performance considerations.

Modules are generally offered through specific packaging and licensing options (contact Percussion Sales
for further information). The following Modules are available in Rhythmyx:

Module Description Notes
Web Content Management The Web Content Management Module streamlines
Module the process of updating Web content, facilitates

content reuse, and enables customers to target
content to audience-specific channels.

Document Management Module The Document Management module allows
Rhythmyx users to centralize and organize
documents, with the added functionality of
Rhythmyx’s Workflow, security, and content reuse

capabilities.
Digital Asset Management Included as part of both the Web Content
Capabilities Management Module and the Document

Management Module, Rhythmyx’s Digital Asset
Management Capabilities allow organizations to
include digital assets such as images, graphics and
other media files in documents and Web content.

Portal Connectors Portal Connectors enable delivery of content Available for
through a native Portal repository, as well as IBM, BEA, and
contribution of content into Rhythmyx through a set | Oracle.

of Portlets that run in the Portal. They also enable
the installation of Rhythmyx servlets into the
Portal's associated J2EE container.

62 Rhythmyx Modules

Module

Description

Notes

Rhythmyx Express Portal

The Rhythmyx Express Portal is a cost-effective,

workgroup portal solution based on J2EE standards.

It can be implemented quickly and easily while
providing an organization with the core portal
capability to be productive. It includes out-of-the-
box personalized content delivery, project
collaboration, and content capture capabilities.

Rhythmyx Modules 63

Connectors

Rhythmyx provides several Connectors that enable users to connect Rhythmyx with other software
packages to create Rhythmyx Content Items or work in the Rhythmyx Content Explorer interface. Some
Connectors enable automated content upload, such as the Enterprise Content Connector. Some Connectors
provide options for client contribution, such as the Microsoft Word Connector. Other Connectors provide
integration to other enterprise Portals, such as the BEA WebLogic and IBM WebSphere Portal Connectors

Some of the Rhythmyx Connectors are covered in this section. However, Connectors may be added at any
time, by Percussion and Percussion partners. Please check with Percussion Software for the latest list and
information on other Connectors.

Enterprise Content Connector

The Rhythmyx Enterprise Content Connector is a stand alone tool that uploads content in HTML files,
image files, and other file types from an external site into a Rhythmyx server or a filesystem.

& Rhythmysx Enterprise Content Connector o] |
File Wiew Actions Tools Help

B |w|@m| #|s] ¢<|>[0]|T]«]

=-/_4 Content |4
=4 pages M " Stanning Content
B JAdS -
- Bl Page3.him Uploading CGontent
E! Fage2.htm
----E! Paget.htm AV
E| Jlmages Content 1D Image
- Bl clzgif Revision
’-----E! cl.gif Mime Type image/gif
=~ J Exernallmages LastScan Wed Mar 26 14:37:52 EST 2003
o E! add glf Last Update
[i | |Extractor Matches Image Extractor
L | |status Mew

Updated node: file:flocalhos bFilesiExternallmagesfiogo.gif, sta 5
20030326 14:37:52 761 [ANT-EventGQueue-0] INFO - Scanning status: COMPLETED

2003-03-26 14:37:52 982 [AWT-EventCueue-0] INFO - Marking tree status: STARTED | L4

= »
2003-03-26 14:37:53,092 [AWT-EventCueue-0] IMFO - Marking tree status: COMPLETED - [| —
4] S

Scan I I |

Figure 41: Enterprise Content Connector Interface
Implementers use the Enterprise Content Connector to automate periodic uploads of content stored in
another location (for example, to perform syndication feeds). During scheduled uploads, the Enterprise
Content Connector compares current information to information that it previously uploaded and
incrementally uploads new or modified content.

Implementers can run the Enterprise Content Connector through the Content Connector Interface, or on a
command line. For scheduled or incremental uploads, users can configure a batch file to run the
Enterprise Content Connector at regular intervals with a scheduler program.

64 Rhythmyx Modules

Word Connector

Rhythmyx includes a Word Connector that allows content contributors who work primarily in Microsoft
Word to continue to create and edit content in their familiar Word environment and easily save it to
Rhythmyx as Rhythmyx Content Items.

The Word Connector uses Word-based Content Editors to let users create Content Items in Word and save
them to Rhythmyx. A Word-based Content Editor opens a Word document with a Word template that
associates Word styles with Rhythmyx Content Editor body and metadata fields.

The Connector also enables various Rhythmyx features to appear in Word. For example, the Save to
Rhythmyx control lets a user save a document with an alternate save command to upload it to Rhythmyx
as a Rhythmyx Content Item. Rhythmyx saves the Word.doc file in a column in the backend table for the
Word-based Content Editor. The Inline Link button lets users add links to Rhythmyx Content Items within
the body of the Word document.

After a Word-based Content Item is created and saved, a user can either open it in Rhythmyx and access
Microsoft Word from a control within the Content Editor or open it directly in Microsoft Word. The user
edits the content in Word and saves it back to Rhythmyx.

Rhythmyx uses a Word Macro to manage Word menu extensions, and an ActiveX control to manage the
browser-to-Word launching behaviors.

EEHEn S Y BB« - e L 100% - [3] P aAtideBody - 12 - B =
Final Showing Markup = Show = | & B 2 ~ 2k (g~ | 2 B |
h--o-l---1---|---2---|---3---|---4---|---5---|---5---|---?---d

About Percussion Software
FParcussion

The company's flagship product, Rhythrmyx 5, is the first Enterprise Content Management (ECM) solution
to provide cost-effective, multi-channel delivery of easily reusable content. Rhythrmyx S provides the
industry's only De-Coupled Delivery architecture for cost-effective scaling; the industry's first Intelligent
Relationship capability for proactively managing contant dependencies and connections; and Active
Assembly, a unigue graphical user interface for enabling business users to easily reuse content. Based
onindustry standards, such as XML, XS0, Java and Web services, Rhythmyx enables organizations to
better manage all of their enterprise content, including documents, Yyeb sites, digital assets and images.

Figure 42: A Microsoft Word document using a Word Connector template. Icons for saving to Rhythmyx
and including Rhythmyx links and graphics appear in the Toolbar.

Rhythmyx Modules 65

BEA WebLogic Portal Connector

For customers who have implemented or are planning to implement a BEA WebLogic Portal environment
for internal use, Rhythmyx’s BEA WebLogic Portal Connector lets users access Rhythmyx through the
WebLogic Portal, allowing them to perform all of their work functions through the same environment.
With a minimum amount of configuration for Rhythmyx implementers, the Portal Connector enables
content contributors to access Rhythmyx Content Explorer through the Portal, and Web Administrators to
publish content directly to the Portal. The Connector provides a Rhythmyx Portal and Rhythmyx Portlets
through which users can access Content Explorer and various Content Explorer options such as Inbox and
Search.

The Portlets use Rhythmyx Web Services to make requests and receive responses from Rhythmyx. Web
Services are installed with other applications on the WebLogic server.

A custom publisher plug-in lets Web administrators use a Rhythmyx publisher to deliver Rhythmyx data
to the BEA Portal repository. The administrator may install the Publisher service with other applications
on the WebLogic server to use its capabilities as a J2EE servlet container.

The Portal Connector also includes a sample delivery Portlet and sample Rhythmyx BEA Publishing
components that implementers can use as models for their own configuration of Rhythmyx and BEA
WebLogic. The sample delivery Portlet displays the Content Items published to the Portal repository. The
sample publishing components include a Rhythmyx Publisher, Edition, Site, Content Lists, and Location
Schemes for publishing to the BEA Portal.

66 Rhythmyx Modules

IBM Websphere Portal Connector

The IBM WebSphere Portal Connector lets users who perform their work functions through an IBM
WebSphere Portal environment access Rhythmyx through the WebSphere Portal, allowing them to
perform all of their work functions through the same environment. With a minimum amount of
configuration for Rhythmyx implementers, the Portal Connector enables content contributors to access
Rhythmyx Content Explorer through the Portal, and Web Administrators to publish content directly to the
Portal. The Connector provides a Rhythmyx Portal and Rhythmyx Portlets through which users can
access Content Explorer and various Content Explorer options such as Inbox and Search.

The IBM WebSphere Portal Connector supports Rhythmyx content creation in the WebSphere Portal and
provides the components and logic necessary for publishing to the Portal. The Connector installs
Rhythmyx Portlets into WebSphere’s sample Portal. Users can access Content Explorer and various
Content Explorer options such as Inbox and Search through the Rhythmyx Portlets.

The Portlets use Rhythmyx Web Services to make requests and receive responses from Rhythmyx. Web
Services are installed with other applications on the WebSphere server.

The WebSphere Portal Connector includes Rhythmyx’s database publisher plug-in, which lets Web
administrators publish Rhythmyx data to the IBM WebSphere Portal repository. The administrator may
install the Rhythmyx Publisher service with other applications on the WebSphere server to use its
capabilities as a J2EE servlet container.

The Portal Connector also includes a sample delivery Portlet and sample Rhythmyx WebSphere
Publishing components that implementers can use as models for custom configurations. The sample
delivery Portlet displays the Content Items published to the Portal repository. The sample publishing
components include a Rhythmyx Publisher, Edition, Site, Content Lists, Context, and Location Schemes
for publishing to the IBM WebSphere Portal.

Oracle Portal Connector

Rhythmyx’s Oracle Portal Connector lets users access Rhythmyx through the Oracle Portal, giving them
the option of performing all of their work functions through the same environment. By providing a
Rhythmyx Portal and Rhythmyx Portlets, the Portal Connector enables content contributors to access
Rhythmyx Content Explorer and its functions, including content creation, through the Portal. The Portal
Connector also allows Web Administrators to publish content directly to the Portal.

The Portlets provided use Rhythmyx Web Services to make requests and receive responses from
Rhythmyx. Web Services are installed with other applications on the Oracle server. A sample delivery
Portlet that implementers can use as a model for their own configuration of Rhythmyx and Oracle is
included. The sample delivery Portlet displays the Content Items published to the Portal repository.

Rhythmyx Modules 67

Rhythmyx Express Portal

Rhythmyx Express Portal provides a Portal environment designed for workgroups that is quick and easy to
implement, and provides users with seamless interaction with Rhythmyx. The Express Portal includes a
Rhythmyx Content Explorer Portlet and other Portlets that display Rhythmyx Content Items, and allows
users to work with them as they do in Rhythmyx. Rhythmyx Express Portal also includes content delivery,
project collaboration, and content capture capabilities that make it easier to implement and use than an
enterprise portal.

7> Percussion ‘ L s st oo

Edit account: rxuser

Rhythmyx Express Portal

i Home REILEUMGTRISEYEVGTE) B Rhythmyx CX Welcome RXP Example User

i Community Switch EEME ™= B Rhythmy: Inbox EENEEE
Current User: rxuser Title Access State Content Type
Community: Default |+ [»> Technology and You Checked In Public Article
Language: U3 English ~ [> Cell Phones Get fhore Computer Functions Checked Out by fle Draft Articls

[Sabing Problems Online Checkad In Public Articls
[B) High-5peed Internet Access Checked Out Draft Article

i Create New Content] [k Going Online Checked Out Draft Brief

Content Type -
L5 article i Rhythmyx Search
[article word §
[Brief Title: |Online
rigf

v Search
[External urRL
L Fite)
B} Title State Content Type

i Image " g

[Salving Problems Online Public Article
[index

B Going Online Draft Brisf
% indexautomated
i Page

Copyright & 2004 Percussion, Inc. All rights reserved. Unpublished rights reserved under U.S. copyright laws.
This material is the confidential and trade secret information of Percussion, Inc,
This product includes software developed by the Apache Software Foundation, http://www.apache.org
$Ravision: 1.2.2.1 % from $Date: 2003/11/12 05:11:50 § (GMT) View Release Notes
&] Done & Local intranet

Figure 43: Rhythmyx Express Portal

69

CHAPTER 7

Rhythmyx FastForward for Web
Content Management

Part of the Web Content Management (WCM) Module, Rhythmyx FastForward for WCM is a complete
reference implementation which includes a set of pre-built components and applications that allow a
company to quickly bring their Web site content under content management. Managers therefore can
focus their customization budgets on projects that offer a measurable return, rather than on those that
simply enable basic Rhythmyx capabilities. FastForward’s pre-built components include:

= A set of commonly used Content Types and Variants to help administrators quickly
plan the content and output required by the system, and to save implementers
development time.

= Content Types and Variants used to create navigational Content Items, such as site
maps, breadcrumb lists, and navigation menus.

About Enterprise Investments

FPress Release

Insurance Advice
Estate Planning
Retirement

Tax

Mortgage= and Home Finance
Horme Purchase
Harne Equity

Products and Services

Mortgages
Fund=

Insurance Products

Figure 44: Output of a Navigation Content Item

= (Global Templates. A Global Template is a Variant that defines common features for
pages on a Web Site or in a document.

70 Rhythmyx FastForward for Web Content Management

= Site Folder Publishing components. Site Folder publishing enables users to publish all
of the content in a Content Explorer Site Folder tree to the same folder structure on a
Site.

= Sites
= I':| Corporatelnvestments
[:l AboukCorporatelnvestments
(2 Briefs
27 Files
[:l Images
[Investmentadvice
[PortfolioManagers
[ProductsandServices

Figure 45: FastForward’s Internet Site Folder Trees

¥ O E O E

= Two Workflows that reflect the business processes used by most customers.

= Communities that allow customers to assign users according to Sites and access
levels.

7

CHAPTER 8

Physical Architecture, Deployment,
and Scaling

The physical architecture of each Rhythmyx system depends on a variety of factors including the degree
of security used and the location of the Web Server. The number of servers and the optional components
included in each system depend on the system load, backup requirements, and business processes. This
section offers general information and guidelines for planning the deployment and scaling of a Rhythmyx
system.

72 Physical Architecture, Deployment, and Scaling

Rhythmyx Physical Architecture

All Rhythmyx systems have the following physical architecture. Content contributors who are either local
or remote access the Rhythmyx Server via HTTP (over Port 9992 by default). Rhythmyx must have
access to a backend database and also to the Publisher Server, which may or may not reside on the same
network as Rhythmyx. The Rhythmyx Server accesses the Publisher Server via HTTP (over Port 9992 by
default) and the Rhythmyx Publisher accesses the Rhythmyx Server via SOAP (over Port 9980 by
default). Content contributors can also access the Rhythmyx Server via HTTPS, and the Rhythmyx Server
and Publisher can also communicate via HTTPS.

Rhythmyx
Backend
Database

"I_:“
@Cgh Content Contributors
<R

&

HTTP (9992)

T
I

-

SOAP (9980)

y 4

System running Rhythmyx Server
Rhythmyx Publisher

Figure 46: General architecture of Rhythmyx
The Rhythmyx Publisher may or may not be on the same machine as the Rhythmyx Server. In most cases,
the Publisher either publishes locally to a file system or via FTP to a Web Server on a remote network. If
the Publisher is on the same machine as the Web Server or the Web Server has access to the file system,
the Publisher should use file system publishing. If the Publisher is on a different machine than the Web
Server and does not have access to the file system, the Publisher should use FTP publishing.

Physical Architecture, Deployment, and Scaling 73

Below are two diagrams showing these implementations. In the first diagram, the Web Server, Rhythmyx
Publisher and Web Site are located on the same machine, so the Rhythmyx Publisher publishes directly to
file system. In the second, the Rhythmyx Publisher is located on a different machine from the Web Server
(and Web Site), so it publishes via FTP.

HTTP (9992)
Pobtener| SOAP (9980)
Web
Server
Rhwythrryx Server
i | ¥
o
File System

Figure 47: Architecture of Rhythmyx Publisher using file system publishing

HTTP (9992)

SOAP (9980)

Rhythmyx Server

System running
Rhythmyx Publisher

Figure 48: Architecture of Rhythmyx Publisher using FTP publishing
To ensure authenticity, a System Administrator may SSL-enable the Rhythmyx Server and Rhythmyx
Publisher in any of these configurations. To increase security when publishing over a firewall, the
Administrator may configure an SSH tunnel that runs from the Publisher to the Web Server. For
information about configuring Rhythmyx Publishing with these options and others, see the document
Implementing Publishing in Rhythmyx.

74 Physical Architecture, Deployment, and Scaling

Deployment Scenarios

The optimal deployment scenario for a Rhythmyx system depends on the Rhythmyx components included
in the system, the number of users working on the system, the level of integration of users’ work, and
other factors. This section reviews the elements affecting the way a system should be deployed, and
suggests deployment models depending on the characteristics of the system.

Rhythmyx System Components

As stated earlier, the Rhythmyx system is made up of the same fundamental components regardless of the
Modules or licensing options purchased. Rhythmyx components include Servers, servlets, end user clients,
implementer clients and administrative clients. Client components deployment is straightforward and not
covered in this section. Server components can provide for greater scaling, performance, and availability
options, as well as more robust development and testing. This section will focus on the server components
and the deployment options they provide for the system as a whole.

The available components include:

Server Components Description Notes
Rhythmyx Server The fundamental processing engine | Requires a Repository. The
. of the CMS. Runs as a stand alone | search engine sub-
(also referred to as: Production S
erver. component of the Rhythmyx

Server or System Master) Server may be installed as a

separate server.

Repository Defines a specific database schema | External data and content
for storing and managing system from outside this Repository
metadata for all content managed may also be used by the

by Rhythmyx. May be installed in | CMS on a virtual basis.
a variety of standard RDBMS
systems, either local or remote to
the Rhythmyx Server. The same
repository may be shared by
multiple Servers.

Servlets and/or Application Server A set of input/output oriented
capabilities. These may be
deployed in the native Rhythmyx
Application Server, or as a set of
servlets in a number of J2EE
containers.

Physical Architecture, Deployment, and Scaling

75

Server Components

Description

Notes

Test Server

A Rhythmyx Server, restricted by
license to be used for QA and for
User Acceptance Testing of the
CMS implementation.

Because of de-coupled
delivery, a Test Server is not
required to test content (such
as Web Sites). The test
server is only needed for
testing CMS implementation
design (such as forms,
content types, workflow
definitions, etc.)

Development Server

A Rhythmyx Server, restricted by
license to be used for development
of the CMS implementation.

Publishing Hub A Publishing Hub is a Rhythmyx Organizations may include
Server licensed only for use in additional publishing hubs to
publishing activities initiated by the | publish higher volumes of
Publishing engine. pages with greater

efficiency.

Rhythmyx Express Portal A distinct Portal Server offered by | Includes Rhythmyx Portlets
Percussion. May be installed for contribution and support
locally or remotely with the for publishing from
Rhythmyx Server. See Rhythmyx | Rhythmyx into the
Express Portal (on page 53). Rhythmyx Express Portal.

Publisher The Publisher allows both Each Publisher enables

formatted content and data to be
published to any external site or
application, using a variety of
different storage mechanisms
including files, database schemas,
hybrid file-dbms systems and
repositories with proprietary APIs.

greater security and
administrative control over
publishing content flow.

Enterprise Content Connector

The Rhythmyx Enterprise Content
Connector uploads content from
external sites into Rhythmyx
Servers or file systems. Customers
may use the Enterprise Content
Connector to initially upload the
contents of an entire Web site or to
regularly upload content stored in a
data asset management system.

76 Physical Architecture, Deployment, and Scaling

Multi-tiered Environment

In the Rhythmyx environment that Percussion recommends, implementers create new Rhythmyx elements
and features on a development server, perform user testing on a testing server, and install tested, new
functionality to a production server. In technical terms, this is called a multi-tiered environment and each
server level represents a tier.

NOTE: During delivery, Rhythmyx content and its associated metadata are rolled out to one or more
content delivery applications. The multi-tiered CMS environment should not be confused with the
multiple tiers that may exist in each of the delivery channels. In the CMS tiers, CMS functionality, such as
forms, workflow, and content type definitions are implemented and rolled out to production users of the
CMS. This section will cover only deployment of CMS functionality using the multi-tiered Rhythmyx

CMS.

Development Testing Production Delivery
Tier Tier Tier Channels

[Rhythmyx i Rhythmyx [Rhythmyx . Delivery
Development Test Production Application A
Server Server Server Pplicatin
> S > :

A ,/ 1- ~ |
Pyt iy Delivery
Content

lication B
Repository ,App

Figure 49: A multi-tiered environment includes development, testing and production tiers.

Development Tier

Developers create new functionality in the development tier. Unique tasks that developers perform on the
development tier include:

Testing Tier

Developing Rhythmyx elements and applications such as Content Editors and Content
Assemblers;

Registering new Rhythmyx elements;
Testing and fixing bugs in Rhythmyx elements;
Publishing to development servers and local file systems;

Installing Multi-Server Manager archives from production and integration servers to
modify existing functionality and from other development servers to adapt other
developers’ functionality;

Installing sample Content Items from production or integration tiers with the Multi-
Server Manager for testing or bug fixing.

Developers test new features and fix bugs on the integration tier. Other tasks include:

User Acceptance Testing (UAT);

Publishing to an integration testing Web server;

Physical Architecture, Deployment, and Scaling 77

= Installing archives from the development tier for testing and integration and from the
production tier for bug fixing.

Production Tier
Tasks on the production tier include:
= Content creation and approval;
= Publishing to a staging Web server (to test a production configuration);

= Publishing to a production Web server;

= Installing archives of tested new functionality from the testing tier.

78

Physical Architecture, Deployment, and Scaling

Configuration Options for Development, Testing, and
Production Tiers

In the development tier, implementers should deploy separate Rhythmyx Servers with separate
repositories if developers work on independent projects or are separated geographically. If developers
work together on projects, implementers should deploy a single development server or a single
development repository to allow them to view and integrate with one another’s work. Put developers who
are working on independent projects or who are geographically separated on different servers and
repositories so they can avoid conflicting with other developers’ work.

Depending on an organization’s content-sharing requirements, implementers may deploy one shared
Rhythmyx Server and repository or multiple, separate, Rhythmyx Servers and repositories on the testing
tier. Testing on a single, shared Rhythmyx Server on this tier is recommended if users share a Rhythmyx
Server that integrates all functionality in the production tier. Deploying multiple, separate instances of
Rhythmyx on this tier can be beneficial if Rhythmyx Communities are separated onto different Rhythmyx
instances with different features and different publishing destinations in the production tier. In many
situations both Rhythmyx configurations are deployed in the integration tier.

Likewise, implementers can deploy a shared Rhythmyx Server or separate Rhythmyx Servers on the
production tier. Configuration depends on whether or not Roles and Communities share content and
applications and whether or not they always publish to the same or different Sites.

In many cases, tiers include both shared Rhythmyx Servers and separate Rhythmyx Servers that are used
by individual developers or certain Communities or Roles.

The following graphics show two possible configuration scenarios for a multi-tiered environment; in each
graphic, at least one tier includes both a separate and a shared Rhythmyx repository. In the first graphic,
three developers work separately on three different Rhythmyx repositories and Servers, but deploy all of
their new functionality to a single Rhythmyx instance for testing. Two testers work on the Rhythmyx
testing server and deploy the tested components to a single production server and repository. Four
different Communities share the production Server, although two of the Communities publish content to

unique Sites.

Development
Tier
Rhythmyx Rhythmyx
Content ~—|Development
Server 1 F 4
Repositony) L, Developer & — Muiti-
" Manager
Rhythmyx Rhythmyx /Muht-".
Content —|Development | Server .o
Repository Server 2 “"‘"‘_}"’
beveloper B~ b
.--""Muitk. {
P
Rhythmyx | Rhythmyx e
Content —|Development
Repository Server 3

— Developer € —

Testing
Tier

Tester A

- Tester B

Rhythmyx f.-"!MuIti- ;
Test ! Server x

i, £
Server Manlpr 1+

Rhythmyx
Content

Repository

Production

Tier

Rhythmyx
Production
Server

Community A

Community B
Community €

Community D

Delivery
Channels

Portal/
JSP App.

.NET App.

| Rhythmyx

Portal

Physical Architecture, Deployment, and Scaling 79

In the second graphic, two developers work on individual Rhythmyx Servers and repositories and two
developers share a third Server and repository. The functionality developed on each Server is deployed to
a separate testing Server. Different users test the functionality on each testing Server and deploy the
tested components to separate production Servers. Two Communities work on their own production
Servers and repositories and two additional Communities share a third production Server and repository.
Content created in each production Server is published to a different destination.

Development Testing Production Delivery
Tier Tier Tier Channels
Rhythmyx |/t . Rhythmyx —/ uiti- Rhythmyx
Development { Server) Test 1€ mrﬁl> Production | eortars
Server 1 Y 'ﬁhw;’ Server 1 ‘Manager [Communityd ISP
Beveloper A ' Tester A = g I_—' r App.
Rhythmyx
Content
Repository
Rhythmyx /utgt- " Rhythmyx _,f Multi- . Rhythmyx
Development { Server | Test [server i> Production)
Server 2 | [Ma Server 2 ‘Manager’ [Community B » «NET App
beveloper B~ Te=sters e - I ¥
Developer €
Rhythmyx Rhythmyx Rhythmyx
Content Content Content
Repository Repository
F F
Rhythmyx /Mutti- Rhythmyx /i . Rhythmyx
Development | | Test | { mr:l> Production | | b
Server 3 | Server 3 “Manager [Communities CED Portal
Developer D ' Tester C Ll ! ——T g rta
Rhythmyx
Content
Repository

Figure 50: A decentralized Rhythmyx environment

80 Physical Architecture, Deployment, and Scaling

Scaling the Rhythmyx Publishing Environment

After selecting a deployment approach, an Administrator must consider what number of Publishing Hubs
will meet an organization’s publishing requirements.

The number of Publishing Hubs required depends on the amount of content published to each target
environment.

In the following graphic, the amount of content published requires two publishing hubs, each handling the
entire volume published to one destination and sharing the task of publishing to another destination.

Delivery
Channels
[7 Rhythayx
| | Publisher Fublish > Portal/
Application ’ J5P App.
./ Rhythmyx . /- SOAP Server 1 L
fF7 1 Publishing . Publish - e
] Hub " Requests | m
A e 4 i L Pubhish b i MNET App.
B:E:::sle : Application R "
F. i Server 2
Cluster _ £ Rhythmyx /=~ _SOAP
~*% Publishing ___ Publish 4
{e-g., Oracle, %Y Hub . ‘T Requests | Rhythmyx
SOL Server, % A et Rhythmyx
Sybase, N 1 | Application Vo Paortal
DL, ete.) Server 3 R
_ y hemy2)] i

P Etuntent Hub

Figure 51: Scaling Rhythmyx Publishing Hubs
Percussion recommends scaling by increasing Publishing hubs because increased productivity in
Rhythmyx causes greater CPU use rather than more network traffic. This architecture allows for the
segmentation of the CPU cycles across multiple servers based on typical user activity and on the expected
publishing requirements of multiple communities and multiple delivery locations.

Physical Architecture, Deployment, and Scaling

Guidelines for Expanding a Rhythmyx System

A Rhythmyx Web Content Module or Document Management Module includes one Content Hub and one
Publishing Hub. Depending on the factors discussed in this section, a company may initially choose to
purchase additional publishing hubs, a test server, or a hot standby server, or may purchase them later, as
its system develops and grows.

The following are guidelines for determining when to expand a Rhythmyx system:

Optional Component

Scaling Guidelines

Additional Publishing Hub

If the publishing runs in your incremental publishing cycle overlap each
other (one publishing run begins before the previous one is finished) your
system may begin to republish Content Items and waste resources. You
may acquire an additional publishing hub to handle some of the
publishing volume.

Database Publisher

If you store content in a database and deliver it dynamically, you should
consider purchasing a Database Publisher when you purchase your
Rhythmyx system. Otherwise, purchase a Database Publisher when you
implement a database storage and delivery system for your Web site.

Test Server

Access to development servers is restricted to users with Workstation
licenses; therefore a test server is necessary if you want business users to
test your changes before you move the changes to a production server.

A test server is also useful if:

= Your implementers need the ability to merge their development
work on a common server.

= You want to make new functionality available to some users for
testing, but not to others.

Hot Standby Server

If customer need or industry regulations require that you have a highly
available and updated system, you may acquire hot standby servers to
back up your Rhythmyx Server and other servers that you have added to
your Rhythmyx system.

82 Physical Architecture, Deployment, and Scaling

Tomcat Web Application Server

Rhythmyx runs in a Java 2 Enterprise Edition (J2EE) environment and can be installed with any J2EE
Web application server. For those customers who do not wish to choose or administer a separate J2EE
server, Rhythmyx installs the Apache Tomcat Web application server and provides management for that
server as part of the installation. Tomcat offers several advantages over other Web application servers,
including its open source status, its widespread use, and its technical capabilities. Tomcat functions as a
Java servlet container that lets Rhythmyx run the Rhythmyx Publisher and Web Services and several of
the Rhythmyx standalone applications as Java Servlets. In addition, Tomcat includes a Java Server Pages
(JSP) engine which enables Rhythmyx users to deliver dynamic Web Pages with efficiency and flexibility.

Although Tomcat offers a number of benefits, some systems require features offered by other Web
application servers. The Rhythmyx Publisher and Rhythmyx Web Services may be installed into any
other J2EE Web application server, for example, BEA WebLogic or IBM WebSphere. In all cases, since
the fundamental APIs for Rhythmyx are Web Services based, all application platforms are covered
equally, including .Net, Java, and legacy Web environments.

Physical Architecture, Deployment, and Scaling 83

Database

Rhythmyx stores unformatted content and metadata in third-party database applications. Most of the
database features are managed through Rhythmyx while backup is handled separately by the database. A
large number of functions may be accomplished through Rhythmyx interfaces, such as the Server
Administrator, the Workbench, and the Multi-Server Manager. For example:

= entering backend server timeout and connection limits, setting up database users and
passwords, and configuring backend table security providers.

= deploying table schemas and data from one backend database to another.

= creating backend tables that store local Content Editor data.

Each Rhythmyx Server may connect to its own backend database (or databases) or Rhythmyx Servers may
share databases depending on the Servers' functions. See Configuration Options for Development,
Testing, and Production Tiers (on page 60).

Rhythmyx supports the use of the following RDBMS's for its backend repository:

Oracle 8i

Oracle 91

Oracle 10g

Microsoft SQL Server 2000
Sybase 12.5+

IBM DB2 UDB 7.2

85

CHAPTER 9

Data Protection

Data protection in Rhythmyx includes a range of security functions that limit access to Rhythmyx Content
Items, interfaces, and applications to users with the proper credentials. Since Rhythmyx content is stored
in external database repositories, Rhythmyx does not include its own backup or archiving features;
however Percussion recommends that customers carefully follow the procedures provided by their
database systems.

86 Data Protection

Security

Rhythmyx provides various mechanisms for preventing users without the proper permissions from gaining
access to Content Items and other Rhythmyx components.

At the most basic level, users must have a username and password to log in to Rhythmyx. The System
Administrator first assigns these in a security provider, and then adds the user to Rhythmyx through the
Rhythmyx Server Administrator.

Security providers are systems that maintain directories of usernames and credentials for the purpose of
authenticating users who attempt to access a server or an individual application. By default, Rhythmyx
uses a backend table security provider that validates usernames and passwords. Rhythmyx systems that
access Rhythmyx through a Web application server, such as BEA WebLogic or IBM Websphere, may use
a Web Server security provider which relies on an existing Web server or Web application server
authentication.

Rhythmyx also uses Access Control Lists (ACLs) to define users' access levels to servers, applications,
Content Explorer Folders and Content Items. The Rhythmyx Administrator defines a set of Roles with
different privileges in the Server ACL and then assigns users to one or more Roles.

Although Communities and Locales can limit the content and user interface components that are available
to users, they are not security mechanisms. Communities and Locales simplify what users see by filtering
out information that is not relevant to them; however, they do not provide the security available through
the server and ACL settings.

To prevent the loss of data that might occur if multiple users attempted to modify and save the same
Content Item simultaneously, Rhythmyx includes a check in and check out feature that prevents more than
one user from having edit access to a Content Item at the same time. A Content Item must be checked in
for a user to have edit access to it. The user must check it out to edit it; checking it out locks it to all other
users.

For more information, see the section “About Security” in the online help accessible through the
Rhythmyx Server Administrator.

Data Protection 87

Backup

Backing up Rhythmyx includes implementing procedures for archiving data and backing up the server and
database.

Archiving

All Rhythmyx content is stored in the database; therefore administrators can use standard database
archiving procedures to meet content archiving requirements.

NOTE: When Content Items are removed from a Publish State in a Workflow, they are often transitioned
to an Archive State. No intrinsic connection exists between Content [tems that are in an Archive State and
Content Items archived through database archiving.

Purging

Purging permanently destroys all records of a Content Item in the system. A company's retention rules
may require that purge actions only be available for Content Items that have been stored through database
archiving.

Backup Recommendations

Rhythmyx Server Backup

To back up the Rhythmyx Server, the Network Administrator can use any type of back up software or
hardware to make a copy of the Rhythmyx Tree (the entire contents of the Rhythmyx installation root).
Depending on the amount of server use and the significance of the data entered, the Network
Administrator can choose appropriate backup software and hardware and determine an optimal back up
schedule.

In most back up scenarios, the Rhythmyx development server is backed up more frequently than the
production server because applications are modified more frequently in development. For example, an
Administrator might schedule full weekly backups and partial nightly backups for an active development
environment, but perform a backup of the production environment only when a change is introduced.

Database Backup

The Network Administrator determines the procedure and schedule for database backup based on the
methods available for the specific database that the Rhythmyx system uses. Rhythmyx works with any
database backup and recovery scheme. Most Rhythmyx implementations use a single database/schema,
and the backup procedure depends on its physical storage configuration.

As a general rule development databases should have the same backup schedule as the corresponding
development Server tree. In most cases, the production repository backup schedule depends on the
frequency of content contribution to the system.

89

CHAPTER 10

System Requirements

Server Side

The Rhythmyx Server must be installed on one of the following supported Operating Systems. The size
requirements for both the development and production tiers are noted:

= Sun Solaris 7, 8, 9

Development
UltraSPARC 10 or higher

RAM - 512 MB
Disk Space - 700 MB

Production
V120 or Higher recommended

RAM -2 GB
Disk Space — 700 MB

= Microsoft Windows 2000 (Professional, Server, Advanced Server and Datacenter Server),

Windows 2003 Server platform.

Development
Processor - 1 Ghz+

RAM - 512 MB+
Disk Space - 700 MB

Production
Processor - 2 Ghz+

RAM - 1+ GB
Disk Space — 700 MB

= Linux (Certified on Red Hat Linux AS 3.0+; Other distributions supported; Linux OS certified

on Intel-based hardware.)

Development

Processor - 1 Ghz
RAM - 512 MB
Disk Space - 700 MB

Production

Processor - 2 Ghz
RAM - 1+ GB
Disk Space - 700 MB

90 System Requirements

Client Side

One of the following browsers must be installed to support content contribution, Workflow, Publishing,
and System Administration:
= Internet Explorer V5.5+ (Windows)

= Mozilla Firefox (Windows OS; open source Esker plug-in required on desktop installations to
support rich text editing control)

= Netscape Communicator V7.0+ (Windows OS; open source Esker plug-in required on desktop
installations to support rich text editing control)

= Safari 1.21+ (Apple OS/X 10.3+)
In order to use the Rhythmyx Connector for Word, your system must have one of the following versions
of Microsoft Office Client installed:

= Word 2003, 2002/XP, 2000

= Functionality limited in Word 97
The following Desktop Client Components are recommended for optimal use of all features:

= 1 Ghz or higher desktop machine recommended; 256mb ram or higher recommended.
= RAM - MIN 256 MB, 512 MB+ recommended
= Disk Space - MIN 200 MB to run installed product (500 MB during install)

= Sun Java browser plug-in v1.4 required; 1.4.2 or higher recommended; compatible with all
supported browser platforms for users who access Content Explorer utilities.

= ActiveX control support required for browser-based rich text editing controls.
In order for implementers to use the Rhythmyx Workbench, one of the following supported environments
must be installed:

= Windows Server 2003

= Windows XP Professional/2003

= Windows 2000

Publisher

In order to use the Rhythmyx Publisher, your system must meet the following requirements:

= Installation with a J2EE Web Application Server required. By default, the Tomcat J2EE Web
Application Server is installed with Rhythmyx.
= Hardware Requirements:
= RAM - MIN 128 MB, 512MB Recommended

= Disk Space - MIN 30 MB to run installed product

System Requirements 91

Rhythmyx Repository

Rhythmyx stores its data in an external relational database. Your system must include one of the
supported Databases:

= Oracle 8i

= Oracle 91

= MS SQL Server 2000
= Sybase 12.5+

= DB2UDB7.2

Optional Rhythmyx Full Text Search Engine components:

Supported Operating Systems:

= Windows 2000 Server and higher
= Linux (Red Hat AS 3.0 certified; other distributions supported)
= Solaris 7 or higher

Hardware Requirements

= Additional 512MB ram over Rhythmyx Server, 1GB+ recommended depending on
size of content repository

= 256MB disk space minimum. 1GB+ recommended depending on size of content
repository

Portal Connectors

= Portal Connector for BEA WebLogic Portal
Supports BEA WebLogic Portal 8.1

= Portal Connector for IBM WebSphere Portal
Supports WebSphere Portal Version 4.2

= Portal Connector for Oracle Portal

93

IndeXx

A

Active Assembly * 15
Archiving * 97
Assembly Engine * 14, 42

B

Backup * 97
Backup Recommendations * 97
BEA WebLogic Portal Connector ¢ 74

Cc

Client Side « 100

Clients and Interfaces * 9, 51

Communities * 22, 23

Configuration Options for Development,
Testing, and Production Tiers * 88, 93

Connectors * 9, 71

Content Editors * 11, 14

Content Engine « 11, 14, 26

Content Explorer * 17, 61, 64

Content Items * 11

Content Management in Rhythmyx « 7

Content Types « 11

Convera Full-Text Search Engine ¢ 9, 67

D

Data Protection ¢ 9, 58, 95
Database * 93

Deployment Scenarios * 84
Development Tier « 86
Directory Services ¢ 57
Document Introduction ¢ 5

E

Editions * 20
Enterprise Content Connector ¢ 72
Extensions * 60

F
Folders « 18

G

Guidelines for Expanding a Rhythmyx System
91

|
IBM Websphere Portal Connector ¢ 75
L

Locales * 23
Logging * 56

Monitor * 60
Multi-Server Manager * 62
Multi-tiered Environment * 86

0

Optional Rhythmyx Full Text Search Engine
components: * 101
Oracle Portal Connector * 75

P

Physical Architecture, Deployment, and Scaling
* 9,67, 81

Portal Connectors « 101

Production Tier * 87

Publisher ¢ 100

Publishing « 20

Publishing Engine * 46

Purging * 97

R

Relationship Engine * 16, 19, 35

Relationships * 15, 19

Rhythmyx and Item-based Content Management
*8

Rhythmyx Concepts ¢ 9, 11

Rhythmyx Express Portal * 9, 76, 85

Rhythmyx FastForward for Web Content
Management * 9, 79

Rhythmyx Logical Architecture and Processing ¢
9,25

Rhythmyx Modules * 9, 69

Rhythmyx Physical Architecture ¢ 82

Rhythmyx Repository * 101

Rhythmyx System Components * 84

Roles « 22

94 Index

S

Scaling the Rhythmyx Publishing Environment *
90

Search ¢ 59

Security ¢ 58, 96

Server Administrator * 55

Server Side * 99

Sessions * 23

Settings * 56

Sites * 11, 20

Status ¢ 55

System Requirements * 9, 99

T

Templates * 12

Testing Tier » 86

The Basics of Content Management ¢ 6
Tomcat Web Application Server ¢ 92

U
Using the Concepts Guide * 9

\')

Variants ¢ 12, 13
Views ¢ 19

w

Web Services API « 66
Word Connector * 73
Workbench ¢ 52
Workflow ¢ 21

Workflow Engine * 22, 39

	Document Introduction
	The Basics of Content Management
	Content Management in Rhythmyx
	Rhythmyx and Item-based Content Management
	Using the Concepts Guide

	Rhythmyx Concepts
	
	Content Items
	Content Types
	Templates
	Variants
	Content Editors
	Active Assembly
	Content Explorer
	Folders
	Views
	Relationships
	Publishing
	Workflow
	Roles
	Communities
	Locales
	Sessions

	Rhythmyx Logical Architecture and Processing
	Content Engine
	Relationship Engine
	Workflow Engine
	Assembly Engine
	Publishing Engine

	Clients and Interfaces
	Workbench
	Server Administrator
	Multi-Server Manager
	Content Explorer
	Web Services API

	Convera Full-Text Search Engine
	Rhythmyx Modules
	Connectors
	Enterprise Content Connector
	Word Connector
	BEA WebLogic Portal Connector
	IBM Websphere Portal Connector
	Oracle Portal Connector

	Rhythmyx Express Portal

	Rhythmyx FastForward for Web Content Management
	Physical Architecture, Deployment, and Scaling
	Rhythmyx Physical Architecture
	Deployment Scenarios
	Rhythmyx System Components
	Multi-tiered Environment
	Configuration Options for Development, Testing, and Production Tiers
	Scaling the Rhythmyx Publishing Environment
	Guidelines for Expanding a Rhythmyx System

	Tomcat Web Application Server
	Database

	Data Protection
	Security
	Backup
	Archiving
	Purging
	Backup Recommendations

	System Requirements
	
	Server Side
	Client Side
	Publisher
	Rhythmyx Repository
	Optional Rhythmyx Full Text Search Engine components:
	Portal Connectors

	Index

