Rhythmyx

Implementing the
Relationship Engine

5.7




Copyright and Licensing Statement

All intellectual property rights in the SOFTWARE and associated user documentation, implementation
documentation, and reference documentation are owned by Percussion Software or its suppliers and are
protected by United States and Canadian copyright laws, other applicable copyright laws, and
international treaty provisions. Percussion Software retains all rights, title, and interest not expressly
grated. You may either (a) make one (1) copy of the SOFTWARE solely for backup or archival purposes
or (b) transfer the SOFTWARE to a single hard disk provided you keep the original solely for backup or
archival purposes. You must reproduce and include the copyright notice on any copy made. You may not
copy the user documentation accompanying the SOFTWARE.

The information in Rhythmyx documentation is subject to change without notice and does not represent a
commitment on the part of Percussion Software, Inc. This document describes proprietary trade secrets of
Percussion Software, Inc. Licensees of this document must acknowledge the proprietary claims of
Percussion Software, Inc., in advance of receiving this document or any software to which it refers, and
must agree to hold the trade secrets in confidence for the sole use of Percussion Software, Inc.

The software contains proprietary information of Percussion Software; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information and
intellectual property contained herein is confidential between Percussion Software and the client and
remains the exclusive property of Percussion Software. If you find any problems in the documentation,
please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of Percussion Software.

Copyright © 1999-2005 Percussion Software.
All rights reserved

Licenses and Source Code

Rhythmyx uses Mozilla's JavaScript C APL. See http://www.mozilla.org/source.html
(http://www.mozilla.org/source.html) for the source code. In addition, see the Mozilla Public License
(http://www.mozilla.org/source.html).

Netscape Public License
Apache Software License
IBM Public License

Lesser GNU Public License

Other Copyrights

The Rhythmyx installation application was developed using InstallShield, which is a licensed and
copyrighted by InstallShield Software Corporation.

The Sprinta JDBC driver is licensed and copyrighted by I-NET Software Corporation.

The Sentry Spellingchecker Engine Software Development Kit is licensed and copyrighted by Wintertree
Software.

The Java™ 2 Runtime Environment is licensed and copyrighted by Sun Microsystems, Inc.


http://www.mozilla.org/source.html
http://www.mozilla.org/source.html

The Oracle JDBC driver is licensed and copyrighted by Oracle Corporation.

The Sybase JDBC driver is licensed and copyrighted by Sybase, Inc.

The AS/400 driver is licensed and copyrighted by International Business Machines Corporation.
The Ephox EditLive! for Java DHTML editor is licensed and copyrighted by Ephox, Inc.

This product includes software developed by CDS Networks, Inc.

The software contains proprietary information of Percussion Software; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information and
intellectual property contained herein is confidential between Percussion Software and the client and
remains the exclusive property of Percussion Software. If you find any problems in the documentation,
please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of Percussion Software.

AuthorIT™ is a trademark of Optical Systems Corporation Ltd.

Microsoft Word, Microsoft Office, Windows®, Window 95™, Window 98™, Windows NT®and MS-
DOS™ are trademarks of the Microsoft Corporation.

This document was created using AuthorlT™, Total Document Creation (see AuthorlT Home -
http://www.author-it.com).

Schema documentation was created using XMLSpy™.

Percussion Software

600 Unicorn Park Drive

Woburn, MA 01801 U.S.A.

781.438.9900

Internet E-Mail: technical support@percussion.com
Website: http://www.percussion.com


http://www.author-it.com




Contents

Implementing Relationships in Rhythmyx 3
Components of Rhythmyx RelationShips .........cccoeueiiiiiiiiiiieieeeee e 4
PLOPETEICS ...ttt ettt ettt ettt et e et e st e s te e beesbeesaeereeese e ta e se e st e esbeesbeeraeeheebeenseenteeneennes 4

CLOMING ...ttt ettt ettt et e bt e b e esbeesae s st e s se e seesseesseesseessasseesseesseesseesseesaessaenseenseensesnnenees 5

EXIES ettt h ettt bbb bt h et b bbbt bt a e n et e b bt eh ettt en s et nnen 5

EEEOES .ttt bbbttt bbbttt een 6

Example of RelationShips i ACHIOMN .......cccvieiiiiieiieriieit ettt sttt e eeaeeseasseeseenseensesseenseas 7
Forcing Items t0 PUDBIIC. .....cc.iiiiiiiieii ettt et sb e s e s eeee 9

Advanced Example: Translations ...........ccoceerieiieieniieiieiece ettt 11

ReIatioNShiP PrOCESSING .. .cueeitieiieiieie ettt ettt ettt st e et et e e e s e ene e s e beenneeneeeneeenes 14
Promotable Relationship PrOCESSING ......uoviiriiiriiiiiiiiiieieiceeese et 15

Mandatory Relationships and WOrKfIOWS...........ccuieiiiiiiioiiiiiicie ettt 18
Relationship Editor 19
Relationship Properties Panel.............oociiiiiiiiiiiieiieeseiee ettt ne e 21

USET PrOPerties PANCL.........cooiuiiiieiieieieeee ettt ettt st e st e be e s e enseesaesneesseenseenseens 24
CLONING PANCL.....iiiieiiieie ettt ettt e st e st e s aee s e enseesee e st e eseenseenseesseesaesseenseenseenseenns 26

2 Ll o7 1<) LSS PSR PSR 28

2 eToy Sl V1 1<) OSSPSR 30

RULE EITOT ...ttt ettt ettt ettt h e bt et e et e neeeaeesae et e en e e eseeeseeeneeneenneeneeenes 32
Maintaining Relationship Types 33
Creating RelationShip TYPES....occuiiiiiiiiieiieiieieeeteet ettt ettt e esaessa e seebeessessaeseenseenseenes 34
Modifying RelationShip TYPES ...ccueerierieiiieiiiie ettt ettt ettt st e s e e saeesseesseesaeesaebaeseenseenseenns 37
Deleting RelationShip TYPES....cocuiiieiierieiieiieieetiesttei ettt ettt sttt et eesaessaesseeseensesseeseenseenseenes 39
Defining Conditions for Exits, Effects, and Cloning Processes...........c.ccoererieienienienieniniencnieeceeieneenes 40
Planning Clone Field OVErTIAES.......ccueiieiieriieiieiieiieeiie sttt sttt et et e st e st e e ense e sseenseeseenneenes 41
Modifying Relationship Configurations 43
Simple Reconfiguration: Adding Forced Transition to a Mandatory Relationship...........cccceoeierincnenene 44
Advanced Reconfiguration: Conditional Cloning Based on the Locale of a Translation ..............cc.c....... 49
Overriding Content ltem Fields in Clones 55
Implementing Clone Field OVEITIdes..........cccverieiiiiieiecieieee ettt ee e 56
Example Implementation of Clone Field OVerrides ..........cccvevieieioieiienieieieeeeeeeeeee e 57
Overriding the sys_title Field ........ccoiiiiiiiii e e 59

Overriding the Community Field..........ccoooiiiiiiiiiie e 61

OVEITIAES T ACHION ..ttt e et e e et e e e e e e e eaaeeeseeaaeeseaaeeesenaeessenaeeeeas 62



ii Rhythmyx Implementing the Relationship Engine

Writing Effects 67
EXAMPIE EITECT ...eiiniiiiiie ettt e e et et e et eestaeenaeeestaeesseeensbeensaeesseenseeenns 68
Default Relationships 75
ACHIVE ASSCIMIDLY ....cutiiiiiiiiieiie ettt s e st et e et e et e e aee s st e seenb e e st e ettease e seenseenneenteeneeeneenseenseens 76
Active ASSEMDLY - MANAALOTY .....ooouieiieiieieeie ittt ettt ettt e este et e ssaesseeseensesseesseesseanseenseans 78
o) [ 1<) Q103113 L S PRRRR 80
D[S 0] o) 2RSS UOS 82
Promotable VEISION ......ouiiiiiiiieieiiee ettt e st e sttt et e et e e et et e et e b e b e neeneeneeenes 84
TTANSIATION ..o ettt h e b e b ettt s a e st e et et e et e e e e bt e bt e b e e be et et eaee 86
Translation - ManAAtOTY .........coouiiiiiiiiieie ettt ettt ettt et et et s e b e e b e e s eeee 89
Default Effects 93
TXS_ NAVFOIACIETECT . ....oiiiiiieiiee ettt ettt et e e e beenaeeneesneesseenseenseens 94
TXS_ NAVFOIAEICACKE ...ttt et e s aaessaesseenseeneesneesseeseenseens 95
) I (¢ (O 10) 1 Tl ) o) U4 s SRR 96
) S 1L O (o) TS 5 1 £ SRR RSR 97
) SN0 5§ OSSPSR 98
SYS. PIOMIOTE. ...ttt ettt a et e e st e a e bbbt e b e bt e e et eaee 99
SYS_ PUDIISHIMANAALOTY ....c..eiiiiiieiieteeeeee ettt sttt et et e e b et eas 100
Sys_TouchParentFOlderEfTect . ........c.ooiiiiiiieeee e 103
SYS_UNPUDIISHIMANAALOTY .....viiiiiiieiiieiccecttce ettt ettt b e e taestaesbeesseensessaesreesseenseenseens 104
SYS_ VAlIAALE. .. eeuvieiieiiicie ettt ettt et e e b e et e st e e ae e be b e esaeeab et e e b e enbeenseenbeeraeeaeesaeenseenneens 105
SYS_ VaAlIdAtEFOIACT ...ttt ettt e et e et e sta e be e beenaeereeeaeeseenne e 106

Index 107




CHAPTER 1

Implementing Relationships in
Rhythmyx

In Rhythmyx, a Relationship is a logical association between two Rhythmyx objects. Rhythmyx functions
that use Relationships include:

Active Assembly (the association between a Content Item and its related content is a
Relationship)

Folders (the association between a folder and a Content Item contained in it is a Relationship)

Promotable Versions (the association between the original Content Item and the new Version
is a Relationship; in this case, the Relationship has special processing, called an Effect, that
moves the original Content Item to an Archive State when the new Version becomes Public)

Globalization (when you create a new copy of a Content Item for Translation, Rhythmyx
creates a Relationship between the original and the Translation Copys; in this case, the user has
the option of specifying a Relationship that allows the two Content Items to go Public
independent of one another (non-Mandatory Relationship), or whether they must go Public
together (Mandatory Relationship).

Most commonly, the objects involved in the Relationship are Content Items, but note above that
Relationships are also used to implement the folder functionality in the Content Explorer user interface
and can be extended to incorporate other Rhythmyx objects as well.

All Rhythmyx Relationships have the following properties:

Rhythmyx only recognizes one-to-one Relationships. One-to-many, many-to-one, and many-
to-many Relationships are not valid. An object may be related to several other objects, but
each Relationship is a unique entity.

In each Relationship, one object owns the relationship (and is referred to as the owner). The
other object is the dependent in the Relationship. A dependent in one Relationship, however,
may be the owner in another Relationship. In that case, the dependent in the second
Relationship is a descendant of the owner in the first Relationship. The owner in the first
Relationship is the ancestor of the dependent in the second Relationship.

A Relationship exists as long as the owner exists and the Relationship itself is not actively
removed (such as being manually removed or automatically destroyed due to system
processing). If an object is deleted, all of its Relationships are also deleted.



4 Implementing Relationships in Rhythmyx

Components of Rhythmyx Relationships

The following components comprise Rhythmyx Relationships.

= Properties (on page 4) (mandatory)

= Cloning options (see "Cloning" on page 5) (optional)
= Exits (on page 5) (optional)

= Effects (on page 6) (optional)

Properties

Relationship properties define general information about the Relationship, such as its name, its sort order,
and whether it is used in Active Assembly.

An option available for all properties of Relationships (both default properties and user-defined properties)
is to Lock the Relationship. Locking prevents processing in extensions from overriding the specified
value of the property. If a property is not specified as locked, extensions can use local values to override
specified values.

Percussion Software provides the following default properties for all Relationships:

Property Values Default | Locked | Description
Value
rs_useownerrevision yes yes Yes Defines whether to use the owner
revision as part of the owner
no
locator.
rs_usedependentrevision yes no Yes Defines whether to use the

dependent revision as part of the

no dependent locator.

rs_expirationtime Date/time | Null No If present, specifies that the
Relationship can expire and
specifies the date and time the
Relationship expires. If the value
is only a date, the time is set to
midnight.

If the Relationship does not expire,
leave the value of this parameter
null.

rs_useserverid yes yes No Specifies the user Rhythmyx uses
when executing Effects. If the
value of this property is yes
(default), Rhythmyx uses
RXSERVER. If the value of this
property is no, Rhythmyx uses the
current user. Rhythmyx throws an
exception if the current context
does not specify a user.

no




Implementing Relationships in Rhythmyx 5

You can also add custom properties (User Properties) for Relationships.

Cloning

Cloning options specify whether you can clone the Relationship when cloning the Content Item. You can
either enable or disable cloning for a specific Relationship.

If you enable cloning, you can specify whether to create a shallow clone or a deep clone. A shallow clone
duplicates only the Relationships to the dependents (and owners) of the Content Item you are cloning. A
shallow clone is typically used for simple copies of Content Items, such as the creation of a new
promotable Version (see "Promotable Relationship Processing" on page 15) of an Item.

A deep clone duplicates all of the Relationships associated with a Content Item, including Relationships to
descendants (dependents of dependents) and ancestors (owners of owners); for more information,
Dependency Relationship Processing. A common use of this option is to create Translation Copies of
Content Items in globalized environments, when you need to be sure that all the content associated with an
item is translated. In both cases, you can specify conditions to determine when that type of cloning is
permitted.

You can enable either shallow or deep cloning, or enable both. If you enable only one form of cloning for
a Relationship, Rhythmyx always uses that type of cloning when processing the Relationship. If you
enable both types of cloning, you must specify conditional processing to determine which type of cloning
will occur when processing the Relationship. Rhythmyx executes the first type of cloning whose
conditions evaluate as TRUE. Thus, since shallow cloning is processed before deep cloning, if a situation
where the conditions for both types of cloning evaluate as TRUE, Rhythmyx would create a shallow clone
of the Relationship, since the shallow cloning option comes before the deep cloning option.

Finally, you can specify whether to allow user-defined cloning properties to override default properties
with the same name in the Relationship.

Exits

Relationships can use two types of Rhythmyx extensions, Exits and Effects. Rhythmyx processes Exits
only when creating a Relationships. Effects provide processing at all other points in the life-cycle of the
Relationship. Both pre-Exits and post-Exits are available for Relationships. Rhythmyx calls Relationship
pre-Exits after global pre-Exits, but before creating the Relationship. After creating the Relationship,
Rhythmyx calls Relationship post-Exits before calling global post-Exits.

You can specify conditional processing for all Exits associated with a Relationship. Rhythmyx will only
process the Relationship Exits if all conditions evaluate to true.

To implement constraints on a Relationship, pre-Exits can throw a PSRequestValidationException to stop
Relationship processing. For example, Percussion Software provides the pre-Exit
PSTranslationConstraint. If you attach this pre-Exit to a Relationship configuration, Rhythmyx aborts the
request if a Translation Copy for the selected Language already exists for the current Content ID.



6 Implementing Relationships in Rhythmyx

Effects

Effects are Rhythmyx extensions available only for Relationship processing. Use Effects to provide
processing for Relationships after they have been created. (Use Exits to provide processing when creating
Effects). An Effect defines a series of instructions executed when the Effect is triggered. The Conditions
assigned to the Effect determine when it will be triggered. A common Condition assigned to an Effect is
to trigger it only when a Content Item is Transitioning into a specific State, or when a Transition cannot
occur. For example, in a globalized environment, you might want to inform Translators when a
Translation Copy of a Content Item has been created. In that case, you would assign the Effect sys Notify
to the Relationship, and add conditions that specified it was triggered when the command equaled
relate/create. The graphic below shows an example:

Custom Effects:

Type Rule Op
Conditional  |PSX¥Paramisys_command=relate OF ..|
Conditional  |PSXParamisys_command=relatelcreate

Figure 1: Example Using Conditions to Define Trigger for an Effect



Implementing Relationships in Rhythmyx 7

Example of Relationships in Action

To understand how Relationships work in Rhythmyx, lets look at some examples. Let us begin with a

simple HTML page that consists of some text and a graphic: . This page consists of two
Content Items, the system's Article Content Item that contains the text and the system's Image Content
Item that is used to manage the Image file. The two Content Items are associated through an Active
Assembly Relationship.

Article Content Item

Active Assembly
Relationship

— Al

Image Content ltem
Figure 2: Active Assembly Relationship

The Active Assembly Relationship is a very basic Relationship. It simply points to a Content Item to
insert into a Slot in a specific Variant of a Content Item. At assembly, the individual Content Items will
be formatted, then the HTML page will be formatted with a reference to the image.

Now, let us suppose we want to ensure that the Article cannot go Public unless the associated graphic

is also ready to go Public. The Active Assembly Relationship does not meet our needs because it does not
put any constraints on the two Content Items. Each can go Public independent of the other. The Article
will be Published if it is Public, but depending on the Authorization Type of the Content List, the Image
may or may not be Published.

To ensure that the Article cannot go Public unless the associated Image is ready to go Public, we use the
Active Assembly — Mandatory Relationship.



8 Implementing Relationships in Rhythmyx

Article Content ltem g

Pending ————m Public

Active Assembly
Mandatory Design State

Relationship
i
A

Image Content ltem

Figure 3: Active Assembly - Mandatory Relationship with Dependent not in a Public State
The Active Assembly — Mandatory Relationship includes the Effect sys PublishMandatory:

~Effects
Direction Effect (I
Down syvs_PublishMandatary(no, ) -
Down syvs_LInpublishMandatongno, )
—Descriptian

Figure 4: Configuration of the sys_PublishMandatory Relationship



Implementing Relationships in Rhythmyx 9

This Effect prevents a Content Item from going Public if the associated Content Item in the Relationship is
not also Public. The Direction configured for the Effect determines whether the Effect will be triggered by
the Owner or the Dependent in the Relationship. In this case, the Direction is Down, which means the
Effect is triggered by the Owner and checks whether the Dependent is Public. Thus, in our case, if the
Image Content Item is not Public, we cannot Transition the Article to Public. The Article will wait in the
Pending State until the Image Content Item (as well as all other Dependents in Mandatory Relationships)
has entered the pending State. When all of these Dependents enter the Pending State, we will be able to
Transition the Article to Public.

Article Content Item g

Pending ——m Public

Active Assembly
Mandatory Public
Relationship
’ ' i

Image Content ltem

Figure 5: Active Assembly - Mandatory Relationship with Dependent in a Public State

Forcing Items to Public

Sometimes, you may want to use one action to move multiple Content Items (for example, a system's
Article Content Item and its associated Image Content Items and other Dependent Content Items) to
Public.

Article Content Item

Pending ————= Public

Active Assembly
Mandatory Pending ————m Public

Relationship
——x

Image Content ltem

Figure 6: Forcing a Dependent Content Item to Public

Whether one action Transitions multiple Content Items is controlled by the forceTransition parameter of
the sys_PublishMandatory Effect. If the value of this parameter is no, then the Dependents in the
Relationship will not be Transitioned with their Owners. If the value of this parameter is yes, then all
Dependents that use that Relationship Type will be forced to Transition along with the Owner.



10 Implementing Relationships in Rhythmyx

You must also specify the name of the Transition that you want Rhythmyx to use to Transition the
Dependent Content Item. In the case of the Active Assembly — Mandatory Relationship, since the
Direction is Down, you must specify a value for the dependentTransitionName parameter. (NOTE: If
you do not specify a Transition, Rhythmyx uses the Default Transition from the State to make the
Transition.) The following graphic shows an example reconfiguration:

efects x|

Effects [ %] oK

relationshipfsys_PublishMandatory

A
bl ove Cancel
x|

Help

~Parameters

MHame Walue

farceTransition Ve s |
awnerTransitiontame

dependentTransitiontarme

=

~Description

Thiz iz the internal hame of the transition to use if
the dependent needs to be transitioned. If not supplied,
the first transition with the 'default' property (in
alpha order) is used.

Figure 7: Reconfiguration of the sys_PublishMandatory Relationship to a force a Dependent Content Item
to Public

With this configuration, if all Dependent Content Items have reached a Pending State (the State prior to
the Public State), transitioning the Article Content Item to Public will force all of the Dependent Content

Items in the Pending State to Public as well.



Implementing Relationships in Rhythmyx 11

Advanced Example: Translations

Let us now assume that we work in a internationalized environment, and we want to translate our Content
Item into French and Japanese. Let us also assume the following:

=  We do not need a different graphic when we translate to French, but we do need a different
graphic when we translate to Japanese.

=  Our system includes an Article Content Type

= The English Article Content Item can go Public regardless of the current State of the Japanese
Translation.

= The English Article Content Item can only go Public if the French Content Item is ready to go
Public as well.
To meet these differing objectives, we will use the Translation — Mandatory Relationship to create the
French translation, but we will use the Translation Relationship to create the Japanese translation.

Note that to accomplish these objectives, we also need a slight modification to the default configuration of
the Cloning properties of the Active Assembly Relationship. The default Cloning properties of the Active
Assembly Relationship call for deep cloning (cloning of both the Relationship and the associated Content
Item) if cloning is triggered by a Relationship in the Translation Category.

For the purpose of this exercise, we will assume that this condition has been removed. Instead, we will
assume conditions based on the Locale of the Translation Content [tem:

= [fthe Translation goes to the French Locale, Rhythmyx will shallow clone the Active
Assembly Relationship.

= [fthe Translation goes to the Japanese Locale, Rhythmyx will deep clone the Relationship.



12 Implementing Relationships in Rhythmyx

Using the Translation - Mandatory Relationship to Create the French
Translation Content Item

To create the French Translation, we use the Create > Translation - Mandatory action in Content
Explorer. This action clones our English Article Content Item, and links the English Article (Owner) to
the clone (Dependent) using a Translation — Mandatory Relationship. The Relationship links the English
Content Item to its French Dependent so you can use Impact Analysis to track it. The Relationship also
prevents the creation of more than one Translation Dependent for any Locale in the system.

Like the Active Assembly — Mandatory Relationship, configuration of the Translation — Mandatory
Relationship includes the sys PublishMandatory Effect. The Direction specified for the Effect in this case
is Up, which prevents the English Content Item from going Public unless the French content Item is
already public.

As noted above, we have changed the cloning properties of the Active Assembly Relationship to create a
shallow clone in the French Locale. Both the English Content Item and its French Dependent will use the
same graphic.

The following graphic illustrates the French Translation:

Publish only
English Article . if FrlE'”‘"'“ _
Content ltem it e L
Public

[
I
I
I
I
I
I
I
I
1

Active Assembly |
Relationship

Image
- Content Itam

Active
Assembly
Relationship

Translation - Mandatony
Relaticnship

[
I
|
I
|
I
|
I
|
I

Fublish Mow

[

Franch Article
Content Itam

Figure 8: Creating the French Translation Content Item



Implementing Relationships in Rhythmyx 13

Using the Translation Relationship to Create the Japanese Translation
Content Iltem

To create the Japanese Translation, we use the Create — Translation action in Content Explorer. As in the
French example, this action clones the English Article Content Item and links the English Article to the
clone, but this time uses Translation Relationship. Unlike the Translation — Mandatory Relationship, this
Relationship does not include the sys PublishMandatory Effect. Therefore, the two Content Items can go
Public regardless of the State of the other Content Item in the Relationship.

As noted above, we have changed the cloning Properties of the Active Assembly Relationship to create a
deep clone in the Japanese Locale. Thus, when Rhythmyx clones the Active Assembly Relationship from
the English Content Item, to its graphic, it also clones the Image Content Item. This clone of the Active
Assembly Relationship points to the cloned image Content [tem.

The following graphic illustrates the Japanese Translation:

Enaglish Article

Content It
entent ftem Publish now

Active Assembly I
Felationship

fii

|
|
|
|
* English
Image
N Content Item

Translation
Relationship

— L
— Publish Mow
Japanese Article | =— -
Content Item |
|
|
|
|
: = Japanese
______ ... Image
Active A\ Content ltem
Assambly
Relationship

Figure 9: Creating the Japanese Translation Content Item



14 Implementing Relationships in Rhythmyx

Relationship Processing

Relationships are created in two ways. Users may add Relationships explicitly through their actions. For
example, a user that creates an Active Assembly association is creating a Relationship. Similarly, a user
that assigns a Content Item to a folder in Content Explorer is also creating a Relationship. Rhythmyx can
also create Relationships automatically. A Workflow Action, for example, might create a Relationship by
creating a new Translation Copy of a Content Item.

Rhythmyx uses three tables to manage and store Relationships. The PSX RXCONFIGURATIONS table
stores configurations for Relationship Types. The Relationship records themselves are stored in the

PSX RELATIONSHIPS table. The PSX RELATIONSHIPPROPERTIES table stores additional
attributes used to process Relationships.

Several Rhythmyx subsystems (such as Workflow or Content Editors) can process Relationships, but all
processing is generic, independent of the subsystem in which the processing occurs. The properties of a
Relationship can determine when and how it is processed, but the majority of the processing is defined by
the Effects associated with the Relationship, which define the processing that occurs, and by the
conditions that trigger those effects. Effects may be triggered at the following times:

=  When the Relationship is created or destroyed;
=  When a Content Item is checked in or checked out;

=  When a Content Item is Transitioned from one State to another;

=  When a Content Item is cloned.
The points when an Effect may be triggered are called execution contexts. Each Effect must specify the
execution context for which it runs. In the example Effect (on page 68), the execution context is
Transitions, as defined by the following code:



Implementing Relationships in Rhythmyx 15

Promotable Relationship Processing

A Promotable Relationship is a Relationship between a Content Item (Owner) and a clone (Dependent) of
the item in which the clone will supersede the original when the clone becomes Public. The clone is
typically called a new Version of the owner.

The sys Promote Effect is used to implement Promotable Relationships processing. When the Dependent
Content Item enters a Public State the first time, the sys Promote Effect replaces the Owner with the
Dependent. To execute the replacement:

= The Owner is Transitioned, using either the Transition specified in the transitionName
parameter of the sys_Promote Effect or the default Transition from the Public State. The
Transition used should move the original Owner to an Archive State.

= Updates all Relationships in which the Owner in the Promotable Relationship was specified as
the Dependent to specify the newly-promoted Dependent in the Promotable Relationships as
the Dependent.

= Removes all Clonable Relationships from the Owner in the Promotable Relationships.

= Updates all other Relationships that specified the Owner in the Promotable Relationships as
the Owner to specify the newly-promoted Dependent in the Promotable Relationship as the
Owner.

To illustrate how Promotable Versions work, let us examine the following sequence.

Let us begin with a Content Item that is currently Public. In general, Promotable Versions are most useful
when you want to make a significant change to a Content Item that is already Public, such as major
revision of the text of the Content Item. For minor revisions, such as correcting misspelled words, you
would use the Quick Edit Transition to make the Content Item editable briefly while you make the
correction. If the Content Item has not yet become Public, you would make the changes directly to the
Item itself rather than creating a new Promotable Version of the Item.

For our purposes, our Public Content Item is Item 742 in the graphic below. Item 742 was created by
copying Content Item 507 (Item 507 is the New Copy Owner of Item 742; Item 742 is the New Copy
Dependent of Item 507) . In addition, another copy of Item 742 was created (Item 823; Item 742 is the
New Copy Owner of Item 823; Item 823 is the New Copy Dependent of Item 742) for other reasons. In
addition, we have a Translation of Item 742 into French.

Item 742 is the Dependent in an Active Assembly Relationship, with Content Item 498 as it’s Owner.
Item 742 itself owns an Image in an Active Assembly Relationship.

The following graphic illustrates the current Relationships of Content Item 742:



16 Implementing Relationships in Rhythmyx

—_— Promaotable Version
—————— - Active Assembly
= Mew Copy
— e - i Translation
—_——— Folder
Folder ™ jtem 742
{Public)
.
-~ - rd \ o
- r
- ! |
-
- ’.f * - .
Active
Mﬂi.;;net;ly Franch Mew Copy Mew Copy
Image Translation Cwner Dependent
S Itesrm 507 Item 832

Figure 10: Initial Relationships of Item 742

When we create a new Promotable Version of Item 742, a clone of Item 742 (Item 914) is created, and the
Active Assembly Relationship between Item 742 and its Active Assembly Dependent image is also

cloned, as illustrated in the following graphic:

—_— Promotable Version
—————— - Active Assembly
- Mew Copy
—_——— s Translation
—_——— Folder
Folder > item 742
(Public)
i - .
Active i
A bl
GS.:;ﬂery Franch Mew Copy gﬂgg:t
Iterm 4 Translation Cwner p
{ltem 48%9) lterm BT Iterm 832

Figure 11: Relationships following the Creation of the Promotable Version Content Item (914)

Item 914
{Promotable Version
Dependeant
of ltem 742)




Implementing Relationships in Rhythmyx 17

When the Promotable Version Content Item (914) goes Public, Item 742 is Transitioned to the Archive
State. The Active Assembly Relationship in which Item 742 was the Dependent is now re-pointed to
make Item 914 the Dependent. The clonable Active Assembly Relationship between Item 742 and its
Dependent image is deleted. The Active Assembly Relationship between Item 914 and the Image (which
was a clone of the Relationship between Item 742 and the image) is not changed. When Item 914 is
Published, the image will be included.

The remaining Relationships to Item 742 are re-pointed to Item 914. Thus, in the New Copy Relationship
to Item 507, in which Item 742 was the Dependent, Item 914 is now the Dependent. At the same time, the
New Copy Relationship to Item 832 and the Translation Relationship to the French Translation, in both of
which Item 742 was the Owner, Item 914 is now the Owner.

The following graphic illustrates the state of all Relationships after all Promotable Version processing is
complete.

_ - Promotable Yersion

______ - Active Assembly
- Mew Copy

——— e — - Transkation

—_———— Folder
Folder ™ ltem 742
(Public)
Activa
Assembly N MNew Co
ew Co P¥
Owner Image French Dwnerw Dependent
(Item 489) e e 507 Item 832
=
\ A
b
Y | i
% 1 ;
n
. . :
\* Itern 914
{Promotable Version
Deapandent
of ltem 742)

Figure 12: Relationships following the promotion of Content Item 914 to Public

NOTE: While you can create multiple Versions (promotable clones) of a Content Item, only the first
clone to be Transitioned to Public will supersede the Owner. Any other promotable clones that are
Transitioned to Public will be made Public as if they were not in a Promotable Relationship (none of the
other Relationships will be re-pointed and the promoted Content Item will not supersede the currently
Public item. Note that a superseded Owner that is returned to Public acts in the same manner as a
competing clone; it becomes Public as if it were not in a Promotable Relationship, none of the other
Relationships are re-pointed and it does not replace the currently Public Content Item.




18 Implementing Relationships in Rhythmyx

Mandatory Relationships and Workflows

If you choose to implement a mandatory Relationship, you must pay special attention to your Workflows.

Since mandatory Relationships require that the Owner and Dependent in the Relationship both go Public
together, a poorly designed Workflow can allow content to become trapped, unable to progress to Public.
Best Practice when designing Workflows that might be used by a mandatory Relationship is to include
“pending” State immediately prior to the Public State. This State acts as a marshalling area for Content
Items for which all work is effectively complete and which are ready to go Public, but which must wait for
Dependent Content Items to reach the same State before they can make the final Transition to Public.

Another issue to consider is whether you want to force Transitions on Content Items. You might want to
force Transitions in two cases:

= Several Content Items are waiting in a “pending” State. When you Transition one of them,
you want to Transition all of them.

= A Content Item is in a “pending” State, but it’s Dependent is not there yet. You want both to
go Public regardless of the current State of the Dependent Content Item.
To facilitate forced Transitions, you need to specify one of the Transitions from a State as the Default
Transition. To make a Transition the Default Transition, choose Y from the Default Transition drop list
on the when defining the Transition on the Edit Transition page in Content Explorer. (Note: If you
specify more than one Transition as the Default Transition from a State, Rhythmyx uses the first
Transition from the State in alphabetical order among those specified as a Default Transition.)

You will need an Effect to implement your forced Transition. For example of an Effect that forces a
Transition, see the sys PublishMandatory Effect (see "sys PublishMandatory" on page 100).



19

CHAPTER 2

Relationship Editor

Use the Relationship Editor to create and maintain Relationship Types in Rhythmyx. The Relationship
Editor is available from the Server Objects tab of the Rhythmyx Workbench.

Applications Setver Ohjects | Files

_4 Serer Objects
-] Java Exits

%] Action Menus

%) Content Views
%) Display Formats
ﬁ Relationships

Figure 13: Workbench Server Object Tab with Relationships selected



20 Relationship Editor

Double-click on the Relationships node in the Server Objects tree to display the Relationship Editor.

@ Relationship Editor

=2]

'_| Relationships
= ] System

] User

] Meswe Copy

___| Promaotable Yersion

| Active Assembly

| Active Azsembly - Mandatory
__| Tranzlstion

__| Tranzlstion - Mandstory

__| Folder Content

l Ok ] [ Apply ] [ Cancel ] l Help ]

The Relationship Editor consists of two panels. On the left, the Navigation Tree displays all Relationships
available in the system. Relationships fall into two classes. System Relationships are Relationships
provided by default with Rhythmyx. You can modify these Relationships but cannot delete them or add
new Relationships to this folder. User Relationships are all Relationships defined specifically for your
local implementation of Rhythmyx. You can add, modify, or delete these Relationships.

On the right side of the Relationship Editor, Rhythmyx displays editing panels corresponding to the node
selected in the Navigation Tree. Six panels are available for each editor:

Relationship Properties

User Properties (see "User Properties Panel" on page 24)
Cloning (see "Cloning Panel" on page 26)
Pre-processing Exits (see "Exit Panels" on page 28)
Post-processing Exits

Effects (see "Effects Panel" on page 30)

If you select the Relationship, System, or User node, no panel is displayed.



Relationship Editor 21

Relationship Properties Panel

The Relationship Editor Displays the Relationship Properties panel when you select the node of the
Relationship itself.

—Translation Graphic

[nternal Mame I'I'ranslatinn Graphic

Label I'Franslatinn Graphic

Categnwhctive Assembly j
Description
Marme Walue Locked Type
rs_Useownerrevision [ v Boolean | a
rs_usedependentrevision [ v Boolean
rs_expirationtime | Date
rs_usesernerid vl | Boolean
rs_skippromation [ [ Boaolean | —
rs_islocaldependency [ | Boolean

—Descriptian

Figure 14: Relationship Editor Relationship Properties Panel

Field Descriptions

Internal Name Mandatory. The name used by the Rhythmyx server when processing the Relationship.
This name must be unique among the names of all Relationships.

Label Mandatory

. The name Rhythmyx uses for this Relationship in user interfaces. This name need not be unique. It is
eligible to be translated in globalized environments. The default value is the Internal Name of the
Relationship.

Category Drop List. Specifies the category of the Relationship. Options are:



22 Relationship Editor

Display Name Internal Name
Active Assembly rs_activeassembly

NOTE: Relationships in this
Category require the following
User Properties: sys_slotid,
sys_variantid, and
sys_sortrank.

New Copy rs_copy
Folder rs_folder
Promotable Version rs_version
Translation rs_translation

NOTE: Use the Internal name of the relationship for processing in the Rhythmyx server, such as in SQL
select statements.

Description Optional. Free-form description of the Relationship.

System Properties Table This table displays the values for all System properties available for the
Relationship.

Property Description

rs_useownerrevision Specifies whether to use the owner's revision ID as part of the owner
locator key.

rs_usedependentrevision Specifies whether to use the dependent's revision ID as part of the
dependent locator key.

rs_expirationtime If this relationship can expire, this property specifies the expiration
date/time. If this relationship cannot expire, this property is set to null.

rs_useserverid Specifies whether to use the server ID (rxserver) for executing effects.
If set to No, the current user is used instead of the server ID.

rs_islocaldependency Specifies whether the Multi-Server Manager should treat the
dependent as a local dependency. (See the Rhythmyx Multi-Server
Manager documentation for more information.)

rs_skippromotion Specifies whether to repoint the Relationship to the depended object
in a Promotable Version Relationship when the depended it promoted
to Public. If checked, the Relationship is not repointed. If
unchecked, the Relationship is repointed.



Relationship Editor 23

Name Read only. The name of the property.

Value Varies. Indicates the value of the property. If the property takes Boolean values, this field is a
checkbox indicating true (checked) or false (unchecked). If the property takes a text or date value, this
field displays a value editor icon. Click on the icon to display the value editor for the field.

Locked Checkbox. Specifies whether custom values specified in extensions can override the value of the
property. If checked, the field is locked and custom values cannot override the value of the field. If
unchecked, the field is unlocked and custom values can override the value of the field.

Property Description Read only. Description of the selected system property.



24 Relationship Editor

User Properties Panel

The Relationship Editor displays the User Properties panel when you select the User Properties node of a
Relationship. Use this panel to maintain custom properties for the Relationship Type. You can use these
properties for processing in custom Effects and Exits.

~lser Propedies

Marme Value Locked Type
Translatahle [v [vl Boolean
Region Asia [vl String

Release 051 ar2003

~Description

Figure 15: Relationship Editor User Properties Panel

Field Descriptions
User Properties Table Use this table to specify custom properties for Relationships.

Name Text field. The name of the property.

Value Varies. Text field if the value of Type is string. Calendar control if the value of Type is Date.
Checkbox if the value of Type is Boolean. Specifies the value of the property.

Locked Checkbox. Specifies whether custom values specified in custom extensions using the same name
can override the value of the property. If checked, the field is locked and custom values cannot override
the value of the property. If unchecked, the field is unlocked and custom values can override the value of

the property.



Relationship Editor 25

Type Drop list. Specifies the type of the property. Options are Boolean, String, and Date. Empty if the
row is empty. Defaults to String when you click on a blank row.

Description Text box. Description of the selected Property.



26 Relationship Editor

Cloning Panel

The Relationship Editor displays the Cloning panel when you select the Cloning node of any Relationship.
The values on this panel define whether the Relationship can be cloned, and if so, whether only the
Relationships to owners and dependents are cloned, or all Relationships to all descendants (dependents of
dependents) and ancestors (owners of owners) can be cloned. It also defines which fields in the clone will
be modified and the UDF that sets the new value.

—loning

~Cloning options

v Allaw cloning

v Locked

—Conditions
E Marme (I
[ rs_cloneshallow
¥ |rs_clonedeep [

~Clone Field Overrides

Field LIDF ©
sys_title syvs_ClaneTitle(f0) Copy ... -
SVS_camimunityid gys_cloneOwerrideField].J...
sy _workfowid gys_cloneOwerrideField].J...
sys_lang gys_Literal{PSXSingleHtm. .. =

=

—Description

Figure 16: Relationship Editor Cloning Panel

Field Descriptions

Allow cloning Checkbox. Specifies whether the Relationship allows cloning. If checked, the Relationship
can be cloned. Ifunchecked, the Relationship does not allow cloning. Whether the Relationship allows
cloning of dependent Content Items depends on whether the rs_clonedeep condition is checked.



Relationship Editor 27

Locked Checkbox. Specifies whether custom values specified in extensions can override the value of the
Allow Cloning checkbox. If checked, the value is locked and custom values cannot override the value of
Allow Cloning. If unchecked, the value is not locked and custom values can override the value of Allow
Cloning.

Conditions The values in this table define how the Clone Handler processes clones. If you enable only
one Condition, Rhythmyx always creates the clone based on that condition. If you enable both conditions,
you must specify conditional processing for each. Rhythmyx processes the first condition whose
conditions evaluate as TRUE. In other words, if both conditions are enabled, and the conditions for both
evaluate as TRUE, only the rs_cloneshallow condition will be activated, since it comes before the
rs_clonedeep condition.

E Checkbox. Specifies whether the cloning process in that row is enabled for this Relationship. If
checked, the cloning process is enabled. If unchecked, the cloning process is not enabled.

Name The name of the cloning process. Two cloning processes are available:

= rs_cloneshallow (shallow cloning; clones only Relationships to owners and dependents)

= rs_clonedeep (deep cloning; clones all Relationships to all descendants and ancestors
C Button. Activates the Rule Editor to specify conditional prl%erties for cloning condition. The button is

blank if no conditional properties are specified. Click on the icon to activate the Rule Editor (on page
32) and add Rules for triggering the cloning condition (see "Defining Conditions for Exits, Effects, and
Cloning Processes" on page 40). If you specify conditions for cloning, Rhythmyx processes the first
cloning condition that evaluates as TRUE.

Description Read only. Description of the selected clone process.

Clone Field Overrides The values in this table define which system fields have new values set in the clone
and how that value is set.

Field Specifies a field for which to set a new value. Clicking in the field activates a drop list. Options are
all system fields (fields defined in the ContentEditorSystemDef.xml).

UDF Specifies the UDF that is used to define the new value for the field. Options are all UDFs registered
in the system.

C Button. Activates the Rule Editor to specify conditional properties for activating the field override.
The button is blank if no conditional properties are specified. Click on the [Zlicon to activate the Rule
Editor (on page 32) and add Rules for triggering the field override. (see "Defining Conditions for Exits,
Effects, and Cloning Processes" on page 40)



28 Relationship Editor

Exit Panels

The Relationship Editor includes two versions of the Exit panel. When you select the Request pre-
processing node of a Relationship, the Relationship Editor displays the Pre-processing panel. When you
select the Result document processing node of a Relationship, the Relationship Editor displays the Post
Processing panel. The two panels are identical; the only difference is which exits you can manage on
each. Use these panels to maintain the Exits associated with the Relationship.

~Request pre-processing

Exit C

sys_TranslationConstraint()

~Description

Figure 17: Relationship Editor Exit Panel

Field Descriptions

Exit Table Use this table to add Exits to the Relationship Type and to manage the parameters of each Exit.
Exit Drop List. The name of the Exit. When you click in a blank field, Rhythmyx displays a drop list
showing all Exits not currently associated with the Relationship. When you choose an Exit, Rhythmyx
displays the Parameter dialog. When you click in a field that already contains ax Exit, Rhythmyx displays
the Parameter dialog.



Relationship Editor 29

C Button. Activates the Conditional Property dialog to specify conditional properties for the Exit. The

button is blank if no conditional properties are specified. Click on the [Zlicon to activate the Rule
Editor (on page 32) and add Rules for triggering the Exit (see "Defining Conditions for Exits, Effects,
and Cloning Processes" on page 40).

Description Read only. Displays the description of the selected Exit.



30 Relationship Editor

Effects Panel

The Relationship Editor displays the Effects panel when you select the Effects node of any Relationship.
Use this panel to associate Effects with the Relationship.

~Effects

Directian Effect [

—Description

Figure 18: Relationship Editor Effects Panel

Field Descriptions

Direction Drop list. Specifies when to trigger the Effect. Options are: Down (triggers the Effect only
when the Content Item activating the Effect is the Owner in the Relationship), Up (triggers the Effect only
when the Content Item activating the Effect is the Dependent in the Relationship), and FEither (triggers the
Effect regardless of which Content Item activated the Effect).

Effect Drop list. The name of the Effect. When you click in a blank field, Rhythmyx displays a drop list
showing all Effects not currently associated with the Relationship. When you choose an Effect,
Rhythmyx displays the Parameter dialog. When you click in a field that already contains an Effect,
Rhythmyx displays the Parameter dialog.



Relationship Editor 3

C Button. Activates the Conditional Property dialog to specify conditional properties for enabling the

cloning process. The button is blank if no conditional properties are specified. Click on the [Elicon to
activate the Rule Editor (on page 32) and add Rules for triggering the Effect (see "Defining Conditions
for Exits, Effects, and Cloning Processes" on page 40).

Description Read only. Displays the description of the selected Effect.



32 Relationship Editor

Rule Editor

Use the Rule Editor to specify the conditions that trigger an Exit or Effect, or that permit a specific type of
Cloning.

You can write simple Rules in the Rule Editor itself. For example, you can write a rule that tests an
HTML parameter against a literal value right in the Rule Editor. However, more complicated Rule,
particularly Rules that require reference to other objects in the system, may require an Extension. For
example, if you wanted to evaluate whether a Slot contains a certain number of Content Items, the Rule
Editor does not have the facilities to perform the check. You would have to write an extension to evaluate
this rule. The extension must be a UDF that generates a boolean value (in other words, either TRUE or
FALSE.

To access the Rule Editor, double click on the = icon in the C column on the Cloning, Exits, or Effects
panel of the Relationship Editor.

Rule E ditor ]|

Type Rule Op

— L |

]2 Cancel Help

Figure 19: Rule Editor
Columns
Type Drop List. Specifies the type of Rule. Two options are available: Condition and Extension.

Rule Defines the Rule. If the Type is Condition, you must specify the conditions to me met (for example,
psx-locale=fr=fr) in this column. Use the Conditional Property dialog to specify the conditions. If the
Type is Extension, you must specify the extension to produce the result. The extension must result in a
boolean value (in other words, either TRUE or FALSE).

Op Specifies a boolean operator to join multiple rules. Options are AND or OR, or null.



33

CHAPTER 3

Maintaining Relationship Types

You can create (see "Creating Relationship Types" on page 34), modify (see "Modifying Relationship
Types" on page 37), or delete (see "Deleting Relationship Types" on page 39) any Relationship under the
User node of the Relationship Editor. You can modify Relationships under the System node, but you
cannot add new Relationships to this node or delete Relationships from it.

Most Relationships define an association between Content Items. If you want users to be able to act on
the Relationship, you need to create a new Action Menu Entry for the Relationship. For details, see
"Customizing Action Menus" in Implementing the Rhythmyx Business User's Interface.



34 Maintaining Relationship Types

Creating Relationship Types

You can only create new Relationship Types under the User node of the Relationship Editor. To create a
Relationship Type:

1 On the Relationship Editor, select the User node and click the [Add] button.
Rhythmyx displays the Specify Relationship Name dialog.

Specify Relations hip Mame E|

€y

[ 0] 4 ] [ Cancel ]

Figure 20: Specify Relationship Name dialog

2 Enter a Name for the Relationship. The name must be unique among all Relationships in the
system.

Rhythmyx adds a new node under User with the name you specified and displays the
Relationship Properties panel.

3 Select the Category of the Relationship from the drop list. Options are:
= Active Assembly
= New Copy
= Folder
= Promotable Version
= Translation
Enter a free-form Description of the Relationship.

5 Set values for the system properties rs_useownerrevision, rs_usedependentrevision,
rs_expirationtime, rs_useserverid, rs_skippromotion, and rs_islocaldependency.

6 To add User Properties:
a) Click on the User Properties node under the new Relationship.
The Relationship Editor displays the User Properties panel.

b) To add a property, click in a blank line in the Name column of the User Properties table
and enter a name for the property.

¢) Click in the Type field and choose the Type of the property. Options are Boolean, String,
and Date.

d) Set the Value for the property. If the Type is Boolean, check or uncheck the checkbox. If
the Type is String, enter the string. If the Type is Date, click on the button and choose the
date from the calendar control.



Maintaining Relationship Types 35

e)

To prevent custom processing in an extension from overriding the value of a property,
check the Locked column of the property.

To set cloning properties of the Relationship Type:

a)

b)
c)

d)

f)

Click on the Cloning node under the new Relationship.
The Relationship Editor displays the Cloning panel.
To enable cloning for the Relationship, check the Allow Cloning checkbox.

To prevent custom processing in an extension from overriding the value of Allow Cloning
for the Relationship, check the Locked checkbox. Leave the box unchecked if you want
custom processing to override the value of rs_allowcloning.

To enable shallow cloning, check the E box next to rs_cloneshallow. To add conditional
processing to determine whether to enable the rs_cloneshallow process, click in the C
column and specify the conditions in the Rule Editor (on page 32). For details about
using this dialog, see Defining Conditions for Exits, Effects, and Cloning Processes (on
page 40).

To enable deep cloning, check the E box next to rs_clonedeep. To add conditional
processing to determine whether to enable the rs_clonedeep process, click in the C column
and specify the conditions in the Rule Editor (on page 32). For details about using this
dialog, see Defining Conditions for Exits, Effects, and Cloning Processes (on page 40).

For details about overriding the values in fields in a clone, see Overriding Content Item
Fields in Clones (on page 55).

To add a pre-Exit to the Relationship:

a)

b)

¢)

d)

Click on the Request pre processing node under the new Relationship.
The Relationship Editor displays the Pre Processing Exit panel.

To add an Exit, click in a blank link in the Exit column of the Pre Processing Table and
choose the Exit you want to add.

Rhythmyx adds the Exit and displays the Parameter dialog. Specify parameters for the
Exit.

To add conditional processing to determine whether to trigger the Exit, click in the C
column and specify the conditions in the Rule Editor (on page 32). For details about
using this dialog, see Defining Conditions for Exits, Effects, and Cloning Processes (on
page 40).

To add a post-Exit to the Relationship:

a)

b)

Click on the Result document processing node under the new Relationship.
The Relationship Editor displays the Post Processing Exit panel.

To add an Exit, click in a blank line in the Exit column of the Pre Processing Table and
choose the Exit you want to add.

Rhythmyx adds the new Exit and displays the Parameter dialog. Specify parameters for
the Exit.



36 Maintaining Relationship Types

d) To add conditional processing to determine whether to trigger the Exit, click in the C
column and specify the conditions in the Rule Editor (on page 32). For details about
using this dialog, see Defining Conditions for Exits, Effects, and Cloning Processes (on
page 40).

10 To maintain Effects for the Relationship Type:

a) Click on the Effects node under the new Relationship.

The Relationship Editor displays the Effects panel.

b) To add an Effect to the Relationship, click in a blank line in the Effect column of the
Custom Effects table and choose the Effect you want to add.

Rhythmyx adds the new Effect and displays the Parameter dialog. Specify parameters for
the Effect.

¢) Click in the Direction column of the row where you just added the Effect and select the
Direction that triggers the effect. Options are:

= Down: triggers the Effect only when the Content Item activating the Effect is the
Owner in the Relationship.

= Up: triggers the Effect only when the Content Item activating the Effect is the
Dependent in the Relationship.

= FEither: triggers the Effect regardless of which Content Item activated the Effect.

a) To add conditional processing to determine whether to trigger the Effect, click in the C
column and specify the conditions in the Rule Editor (on page 32). For details about
using this dialog, see Defining Conditions for Exits, Effects, and Cloning Processes (on
page 40).

11 Click [OK] to save the Relationship.



Maintaining Relationship Types 37

Modifying Relationship Types

You can modify any Relationship, but you must restart your server before your changes will take effect.

To modify a Relationship:

Click on the plus sign (+) next to the Relationship you want to modify.
2 To modify Relationship Properties:
a) Click the Relationship node.
The Relationship Editor displays the Relationship Properties panel.
b) You can change any value.
3 To modify Cloning Properties:
a) Click the Cloning node under the Relationship.
The Relationship Editor displays the Cloning panel.
b) You can change any value.
4 To add a new Effect:
a) Click on the Effects node under the Relationship.
The Relationship Editor displays the Effects panel.

b) Click in a blank line in the Effect column of the Custom Effects table and choose the
Effect you want to add.

¢) Rhythmyx adds the new Effect and displays the Parameter dialog. Specify parameters for
the Effect.

d) To add conditional processing to determine whether to trigger the Effect, click in the C
column and specify the conditions in the Conditional Property dialog. For details about
using this dialog, see "Assigning Conditions to Mappings" in the Rhythmyx online Help.

5 To modify an Effect:
a) Click on the Effects node under the Relationship.
The Relationship Editor displays the Effects panel.

b) You can modify value of any built-in Effect and change the Lock status of all build in
Effects.

6 To change the parameters of a custom Effect:
a) Double-click on the Effect whose parameters you want to change
Rhythmyx displays the parameter dialog.
b) Change any parameter.

¢) To change the conditions that trigger an Effect, click on the button in the C column and
change the values on the Conditional Properties dialog.

7 To delete an Effect press the <Delete> key on your keyboard.



38

Maintaining Relationship Types

8 To add a new Exit:

10
11

12

a)

b)

d)

Click on the Request pre processing node or the Result document processing node under
the Relationship.

The Relationship Editor displays the Exit panel for the node you selected.

Click in a blank link in the Exit column of the Pre Processing Table and choose the Exit
you want to add.

Rhythmyx adds the new Exit and displays the Parameter dialog. Specify parameters for
the Exit.

To add conditional processing to determine whether to trigger the Exit, click in the C
column and specify the conditions in the Conditional Property dialog. For details about
using this dialog, see "Assigning Conditions to Mappings" in the Rhythmyx online Help.

To modify an Exit:

a)

b)

Click on the Request pre processing node or the Result document processing node under
the new Relationship.

The Relationship Editor displays the Exit panel for the node you selected.

Click in a blank line in the Exit column of the Pre Processing Table and choose the Exit
you want to add. To add conditional processing to determine whether to trigger the Exit,
click in the C column and specify the conditions in the Conditional Property dialog. For
details about using this dialog, see "Assigning Conditions to Mappings" in the Rhythmyx
online Help.

To delete an Exit press the <Delete> key on your keyboard.

To add a new User Property:

a)

b)

¢)

d)

e)

Click on the User Properties node under the Relationship.
The Relationship Editor displays the Post Processing Exit panel.

To add a property, click in a blank line in the Name column of the User Properties table
and enter a name for the property.

Click in the Type field and choose the Type of the property. Options are Boolean, String,
and Date.

Set the Value for the property. If the Type is Boolean, check or uncheck the checkbox. If
the Type is String, enter the string. If the Type is Date, click on the button and choose the
date from the calendar control.

To prevent custom processing in an extension from overriding the value of a property,
check the Locked column of the property.

To modify a User Property

a)
b)

Click on the User Properties node under the Relationship.

You can change any value in the User Properties table.

13 To delete a User Property press the <Delete> key on your keyboard.

14 Click [OK] to save your changes.



Maintaining Relationship Types 39

Deleting Relationship Types

You can only delete Relationship Types under the User node. To delete a Relationship Type, select the
Relationship Type you want to delete and click the [Delete] button on the Relationship Editor. Rhythmyx
displays a confirmation message. Click [Yes] to confirm the delete action, or [No] to abort the delete

action.



40 Maintaining Relationship Types

Defining Conditions for Exits, Effects, and
Cloning Processes

When adding an Exit or an Effect to a Relationship, you can specify conditions that trigger that extension.
You can also define conditions for both the deep and shallow cloning processes.

To define conditions for an extension or cloning process:

1 Double-click the (=] icon in the row of the extension or cloning process to which you want to
add conditions.

Rhythmyx displays the Rule Editor.
2 To add a Rule as a Condition:

a)
b)

¢)
d)

e)

f)
g

h)

)

In the first blank row on the Rule Editor, click in the Type field and choose Conditional.
Double click in the Rule column of the same row to activate the Rule field.

Click on the browse button (...).

Rhythmyx displays the Conditional Properties dialog.

Click in the Variable column, then click the browse button to display the Value Selector.
Specify the Value for the Variable.

In the Op column, choose an operator.

Click the Value column, then click the browse button to display the Value Selector.
Specify the Value for the Value.

If you want to add another condition, click in the bool field and choose the boolean
operator for the additional condition. Options are AND and OR. Note that if you add
multiple conditions on this dialog, they are treated as a single Rule on the Rule Editor. In
other words, the result of the entire set of conditions is treated as the result of the Rule.

Click [OK] to save the condition.

3 To specify an Exit to process the Rule:

a)
b)

In the first blank role on the Rule Editor, click in the Type field and choose Extension.

Double-click in the Rule field of the same column and select the extension you want to
use for the Rule. The extension should be a UDF that generates a boolean result (in other
words, either TRUE or FALSE).

4 If you want to add another Rule, click in the Op column of the Rule and choose the boolean
operator you want to use to process the additional rule. Options are AND and OR.

5 Click [OK] to save your rules.



Maintaining Relationship Types 4

Planning Clone Field Overrides

Before implementing clone field overrides, decide which fields you want to override and how you want
them to change. Only system fields (fields defined in the ContentEditorSystemDef.xml) are eligible for
override; fields defined in shared and local definition XML files are not eligible to be overridden.

Some typical overrides are:

Name Internal Name Common Change
Community sys_communityid Change the ID to put the Content Item in a new Community.
Workflow sys_workflowid Change the ID to put the Content Item into a different Workflow.

(You generally don’t have to change the State because clones are
always created in the initial State of any Workflow.)

Locale sys_lang Change the Locale of the Content Item.

Title sys_title Add some form of increment to the title to indicate where in the
sequence of clones it falls. For example, you may want the title to
include the phrase “Copy X of Y copies™.

Rhythmyx ships with two UDFs that can perform these simple overrides:

= sys cloneFieldOverride

This UDF calls a Rhythmyx resource that generates an XML document from which you
can derive new values for a field.

= sys CloneTitle

This UDF adds text to the title of the clone indicating where in the sequence of clones it
falls; for example, “Copy X of Y.

If you want a more complicated override than these UDFs provide, you will need to write your own UDF
to perform the override processing.






43

CHAPTER 4

Modifying Relationship
Configurations

The Rhythmyx installation provides a number of default Relationships that help the system operate.
These default Relationships should generally meet your needs, but you will probably want to reconfigure
them to match the functionality you want in your Content Management System.



44 Modifying Relationship Configurations

Simple Reconfiguration: Adding Forced
Transition to a Mandatory Relationship

To illustrate a simple reconfiguration, let us modify the default Active Assembly — Mandatory
Relationship to force associated Content Items to Public.

Mandatory Relationships are Relationships in which both Content Items in the Relationship must go
Public together. Mandatory Relationships are implemented through the sys PublishMandatory and
sys_UnpublishMandatory Effects. These Effects provide the processing that determines whether the
Content Items in a Relationship can go Public.



Modifying Relationship Configurations 45

In the default Active Assembly — Mandatory, these are the only two Effects assigned. The Direction
configured for each is Down. In other words, if a Content Item has an Active Assembly — Mandatory
Relationship to another Content Item, when the Owner in the Relationship makes a Transition to Public,
this Effect will be triggered to check whether the Dependent in the Relationship is Public. If the
Dependent makes this Transition, the Effect does not check on the current State of the Owner.

# Relationship Editor x|

—Effacts

_4 Relationships Direction Effect [

=4 System Down sys_PublishMandatoryino, ) &

—| Mew Copy Do svs_UnpublishMandatoryna, |
-1 Promotable Version

-] Active Assembly

=14 Active Assembly - Mand

- B UserProperties
~[E Cloning
----- El Reqguestpre-proces
-~ [E Resultdocurnent pr

_| Translation
-] Translation - Mandatory

—Description

] | 3

Feny | Delete |

] Apply Cancel Help

Figure 21: Effects Configured for the Active Assembly - Mandatory Relationship
Let us focus on the sys PublishMandatory Effect. This Effect has three parameters:

Parameter Description
forceTransition Mandatory. Specifies whether to try to force the other Content Item in the
Relationship to make a Transition if it is not currently Public.

ownerTransitionName Optional. Specifies the name of the Transition to use to force the Owner
in the Relationship if it is not already Public.



46 Modifying Relationship Configurations

Parameter Description

Optional. Specifies the name of the Transition to use to force the

Dependent in the Relationship if it is not already Public.

In the default configuration, the value of the forceTransition parameter is no, meaning that the dependent
is not forced to Public when the Owner is Transitioned to Public. In this configuration, the other two

parameters are irrelevant, so they are blank.

Effects |

dependentTransitionName

Effects |2 %] Ok
relationshipfsys_PublishMandatory Al
i e Cancel
ll Help
—Parameters
MHarme Walue
farceTransition no |

ownerTransitiontame
dependentTransitionklame

Al

~Description

the other item cannot be put into a public state, an j
exception iz thrown and the item beihg proceszed is
not allowed to transition. . The effect will return
immediately for any context except R3 _PRE WOREFLOW.

Figure 22: Default Configuration of the sys PublishMandatory Effect of the Active Assemby - Mandatory
Relationship

Let us now suppose that whenever a Content Item has an associated graphic, we want to force the graphic
to go Public with its owner. The Active Assembly — Mandatory Relationship provides this functionality,

but we will need to modify the configuration, changing the value of the forceTransition parameter to yes,
and entering the name of the Transition we want to use to force the Dependent Public.



Modifying Relationship Configurations 47

Since we want to use this Relationship for graphics, let us examine the Images Workflow:

; Rhythmys= Workflow Editor - Preview Workflow - Microsoft Internet Explorer - IEI|5|
Ant Attachdgd
N
L4
Reject
—
Approve
4
Reject
\
Approve
‘—
Unpublish
—
lgnore Pul§lish
Y
¥
Retrieve
d
|
Publish
4
|
Artwork QA Approval Public Archived Quick Edit
+[o) Tl B
STATE DIAGRAM
Workflow name : Images
Workflow ID: 3
Add Statel —

1]

ol

Figure 23: Images Workflow

In this Workflow, two Transitions move Content Items to the Public State:

= The Approve Transition from the QA State

= The Publish Transition from the Quick Edit State
We can ignore the latter Transition, because Quick Edit is a special State used for minor edits to Content
Items that are already Public. This fact leaves us with the Approve Transition to the Public State. We will
enter Approve as the value of the dependentTransitionName parameter of the sys PublishMandatory

Effect.

(Note that sys PublishMandatory Effect generates an error if a Transition cannot move a Content Item to
Public. Thus, we do not need to be concerned that there is another Transition with the name “Approve”.
This Transition moves a Content Item from the Approval State to the QA State, and would cause an error
if Rhythmyx attempted to force this particular Transition. Only the Approve Transition from QA to

Public will move a Content Item. )




48 Modifying Relationship Configurations

The following graphic illustrates the reconfigured Effect:

Effects |

Effects |2 %] Ok
relationshipfsys_PublishMandatory Al
i e Cancel
ll Help
—Parameters
MHarme Walue
forceTransition WES A|
ovenerTransitionMame
dependentTransitionklame Approve

Al

~Description
the other item cannot be put into a public state, an j
exception iz thrown and the item beihg proceszed is
not allowed to transition. . The effect will return
immediately for any context except R3 _PRE WOREFLOW.

Figure 24: Reconfiguration of the sys_PublishMandatory Effect to force a Dependent Content Item to
Public using the Approve Transition

The sys_UnpublishMandatory Effect would be reconfigured in the same fashion.



Modifying Relationship Configurations 49

Advanced Reconfiguration: Conditional
Cloning Based on the Locale of a
Translation

More advanced reconfiguration may require conditional processing to determine whether cloning occurs
or an Exit or Effect is triggered. Let us examine the reconfiguration required to facilitate the processing
described in the Advanced example of Relationship processing (see "Advanced Example: Translations"
on page 11). In this example, when we create a Translation, we want to change the conditions under
which we clone Active Assembly Relationships. Thus, even though we are reconfiguring to facilitate
Translations, we will be modifying the configuration of the Active Assembly Relationship. Specifically,
we will be modifying the Cloning Properties.



50 Modifying Relationship Configurations

Let us begin with the default configuration of the Active Assembly Relationship.

@ Relationship Editor 5'
~Cloning
_4 Relationships —Cloning options
=4 Systemn _
_I NErenTs: [v! Allow cloning
=] Pramotable VYersion
il | Locked
=9 Active Assembly g
----- Bl UserProperties T s
----- e
----- B Requestpre-prac E MName C
----- B Resultdocument [¥ rs_cloneshallow [
----- E Effects V¥ |rs_clonedeep [
=4 Active Assembly - Ma
""" E User Properties ~Clane Field Overrides
----- B Claning
----- B Request pre-proc Field UDF| C
----- El Resultdocument |
----- B Effects
-] Translation
-] Translation - Mandato
#-__] Falder Cantent
..... J User J
~Description
Kl | b
= | De(eta
0] | Anply | Cancel Help

Figure 25: Default Cloning Configuration of the Active Assembly Relationship



Modifying Relationship Configurations 51

Cloning is enabled for this Relationship, and both shallow cloning (cloning only the Relationship itself)
and deep cloning (cloning the Relationship and the Dependent Content Item in the Relationship) are
allowed. Conditional processing has been defined for both shallow and deep cloning. For shallow
cloning, a single condition has been defined, processed in the Rule Editor:

|
Type Fule (0]
Conditional  |[(PEX0riginatingRelationshipPropemyicat... -
] Cancel Help |

Figure 26: Default ShallowCloning Conditions for the Active Assembly Relationship

The following specific rule has been defined:

Variable Operator Value Boolean
PSXOriginatingRelationshipProperty/Category = rs_promotable OR
PSXOriginatingRelationshipProperty/Category = Is_copy

If category of the Originating Relationship (the Relationship that is triggering the creation of the clone) is
either Promotable (category=rs_promote) or Copy (category=rs_copy), then Rhythmyx will make a
shallow clone (clone only the Active Assembly Relationship).

For deep cloning, we also have a single condition. The rule for this condition is:

Variable Operator Value Boolean
PSXOriginatingRelationshipProperty/Category = rs_translation

If the Category of the Originating Relationship is Translation (category=rs_translation), then Rhythmyx
will create a deep clone (clone both the Active Assembly Relationship and the Dependent Content Item in
the Relationship).

In the example, we stated that we will use the same graphic in the Canadian French Locale that we use in
the default US English Locale. Therefore, when Translating to the Canadian French Locale, we can use
shallow cloning: when we create a Translation for the Canadian French Locale, we will create a new
Relationship that points to the same Dependent Content Item that is used in the US English Locale. To
accomplish this goal, we can add another condition to the shallow cloning condition.

If the Category of the Originating Relationships is Translation AND

If the Locale of the new Content Item is Canadian French.



52 Modifying Relationship Configurations

You must use the internal value for the Relationship Category. The internal value for the Translation
Category is rs_translation. The locale is stored in the HTML parameter sys lang. (Note that while the
variable sys_lang is also available as Content Item Data, we are not actually working with a Content [tem
when cloning a Relationship, so we must use the HTML parameter.)

Translated into Rhythmyx terms, we will have the following Rule:

Variable Operator Value Boolean
PSXOriginatingRelationshipProperty/Category = rs_translation AND
PSXParam/sys_lang = fr-ca

We could add these additional Rules to the existing Rules, but since it is a more complex statement, it
makes more sense to add it as a new Rule. Since we now have multiple Rules, we need to define some
Boolean processing for them. We cannot use the AND connector between these two Rules. If we used
that connector, the Originating Relationship would have to be in two Categories (Copy and Translation; or
Promote and Translation), and a Rhythmyx Relationship can have only one Category. Thus, we must use
the OR connector. The following graphic illustrates the final configuration:

Rule Editor x|

Type Rule Qp
Conditional  |[(PEX0riginatingRelationshipPropeyicat... OF -
TRl (F S OriginatingRelationshipPropertycat... | B

]2 | Cancel Help |

Figure 27: New ShallowCloning Conditions for the Active Assembly Relationship

Next, we need to address the Japanese Locale. When translating to the Japanese Locale, we want a new
graphic. Thus, we need a deep clone, which copies both the Active Assembly Relationship and the
Dependent Content Item in the Relationship. As we noted above, the default conditions for deep cloning
the Active Assembly Relationship already call for deep cloning when the category of the Originating
Relationship is Translation. We want to add another rule to this condition, specifying that, in addition to
the existing rule, the Locale of the Translation must be Japanese (ja-jp):

Variable Operator Value Boolean
rs_translation ~ AND

PSXOriginatingRelationshipProperty/Category
PSXParam/sys_lang = ja-jp



Modifying Relationship Configurations 53

This configuration is more restrictive than the default configuration. In the default configuration, any
clone created when the originating Relationship was in the Translation Category would be a deep clone.
Now, only clones to the specified ja-jp Locale will be deep cloned. If you want to allow deep cloning in
other Locales, you will need to add more Rules defining those Locales. If neither condition is evaluated
as TRUE (in other words, if we create a Translation Content Item in a locale other than fr-ca or ja-jp), then
no clone of the Active Assembly Relationship is created.






55

CHAPTER 5

Overriding Content Item Fields in
Clones

When you clone a Content Item (such as to create a new Translation Content Item), you frequently want to
change the value in a field on the clone. When a Business User creates the clone manually, the user can
modify the field in the clone. When you create a clone automatically, such as automatically generating a
Translation Content Item, you probably want to change the value in certain fields automatically in the
process. Use Clone Field Overrides to automate these changes. Clone field overrides can automatically
update fields in a clone with new values.

When defining a Relationship type in the Relationship Editor, you can specify the fields you want to
override. The override processing itself is performed by a UDF you specify for the field. You can also
specify conditional processing to determine whether or not to override the field.



56 Overriding Content Item Fields in Clones

Implementing Clone Field Overrides

To implement a field override:

On the Relationship Editor, click the Cloning node.

2 Double-click in the first empty row in the Fields column and select the field you want to
override from the drop list. Options are all system fields.

3 Double-click in the UDF column and select the UDF you want to use to modify the field in the
clone.

Rhythmyx displays the UDF Editor.

4 Enter Values for each parameter you want to use in the UDF. Note that some parameters are
mandatory while others are optional.

5 Click the [OK] button on the UDF Editor.
Rhythmyx returns you to the Relationship Editor.

6 If you want to add conditions to the field override, click the [=] button to display the Rule
Editor. For details about adding rules, see Defining Conditions for Exits, Effects, and
Cloning Processes (on page 40).

Repeat steps 2-6 for all fields you want to override.

Click the [Apply] button to save your changes.



Overriding Content Item Fields in Clones 57

Example Implementation of Clone Field
Overrides

To illustrate how clone field overrides work, let us examine the implementation of the default Translation
Relationship shipped with Rhythmyx. The following graphic illustrates the Cloning properties of the
Translation Relationship:

@ Relationship Editor x|
~Cloning
_4 Relationships ~Cloning options
=4 System _
B8 New Copy [ Allow cloning
-1 Prqmntable Yarsion ¥ Locked
L) Active Assembly
-] Active Assembly - Ma —Conditions
=1~ _4 Tranglation
[ UserProperties E Marme ©
Sl ioning| [ rs_cloneshallow
Bl Reguest pre-proc [ |rs_clonedeep
-~ B Result document
[ Efferts ~Clone Field Overtides
-] Translation - Mandato :
[+ ] Folder Content Field LDF %
=29 User sys_title sys_CloneTitle([{0Y] Copyo... AI
E...‘Jgampm sys_communityid |sys_cloneOverrideField( fs..
B User Propetties gys_weorkflowid sys_cloneCOwerrideFieldi 5.
..... B cloning Sys_lang sys_Literal(P SXSingleHtml...
[ Reguest pre-proc —
-~ B Result document
- E] Effects ~Description
Rl I y
Feny | Delete
] Apply Cancel Help

Figure 28: Default Cloning Coniguration of the Translation Relationship



58 Overriding Content Item Fields in Clones

When creating a clone using the Translation Relationship, Rhythmyx will modify the following fields:

= sys title
= sys communityid
= sys workflowid
= sys lang
Let us examine some of these overrides.



Overriding Content Item Fields in Clones 59

Overriding the sys title Field

To create a new title, the sys CloneTitle UDF is applied to the sys_title field.

x

Cloning |24 %] Ok
relationshiprsys_CloneTitle Al
W ove Cancel
ll Help
~Parameters
Mame Yalue
Pattern [0} Copy of {1} |

Insertionlternd |PEXSingleHtmIParameterisys_lang

Insetionitermn1  |PEXContentitemStatus/COMNTENTSTATUS. TITLE
Insertionltem?
Insertionltem3

Al

~Description
item {1}. <p> etcC. </pre> HNote: if the number of _:J
{inzerts} in the MessageFormat string does not match

the mumber of paremeters (after format) given to this
UDF, then it will throw the PiConversionEXception.

4

Figure 29: Default Coniguration of the sys_CloneTitle UDF for the Translation Relationship

This UDF creates a new title according to the pattern specified in the Pattern parameter. You can insert
any string in this pattern. To add variable values derived from the data in the Content Item, use the
variables 0-3 in curly braces (“{}”) to specify the insertion of a value derived from the Insertionltem
parameter specified by the numeric value. You can also use the Sclonecount macro, which will insert
the count of this clone among all the clones created from the Owner Content Item.

In this case, the pattern is
[{0}] Copy of {1}



60 Overriding Content Item Fields in Clones

Since we are working with the Translation Relationship, it might make sense to change this pattern to use
the term “translation” rather than “copy”:

x

Cloning [ %] oK
relationshipfsys_CloneTitle Al
bl ove Cancel
ll Help
~Parameters
Mame Yalue
Pattern [0Y Translation of {1} A|

Insetionltern0 |PSESingleHtmIParametersys_lang

Insertionltermn |PSXContentlitermStatus/CONTENTSTATUS TITLE
Insertionltem
Insertionltem3

=

~Description

item {1}. <p> etc. </prex MNote: if the number of ;I
{inserts! in the MessageFormat string does not match

the number of paremeters [after format) giwen to this —
UDF, then it will throw the PiConversionException. -

Figure 30: Modifying the Pattern parameter of sys_CloneTitle UDF from "Copy" to "Translation"

The InsertionItem0 parameter specifies that we will insert the value of the sys lang HTML
parameter into the Pattern, and the InsertionIteml parameter specifies that we will insert the Title
(CONTENTSTATUS.TITLE) of the Owner Content Item.

The final output of this UDF will be something like this: [es-mx] Translation of Title.



Overriding Content Item Fields in Clones 61

Overriding the Community Field

To update the Community, we use the sys_cloneOverrideField UDF.

x

Cloning |24 %] Ok
relationshiprsys_cloneCverrideField Al
W ove Cancel
ll Help
~Parameters
Mame Walue
LItl fesyws_trFieldOwerriderTranslationFieldOwverride xmil ..|

FieldElemMame |Communityld

ParamMame1 sys_contentid

Faramialuel FEXContenttemStatus/CONTENTSTATUS . COM. ..
ParamMame2 sys_lang

Paramialuez PSxSingleHtmIFarametersys_lang

~Description

=

FEest of the parameters are the parameter name-wvalue
pairz that are required fo rthe resource Lo generate
the field walue. -

Figure 31: Default Coniguration of the sys_cloneOverrideField DF for theCommunity in the Translation
Relationship

This UDF queries a Rhythmyx resource for an XML document, and selects one node of this document as
the new value for the field. The Url parameter specifies the resource. In this case the resource we query is
/sys_trFieldOverride/TranslationFieldOverride.xml. This default resource queries the
AUTOTRANSLATION table for Translation configuration data. The following table shows the
mappings of this resource:



62 Overriding Content ltem Fields in Clones

Backend XML
PSX AUTOTRANSLATION.COMMUNITYID TranslationFieldOverride/Entry/Communityld

PSX AUTOTRANSLATION.CONTENTTYPEI | TranslationFieldOverride/Entry/ContentTypeld
D

PSX AUTOTRANSLATION.LOCALE TranslationFieldOverride/Entry/Locale

PSX AUTOTRANSLATION.WORKFLOWID TranslationFieldOverride/Entry/Workflowld

The sys_contentid (PSXContentltemStatus/CONTENTSTATUS.CONTENTID) and sys_lang
(PSXSingleHtmlParameter/sys_lang) parameters are used in the WHERE table on the Selector for the

query:

Variable Op | Value Bool
CONTENTSTATUS.CONTENTID = PSXSingleHTMLParameter/contentid AND
PSXAUTOTRANSLATION.LOCALE = PSXSingleHTMLParameter/sys lang

This UDF definition will extract the value of the Communityld element from the resulting XML document
and insert that value as the Community ID for the new Content Item.

Overrides in Action

Now let us look at these overrides in action. Our implementation includes the following:

= anes-mx Locale

= a Central American Marketing Community
= a Brief Content Type

= an Article Workflow

=  An Auto Translation configuration for the Brief Content Type in the Central American
Marketing Community:

Edit Configuration

Content Type : Locale Brief : Mexican Spanish
Cormnmunity: |Central Armerican Marketingj
Content Type: Brief
workflow: ISpanish Tranalﬂtiunj
Locale: Mexican Spanish

Save Cancel |

Figure 32: Example Auto Translation Configuration for the Brief ContentType in the Central American
Markeing Community



Overriding Content Item Fields in Clones 63

= In the Article Workflow, the Approve Transition from QA to Public includes the
sys_createTranslation Workflow Action:

Workflows > Article > QA > Approve

ID: 3

*#Label: I,.&,pprgve

Description: I

*Trigger: I.-":"\F:IF:II’D'\-"E
Frorn-State: QA [3)
To-5tate: IPUblIC vI
Approval Type: |Specified Humherj
*#*npprovalzs Required: I-I [Required if Appraval Type is zet to "Specified
Mumber")
Commment: IOptiDnEﬂ j
Cefault Transition: I [ vI
workflow Action: |5y5_u::reateTransIﬂtiDns j
Transition Role: I—,-f:"-,“ roles — j
SavE |
Transition Roles
Mew Transition Role
Role (ID)

Mo entries found.

Transition Notifications
Mew Transition Motification
Subject (Motfication State Role Additional Recipient CC List
i )] Recipient Type List
Mo entries found.

Figure 33: Approve Transition configured with the sys_createTranslation Workflow Action



64 Overriding Content Item Fields in Clones

Now, let us create a Brief Content Item:

& | Rhythmyx - - Edit Content - Microsoft Internet Explorer

Ilv

* System . ;
Title: |Lc-rem ipsurn dolor sit arnet |
* Title: |Lorem ipsurn dolor sit amet |
* Start i
Date: [2005-08-02 |
i !3 Edit View Insert Format  Tools Table
XED A MRk EEFEETICIETEIEEEY S T 6
Q%”Normal vl.ﬁ.rial vlSpt v” B I U ABl =|E§E £ | Lo li| x X,
* callout: | Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh
euismod tincidunt vt laoreet dolore magna aliquarn erat wolutpat. T wisi enirn ad roinitn
vetdarr, quis nostmad exercitation ulliar corper suscipit lobortis misl ut aliquip ex ea
corminodo consequat. Duds avtem weleum itfure dolor in hendrerit in wulputate welit esse
Design | Code|
4]
—
Figure 34: Example Brief Content Item
The following graphic shows this Content Item in Content Explorer:
‘B Rhythmy - Content Explorer - Microsoft Intermet Explarer | o [=] JES |
|| Fle Edk wWew Faverites Tosk Hep -
| eoad + > - @ [0 & Brewn Caaravorees (Friswy | Dr B 6 - DB &
| Address 2] berpsilocabiast masaiRhythmyejsys_cimangags. it x| aa ke @
[ Uger @ sdmint
Roles - Acka
Contemt Publishimg Voekflew (”":i:r: r:’_'“ ;
cale ;L5 fngab

(88 Stes 3 - [Content Type

57 Folders [ Lorem ipsum color st 2., Publc Eriaf

e '_:I Cemal nrv-encanf-wkc
3 Maketing 7

5o & My Conent
(- Checked Cut By Me
A inbox
i Outbe
14 Recer:
A Session

= #8 Comemunicy Conkent
- Al

=@ 4l Cortent
- Al
F T T

[ I —

|&] Applet com. percussion. co FSCantertExplorerApple: started [ B ocal iranet r

Figure 35: Example Brief Content Item in Content Explorer



Overriding Content Item Fields in Clones

65

Note the Community, Workflow, and Locale in the Properties of this Content Item.

Content Title
(1o}
Larern ipsum

dalar =it
amet [342)

State(ID)
QALE)

Comnmunity
Default (10]

a Rhythmyx - Lorem ipsum dolor sit amet - Properties - Microsoft InteErnenER

Content Properties

=101 x|

2

Creator Created On Last Modifier Last Modified On
admind Mar 03, 2004 - admini Mar 03, 2004 -
02:39 03:21
Public Checked Dut Assignees[Type]
[ 8 [ ]
%) Ehnot checked Adrnin
out @ )
Work flow Locale
Article (1) US English

Figure 36: Properties of the example Brief Content Item



66 Overriding Content Item Fields in Clones

When we Transition this Content Item to Public, a Translation Item will be created automatically. It will
have the name "[es-mx] Translation of Lorem ipsom dolor sit amet". (Note that the Translation is
automatically added to the same folder at the Owner Content Item; to add it to a different folder, you
would need to write a new Effect for the Translation Relationship that would add it to a different Folder.)

T Rhwthmys - Content Explorer - Microsoft Internct Explorer ;IE.IEI
] Fle Edit View Favorkes  Tods  Help -
| deBack - = - @) [5) 23| DhSearch [ifFaverites CHistory - SR EH - S| 68 &

_]nddzm [ &7 httn-ficalhost-3002 Rythmyssys_co/mainpage.kiml | oee ek ™

Uheer © mdmind

Roles : acd=in

Community | Dafaul
Lacale : 15 Eraglith

Rhythmyx

Percussion Soffwara Comtent Publishing Wokiflow | System

Contert Site Explorar  Help

# - [E5 Stes

= (24 Folders
Fi- 20 Ceritral Aamerican Markst st ot (B las  eref
[Een JMarketing Materials

= viees

=& My Contert:
#- iy Checked Out By Me
i o Irboe
o<k Outbax
4 Recent
*- i Sessian

[ dkk Community Content
- Al

= Al Contert

o Wl
[en . ANy
.
&7 Applet com.pescussion, ox, PSContertExplorerapplet started [ & Localirkranet i

Figure 37: es-mx Translation of the example Content Item

Note that the Community, Workflow, and Locale have changed in the Translation Item:

/3 Rhythmys - [es-me] Translation of Lorem ipsum dolor sit amet - Properties - Micrasolt In - G|ﬂ
Content Properties Bl
Content Tithe (1D) Creator Created On Last Modifier Last Modified On
[es-mx] Translation e ) ¥ o )
of Larer ipsum dolor adrninl . 0’;_'1;””4 adrning Mar 'O"f:'l‘,““
sit amet [346) Y i
State (ID) Public thecked Out Assignees(Type)
N 2 Adrrin
Translate(1) @ rIT‘E_I'n':n". checked out
i Authar
Conrmumnity Work flow Locale
e e Spanizh Translation [4) Mexican Spanizh

Markating (1001)

L]

Figure 38: Properties of the es-mx Translation of the example Content Item



67

CHAPTER 6

Writing Effects

Effects are Rhythmyx server extensions used to extend the Relationship engine. Effects are extensions of
the IPSExtension Java extension. Thus, Effects must follow all of the requirements of Rhythmyx
extensions, including thread safety. (For details about thread safety, see any standard Java reference.)
Effects must implement the IPSEffect interface. To make an Effect available in the system you must
register it. (For details about registering extensions see "Adding a New Java Extension" in the Rhythmyx
Server Administrator online Help.). When registering an Effect, you must select
com.percussion.extension.IPSEffect as the Supported Interface.



68 Writing Effects

Example Effect

The code of the default PSValidateFolder Effect provided by Percussion Software is provided as an
example of an Effect.

/**[ PSValidateFolder.java
] khkkhkkhkhkhkhkhkhkhdhdhdhhkhhhhdhdhdhdhhkhhhhdhddddhhhhhddddkhhhhdddd*d*r*x

*

* COPYRIGHT (c) 2002 by Percussion Software, Inc., Stoneham, MA USA.
* All rights reserved. This material contains unpublished, copyrighted
* work including confidential and proprietary information of

Percussion.
*

Khkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhxkhxkhxkhx* %
******/

package com.percussion.relationship.effect;

import com.percussion.cms.IPSCmsErrors;

import com.percussion.cms.PSCmsException;

import com.percussion.cms.objectstore.IPSComponentProcessor;
import com.percussion.cms.objectstore.IPSRelationshipProcessor;
import com.percussion.cms.objectstore.PSComponentProcessorProxy;
import com.percussion.cms.objectstore.PSComponentSummaries;
import com.percussion.cms.objectstore.PSComponentSummary;
import com.percussion.cms.objectstore.PSDbComponent;

import com.percussion.cms.objectstore.PSKey;

import com.percussion.cms.objectstore.PSProcessorProxy;

import com.percussion.cms.objectstore.PSRelationshipFilter;
import com.percussion.cms.objectstore.PSRelationshipProcessorProxy;
import com.percussion.design.objectstore.PSLocator;

import com.percussion.design.objectstore.PSRelationship;

import com.percussion.design.objectstore.PSRelationshipConfig;
import com.percussion.error.PSException;

import com.percussion.extension.PSExtensionProcessingException;
import com.percussion.extension.PSParameterMismatchException;
import com.percussion.relationship.IPSExecutionContext;

import com.percussion.relationship.PSAttemptResult;

import com.percussion.relationship.PSEffect;

import com.percussion.relationship.PSEffectResult;

import com.percussion.server.IPSRequestContext;

import com.percussion.server.PSRequest;

import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;

import org.w3c.dom.Element;

/**

* This effect is aimed at validating a new folder based on the rules
outlined

* below:



Writing Effects 69

* <p>
* The owner of the relationship must be a folder and the dependent's
name
* must be different (case-insensitive) than the names of all other
children
* of the owner unless it is the exact same objects. A folder does not
allow
* children with duplicate names. If any validation fails, an exception
that
* terminates the processing is thrown. The effect will return
immediately for
* any context except RS _CONSTRUCTION.
* <p>
* This effect does not need any parameters.
*
/
public class PSValidateFolder extends PSEffect
{ /**
* Override the methode in the base class. This effect is meant to be
run
* RS CONSTRUCTION context and hence will return <code>false</codes>
for all
* other contexts.
*/
public void test (Object[] params, IPSRequestContext request,
IPSExecutionContext context, PSEffectResult result)
{

if (!context.isConstruction())

result.setWarning("Illegal Context, expected to be
construction.") ;
return;

PSRelationship originatingRel =
context.getOriginatingRelationship () ;

if (originatingRel == null
|| toriginatingRel.getConfig() .getName () .equals (
PSRelationshipConfig.TYPE FOLDER_ CONTENT) )

result.setWarning(
"The originating relationship is not of type '"
+ PSRelationshipConfig.TYPE FOLDER_ CONTENT
+ lll.ll)’.
return;

}

Set relsProcessed = (Set)m tlRelationshipsProcessed.get () ;
if (relsProcessed==null)
relsProcessed = new HashSet () ;
m_tlRelationshipsProcessed.set (relsProcessed) ;



70 Writing Effects

/*

* Folder validation needs to be done only once
*/

if (relsProcessed.contains (originatingRel) )

{

result.setWarning ("The relationship is already processed") ;
return;

}

try

{

PSLocator depLocator = originatingRel.getDependent () ;
PSLocator ownerLocator = originatingRel.getOwner () ;

validateUniqueDepName (ownerLocator, depLocator, null, request,
result) ;

}

finally

{
}

relsProcessed.add (originatingRel) ;

Validates the supplied dependent with the following rules:

<p>

The dependent's name must be different (case-insensitive) then
the names of all other children of the owner (folder) unless the

* ok k% X

same

* object is already a child of the supplied owner. A folder does not
allow

* children with duplicate names.

*

* @param owner the locator of the owner folder, not
<code>null</codes>.

* @param dependent the locator of the dependent item, not

* <codes>null</codes>.

* @param depName The name (or sys title) of the dependent. It may be

* <code>null</code> or empty in which case it will be looked up
using

* the supplied dependent locator.

* @param request the current request, not <code>null</codes.
* @return <codes>true</code> if validated, <codesfalse</code>
otherwise.
*/
public static boolean validateUniqueDepName (PSLocator owner,
PSLocator dependent, String depName, PSRequest request)
{

if (owner == null)
throw new IllegalArgumentException ("owner may not be null");

if (dependent == null)
throw new IllegalArgumentException ("dependent may not be

null") ;

if (request == null)



Writing Effects 7

throw new IllegalArgumentException ("request may not be null");

PSAttemptResult result = new PSAttemptResult () ;
validateUniqueDepName (owner, dependent, depName, request, result);

return (result.getException() == null);

}

/**
* See {@link validateUniqueDepName (PSLocator, PSLocator, String,
PSRequest) }

* for description.
*

* @param ownerLocator the locator of the owner folder, not

* <code>null</codes>.

* @param depLocator the locator of the dependent item, not

* <codes>null</codes.

* @param depName The name (or sys title) of the dependent. It may be

* <code>null</code> or empty in which case it will be looked up
using

* the supplied dependent locator.

* @param result the result object into which the result of the
validation

* will be set, assume it is not <codes>null</codes.

*

/

private static void validateUniqueDepName (PSLocator ownerLocator,

PSLocator depLocator, String depName, Object request,
PSEffectResult result)

try

IPSRelationshipProcessor relProxy = new
PSRelationshipProcessorProxy (
PSProcessorProxy.PROCTYPE SERVERLOCAL, request) ;

PSRelationshipFilter filter =
filter.setOwner (ownerLocator) ;
PSComponentSummaries children = relProxy.getSummaries (filter,

new PSRelationshipFilter () ;

false);
if (children.isEmpty())
{
result.setSuccess () ;
return;
}
// need to lookup the name if it was not supplied
if (depName == null || depName.trim().length() == 0)
{
PSComponentSummary depSummary = getSummary (depLocator,
request) ;

depName = depSummary.getName () ;

}

Iterator walker = children.iterator();
while (walker.hasNext ())



72

Writing Effects

(meaning the

this

args) ;

}

/**

PSComponentSummary childSummary =

(PSComponentSummary) walker.next () ;

(childSummary.getName () .equalsIgnoreCase (depName) )

/*

* This is only an error if it is not the same item

*

*

*/

if

{

same content id). The revision is not considered for
test.

(childSummary.getCurrentLocator () .getId () !=
depLocator.getId())

PSComponentSummary summary = getSummary (ownerLocator,
request) ;

String parentName = summary.getName () ;

Object[] args =

depName,
parentName,
String.valueOf (depLocator.getId()),
String.valueOf (depLocator.getRevision())
}i
PSCmsException exception = new PSCmsException (
IPSCmsErrors.FOLDER REL ERROR DUPLICATED CHILDNAME,

result.setError (exception) ;
result.setKeys (new PSKey[] { depLocator });

return;

result.setSuccess () ;
catch (PSException ex)

result.setError (ex) ;

* Get the summary information for the supplied locator.

*

*
*
*
*
*
*

@param locator The locator, assume not <code>null</codes.
@param request The current request, assume not <code>null</codes.

@return The summary info, never <code>null</codes.



Writing Effects

73

* @throws PSException if an error occurs while retrieving the
summary info.
*/
private static PSComponentSummary getSummary (
PSLocator locator,
Object request) throws PSException

PSComponentSummary summary = null;

IPSComponentProcessor compProxy =
new PSComponentProcessorProxy (
PSProcessorProxy.PROCTYPE SERVERLOCAL,
request) ;
Element [] summaries =
compProxy . load (

PSDbComponent . getComponentType (PSComponent Summaries.class),

new PSKey[] { locator });
if (summaries == null || summaries.length < 1)

Object[] args =

String.valueOf (locator.getId()),
String.valueOf (locator.getRevision())
}i
throw new PSCmsException (IPSCmsErrors.FAILED GET SUMMARY,
args) ;

}

PSComponentSummaries depSummaries =
new PSComponentSummaries (summaries) ;
summary = (PSComponentSummary)depSummaries.iterator () .next () ;

return summary;

}

//Implementation of the interface method

public void attempt (Object[] params, IPSRequestContext request,
IPSExecutionContext context, PSEffectResult result)
throws PSExtensionProcessingException,

PSParameterMismatchException

{
//Folder validation effect does not do any special processing
result.setSuccess () ;

}

//Implementation of the interface method

public void recover (Object[] params, IPSRequestContext request,
IPSExecutionContext context, PSExtensionProcessingException e,
PSEffectResult result)
throws PSExtensionProcessingException

//Folder validation effect does not need to recover anything
result.setSuccess () ;

/**



74

Writing Effects

* Thread local storage of the processed relationship. This is just
to

* avoid unnecessary processing of the same relationship for each
current

* relationship. We need to validate the originating folder
relationship

* only once not while processing each relationship around the
original

* owner item.

*/

private static ThreadlLocal m tlRelationshipsProcessed = new

ThreadLocal () ;

}



CHAPTER 7

Default Relationships

Percussion Software provides the following default Relationships with Rhythmyx:

= Related Content

= Dependent Related Content
= Translation

=  Dependent Translation

=  New Copy

= Promotable Version

=  Folder Content



76 Default Relationships

Active Assembly

The Active Assembly Relationship creates a simple association between the owner and the dependent,
including Inline Links and Inline Images. User's create an Active Assembly Relationship whenever they
use Active Assembly to associate one Content Item with another.

General Properties
Name - Active Assembly. Non-editable.
Label - Active Assembly. Non-editable.
Category - Active Assembly. Non-editable.
System Properties: (all may be edited)

rs_useownerrevision - Specifies whether to use the owner's revision ID as part of the owner locator
key. Yes. Locked.

rs_usedependentrevision - Specifies whether to use the dependent's revision ID as part of the
dependent locator key. No. Locked.

rs_expirationtime - If this relationship can expire, this property specifies the expiration date/time. If
this relationship cannot expire, this property is set to null. Nu// (relationship cannot expire).

rs_useserverid - Specifies whether to use the server ID (rxserver) for executing effects.. If set to No,
the current user is used instead of the server ID. Yes.

rs_islocaldependency - Specifies whether the Multi-Server Manager should treat the dependent as a
local dependency. (See the Rhythmyx Multi-Server Manager documentation for more
information.) Yes.

rs_skippromotion - Specifies whether to repoint the Relationship to the depended object in a
Promotable Version Relationship when the depended it promoted to Public. If checked, the
Relationship is not repointed. If unchecked, the Relationship is repointed. No

User Properties (all may be edited) User property values are always filled at runtime. Note that any custom
Relationship in the Active Assembly Category must include these User Properties.

sys_slotid - Slot ID in which relationship is used. Norne.

sys_sortrank - Sort rank within Slot. /.

sys_variantid - Variant ID. None.

rs_inlinerelationship - specifies that the Active Assembly Relationship
Cloning Properties (all may be edited)

Allow Cloning - Whether or not relationship may be cloned. Yes.

Locked - Whether local processing can override cloning properties. Yes.

rs_cloneshallow - Whether or not shallow clones of the Relationship may be created. Yes, if activating
Relationship Category is Promotable Version or New Copy, otherwise, no.

rs_clonedeep - Whether or not deep clones of the Relationship may be created. Yes if activating
Relationship Category is Translation; otherwise, No.



Default Relationships

77

Clone Field Overrides None
Request Pre-processing (Pre Exits)
None. Any number may be added.
Result Document Processing (Post Exits)

None. Any number may be added.
Effects

None.



78 Default Relationships

Active Assembly - Mandatory

Slight modification to the Active Assembly Relationship that prevents a Content Item from going Public
unless all descendants related through this Relationship Type are Public, or can go Public. Use this
Relationship when you want to ensure that a Content Item cannot go Public unless the Dependent Content
Item in the Active Assembly is also Public.

General Properties
Name - Active Assembly - Mandatory. Non-Editable.
Label - Active Assembly - Mandatory. Non-Editable.
Category - Active Assembly.
System Properties: (all may be edited)

rs_useownerrevision - Specifies whether to use the owner's revision ID as part of the owner locator
key. Yes. Locked.

rs_usedependentrevision - Specifies whether to use the dependent revision ID as part of the dependent
locator key. No. Locked.

rs_expirationdate - If this relationship can expire, this property specifies the expiration date/time. If
this relationship cannot expire, this property is set to null. Null (relationship cannot expire).

rs_useserverid - Specifies whether to use the server ID (rxserver) for executing effects.. If set to No,
the current user is used instead of the server ID. Yes.

rs_islocaldependency - Specifies whether the Multi-Server Manager should treat the dependent as a
local dependency. (See the Rhythmyx Multi-Server Manager documentation for more
information.) Yes.

rs_skippromotion - Specifies whether to repoint the Relationship to the depended object in a
Promotable Version Relationship when the depended it promoted to Public. If checked, the
Relationship is not repointed. If unchecked, the Relationship is repointed. No

User Properties (all may be edited) User property values are always filled at runtime. Note that any custom
Relationship in the Active Assembly Category must include these User Properties.

sys_slotid - Slot ID in which relationship is used. None.
sys_sortrank - Sort rank within Slot. /.

sys_variantid - Variant ID. None.

Cloning Properties (all may be edited)
Allow Cloning - Whether or not relationship may be cloned. Yes.
Locked - Whether local processing can override cloning properties. Yes.

rs_cloneshallow - Whether or not shallow clones of the Relationship may be created. Yes, if activating
Relationship Category is Promotable Version or New Copy, otherwise, no.

rs_clonedeep - Whether or not deep clones of the Relationship may be created. Yes if activating
Relationship Category is Translation; otherwise, No.



Default Relationships

79

Clone Field Overrides None
Request Pre-processing (Pre Exits)
None. Any number may be added.
Result Document Processing (Post Exits)

None. Any number may be added.
Effects

sys_PublishMandatory: Direction: Down
forceTransition: No
ownerTransitionName: Null
dependentTransitionName: Null

sys_UnpublishMandatory: Direction: Down
forceTransition: No
ownerTransitionName: Null

dependentTransitionName: Null



80 Default Relationships

Folder Content

The Folder Relationship associates a Folder with a Content Item in the Folder. Rhythmyx creates an
instance of this Relationship type whenever a user adds a Content Item to a Folder.

General Properties
Name - Folder Content. Non-editable.
Label - Folder Content. Non-editable.
Category - Folder. Non-editable.
System Properties: (all may be edited)

rs_useownerrevision - Specifies whether to use the owner revision ID as part of the owner locator
key. No. Locked.

rs_usedependentrevision - Specifies whether to use the dependent revision ID as part of the dependent
locator key. No. Locked.

rs_expirationdate - If this relationship can expire, this property specifies the expiration date/time. If
this relationship cannot expire, this property is set to null. Null (relationship cannot expire).

rs_useserverid - Specifies whether to use the server ID (rxserver) for executing effects.. If set to No,
the current user is used instead of the server ID. Yes.

rs_islocaldependency - Specifies whether the Multi-Server Manager should treat the dependent as a
local dependency. (See the Rhythmyx Multi-Server Manager documentation for more
information.) No.

rs_usecommunityfilter - Specifies whether Dependent Content Items available to the Relationship are
filtered based on the Community of the user logged in to the system. Yes. Locked.

rs_skippromotion - Specifies whether to repoint the Relationship to the depended object in a
Promotable Version Relationship when the depended it promoted to Public. If checked, the
Relationship is not repointed. If unchecked, the Relationship is repointed. Yes.

User Properties User property values are always filled at runtime.
None. Any number may be added.
Cloning Properties (all may be edited)
Allow Cloning - Whether or not relationship may be cloned. Yes.
Locked - Whether local processing can override cloning properties. Yes.
rs_cloneshallow - Whether or not shallow clones of Relationships may be created. No.

rs_clonedeep - Whether or not deep clones of Relationships may be created. Yes when Activating
Relationship Name is "Translation - Mandatory"; otherwise, no.

Clone Field Overrides None
Request Pre-processing (Pre-Exits)

None. Any number may be added.



Default Relationships

81

Result Document Processing (Post-Exits)

None. Any number may be added.
Effects
sys_TouchParentFolderEffect: Direction: Down

rxs_NavFolderEffect: Direction: Either Conditions:
PSXSingleHtmlParameter/rxs_disableNavFolderEffect=y



82 Default Relationships

New Copy

A New Copy Relationship creates an association between an owner Content [tem and its clone. The
primary purpose of this Relationship is to ensure that no more than one New Copy clone of a Content Item
exists. Use this Relationship when you want to have a clone of a Content Item that co-exists with the
original Content Item (rather than superseding it when reaching Public, as occurs using the Promotable
Version Relationship). Rhythmyx creates an instances of this Relationship type whenever a user creates a
new Copy of a Content Item (in other words, when the user chooses Create > New Copy from an Action
Menu).

General Properties
Name - New Copy. Non-editable.
Label - New Copy. Non-editable.
Category - New Copy. Non-editable.
System Properties: (all may be edited)

rs_useownerrevision - Specifies whether to use the owner's revision ID as part of the owner locator
key. Yes. Locked.

rs_usedependentrevision - Specifies whether to use the dependent's revision ID as part of the
dependent locator key. No. Locked.

rs_expirationtime - If this relationship can expire, this property specifies the expiration date/time. If
this relationship cannot expire, this property is set to null. Null (relationship cannot expire).

rs_useserverid - Specifies whether to use the server ID (rxserver) for executing effects.. If set to No,
the current user is used instead of the server ID. Yes.

rs_islocaldependency - Specifies whether the Multi-Server Manager should treat the dependent as a
local dependency. (See the Rhythmyx Multi-Server Manager documentation for more
information.) No.

rs_skippromotion - Specifies whether to repoint the Relationship to the depended object in a
Promotable Version Relationship when the depended it promoted to Public. If checked, the
Relationship is not repointed. If unchecked, the Relationship is repointed. No

User Properties User property values are always filled at runtime.
None. Any number may be added.
Cloning Properties (all may be edited)
Allow Cloning - No.
Locked - Whether local processing can override cloning properties. Yes.
rs_cloneshallow - Whether or not shallow clones of relationship may be created. Not applicable.

rs_clonedeep - Whether or not deep clones of relationship may be created. Not applicable.



Default Relationships

Clone Field Overrides

Conditions

Field UDF
sys_title sys_CloneTitle None
Parameters
Name Value
Pattern Copy ($clone_count) of {0}
Insertionltem0 PSXContentltemStatus/
CONTENTSTATUS.TITLE
sys_communityid  sys_Literal None
Parameters
Name Value
Default PSXContentltemStatus/
CONTENTSTATUS.COMMUNIT
YID
overrideParameterName  sys_communityid override
sys_workflowid sys_Literal None

Parameters

Name
Default

overrideParameterName
Request Pre-processing (Pre-Exits)
None. Any number may be added.
Result Document Processing (Post-Exits)

None. Any number may be added.
Effects

sys_AddCloneToFolder

Direction: Down

Value

PSXContentltemStatus/WORKFLO
w

APPS.WORKFLOWAPPID

sys_workflowid override



84 Default Relationships

Promotable Version

A Promotable Version Relationship creates an association between an owner Content Item and its clone,
which specifies that when the clone reaches the public State, the owner is transitioned to the archive State.
Use this Relationship when you want a clone of a Content Item to supersede the original Content [tem
when the clone goes Public. Rhythmyx creates an instance of this Relationship Type when a user chooses
Create > New Version from an Action Menu.

General Properties
Name - Promotable Version. Non-editable.
Label - Promotable Version. Non-editable.
Category - Promotable Version. Non-editable.
System Properties: (all may be edited)

rs_useownerrevision - Specifies whether to use the owner's revision ID as part of the owner locator
key. Yes. Locked.

rs_usedependentrevision - Specifies whether to use the dependent's revision ID as part of the
dependent locator key. No. Locked.

rs_expirationdate - If this relationship can expire, this property specifies the expiration date/time. If
this relationship cannot expire, this property is set to null. Nu/l (relationship cannot expire).

rs_useserverid - Specifies whether to use the server ID (rxserver) for executing effects.. If set to No,
the current user is used instead of the server ID. Yes.

rs_islocaldependency - Specifies whether the Multi-Server Manager should treat the dependent as a
local dependency. (See the Rhythmyx Multi-Server Manager documentation for more
information.) No.

rs_skippromotion - Specifies whether to repoint the Relationship to the depended object in a
Promotable Version Relationship when the depended it promoted to Public. If checked, the
Relationship is not repointed. If unchecked, the Relationship is repointed. No

User Properties User property values are always filled at runtime.
None. Any number may be added.
Cloning Properties (all may be edited)
Allow Cloning - No.
Locked - Whether local processing can override cloning properties. Yes.
rs_cloneshallow - Whether or not shallow clones of the Relationship may be created. Not Applicable.

rs_clonedeep - Whether or not deep clones of the Relationship may be created. Not Applicable.



Default Relationships

85

Clone Field Overrides

Field UDF Conditions
sys_title sys_CloneTitle None
Parameters
Name Value
Pattern PV Copy ($clone_count) of {0}
Insertionltem0 PSXContentItemStatus/
CONTENTSTATUS.TITLE
sys_communityid  sys_Literal None

Parameters

Name Value
pl PSXContentltemStatus/CONTENT

STATUS.COMMUNITYID

sys_workflowid sys_Literal None

Parameters

Name Value
pl PSXContentltemStatus/WORKFLOW

APPS.WORKFLOWAPPID
Request Pre-processing (Pre-Exits)
None. Any number may be added.
Result Document Processing (Post-Exits)

None. Any number may be added.
Effects
sys_Promote
Direction: Up.
transitionName Null
sys_AddCloneToFolder

Direction: Down



86 Default Relationships

Translation

The Translation Relationship associates an owner Content [tem with a clone of itself. When Rhythmyx
clones the owner, it also clones all of its dependents, and they form Translation Relationships with the
owner dependents. Use this Relationship when you want to create a clone that will be translated to
another language and will be published independent of the Owner Content Item.

General Properties
Name - Translation. Non-editable.
Label - Translation. Non-editable.
Category - Translation. Non-editable.
System Properties: (all may be edited)

rs_useownerrevision - Specifies whether to use the owner's revision ID as part of the owner locator
key. Yes. Locked.

rs_usedependentrevision - Specifies whether to use the dependent's revision ID as part of the
dependent locator key. No. Locked.

rs_expirationdate - If this relationship can expire, this property specifies the expiration date/time. If
this relationship cannot expire, this property is set to null. Null (relationship cannot expire).

rs_useserverid - Specifies whether to use the server ID (rxserver) for executing effects.. If set to No,
the current user is used instead of the server ID. Yes.

rs_islocaldependency - Specifies whether the Multi-Server Manager should treat the dependent as a
local dependency. (See the Rhythmyx Multi-Server Manager documentation for more
information.) No.

rs_skippromotion - Specifies whether to repoint the Relationship to the depended object in a
Promotable Version Relationship when the depended it promoted to Public. If checked, the
Relationship is not repointed. If unchecked, the Relationship is repointed. No

User Properties User property values are always filled at runtime.
None. Any number may be added.
Cloning Properties (all may be edited)
Allow Cloning - Whether or not relationship may be cloned. No.
Locked - Whether local processing can override cloning properties. Yes.
rs_cloneshallow - Whether or not shallow clones of the Relationship may be created. Not applicable.

rs_clonedeep - Whether or not deep clones of the Relationship may be created. Not applicable.



Default Relationships

87

Clone Field Overrides

Field
sys_title

sys_communityid

UDF Conditions
sys_CloneTitle None
Parameters

Name Value

Pattern [{0}] Copy of {1}

Insertionltem0 HTMLSingleParameter/sys lang

Insertionltem]1 PSXContentltemStatus/
CONTENTSTATUS.TITLE

sys_CloneFieldOverride None

Parameters

Name Value
Url ../sys_trFieldOverride/

TranslationFieldOverride.xml

FieldElemName Communityld

ParamNamel sys_contentid

ParamValuel PSXContentltemStatus/
CONTENTSTATUS.
CONTENTID

ParamName?2 sys_lang

ParamValue2 HTMLSingleParameter/
sys_lang



88 Default Relationships

Field UDF Conditions
sys_workflowid sys_CloneFieldOverride None
Parameters
Name Value
Url ../sys_trFieldOverride/

TranslationFieldOverride.xml

FieldElemName Workflowld

ParamNamel sys_contentid

ParamValuel PSXContentltemStatus/
CONTENTSTATUS.
CONTENTID

ParamName?2 sys_lang

ParamValue2 HTMLSingleParameter/

sys_lang
sys_lang sys_Literal None
Parameters
Name Value
pl HTMLSingleParameter/sys lang

Request Pre-processing (Pre-Exits)

sys_TranslationConstraint - This Exit runs before creating a new Translation Copy. It prevents
creation of multiple Translation Copies of the owner in the same Language.

Result Document Processing (Post-Exits)

None. Any number may be added.
Effects

None.



Default Relationships 89

Translation - Mandatory

Slight modification to the Translation Relationship that prevents a Content Item from going Public unless
all descendants related through this Relationship Type are Public, or can go Public. Use his Relationship
when you want to create a clone of a Content Item that will be translated and you want to prevent the
original Content Item from going Public until the clone is also ready to go Public.

General Properties
Name - Translation - Mandatory. Non-editable.
Label - Translation - Mandatory. Non-editable.
Category - Translation. Non-editable.
System Properties: (all may be edited)

rs_useownerrevision - Specifies whether to use the owner's revision ID as part of the owner locator
key. Yes. Locked.

rs_usedependentrevision - Specifies whether to use the dependent's revision ID as part of the
dependent locator key. No. Locked.

rs_expirationdate - If this relationship can expire, this property specifies the expiration date/time. If
this relationship cannot expire, this property is set to null. Null (relationship cannot expire).

rs_useserverid - Specifies whether to use the server ID (rxserver) for executing effects.. If set to No,
the current user is used instead of the server ID. Yes.

rs_islocaldependency - Specifies whether the Multi-Server Manager should treat the dependent as a
local dependency. (See the Rhythmyx Multi-Server Manager documentation for more
information.) No.

rs_skippromotion - Specifies whether to repoint the Relationship to the depended object in a
Promotable Version Relationship when the depended it promoted to Public. If checked, the
Relationship is not repointed. If unchecked, the Relationship is repointed. No

User Properties User property values are always filled at runtime.
None. Any number may be added.
Cloning Properties (all may be edited)
Allow Cloning - Whether or not relationship may be cloned. Yes.
Locked - Whether local processing can override cloning properties. Yes.
rs_cloneshallow - Whether or not shallow clones of the Relationship may be created. No.

rs_clonedeep - Whether or not deep clones of the Relationship may be created. Yes if the activating
Relationship Category is Promotable Version, otherwise, no.



90 Default Relationships

Clone Field Overrides

Field UDF Conditions
sys_title sys_CloneTitle None
Parameters
Name Value
Pattern [{0}] Copy of {1}

Insertionltem0 HTMLSingleParameter/sys lang
Insertionltem]1 PSXContentltemStatus/
CONTENTSTATUS.TITLE

sys_communityid  sys_CloneFieldOverride None
Parameters

Name Value
Url ../sys_trFieldOverride/

TranslationFieldOverride.xml

FieldElemName Communityld

ParamNamel sys_contentid

ParamValuel PSXContentltemStatus/
CONTENTSTATUS.
CONTENTID

ParamName?2 sys_lang

ParamValue2 HTMLSingleParameter/
sys_lang



Default Relationships

Field UDF Conditions
sys_workflowid sys_CloneFieldOverride None
Parameters
Name Value
Url ../sys_trFieldOverride/

TranslationFieldOverride.xml

FieldElemName Workflowld

ParamNamel sys_contentid

ParamValuel PSXContentltemStatus/
CONTENTSTATUS.
CONTENTID

ParamName?2 sys_lang

ParamValue2 HTMLSingleParameter/

sys_lang
sys_lang sys_Literal None
Parameters
Name Value
pl HTMLSingleParameter/sys lang

Request Pre-processing (Pre-Exits)

sys_TranslationConstraint - This Exit runs before creating a new Translation Copy. It prevents
creation of multiple Translation Copies of the owner in the same Language.

Additional pre-exits may be added.
Result Document Processing (Post-Exits)

None. Any number may be added.
Effects
sys_PublishMandatory: Direction: Up
forceTransition: No
ownerTransitionName: Null
dependentTransitionName: Null

sys_UnpublishMandatory: Direction: Up



92

Default Relationships

forceTransition: No
ownerTransitionName: Null

dependentTransitionName: Null



93

CHAPTER 8

Default Effects

Percussion Software provides the following default Effects with Rhythmyx:

sys_AddCloneToFolder (on page 96)

sys_isCloneEXxists (on page 97)

sys_Notify (on page 98)

sys_Promote (on page 99)

sys_PublishMandatory (on page 100)
sys_TouchParentFolderEffect (on page 103)
sys_UnpublishMandatory (see "sys PublishMandatory" on page 100)
sys_Validate (on page 105)

sys_ValidateFolder (on page 106)

rxs_NavFolderEffect (on page 94)

rxs_NavFolderCache (see "rxs_NavFolderEffect" on page 94)



94 Default Effects

rxs_NavFolderEffect

This effect is used in Rhythmyx internal implementations.



Default Effects 95

rxs_NavFolderCache

This effect is used in Rhythmyx internal implementations.



96 Default Effects

sys _AddCloneToFolder

This Effect associates a new clone of a Content Item with the Folder or Folders in which the Owner in the
Relationship resides. The Effect runs when:

= The context is Relationship creation;
= The request includes the HTML parameter sys_folderid, with a value that is not null and not
empty (if the request includes multiple values for this parameter, the clone will be added to
each specified Folder); and
= The Relationship that is being processed is the Relationship that originally created the clone.
(This requirement ensures that Effect will only be processed once in the life of the
Relationship.)
This Effect is assigned to Relationships that allow users to create clones directly in the Content Explorer
interface, such as the New Copy and Promotable Version Relationships.

Note that the Effect does not check whether the clone is already associated with any of the specified
Folders.



Default Effects 97

sys_isCloneExists

This Effect prevents cloning of a Translation Relationship if a Translation Relationship already exists to a
Content Item in the target Locale.



98 Default Effects

sys_Notify

Generates a Notification to all assignees for items that match the parameters of the Effect.

Parameters

Name Description Required?
workflowid The ID of the Workflow for which to generate the Notification Yes

stateid The ID of the Workflow State for which to generate the Notification Yes
transitionid The ID of the Transition for which to generate the Notification Yes

username The username for which to generate the Notification Yes



Default Effects 99

sys_Promote

When the Content [tem enters a Public State the first time, it replaces the other Content Item in the
Relationship. To execute the replacement:

= Transitions the original Content Item, using either the Transition specified in the
transitionName parameter or the default Transition. This Transition should move the original
Content Item to an Archive State.

= Updates all Relationships that specified the original Content Item as the Dependent to specify
the newly-promoted Content Item as the Dependent.

= Removes all Clonable Relationships from the original Content Item

= Updates all other Relationships that specified the original Content Item as the Owner to
specify the newly-promoted Content Item as the Owner.

Parameters
Name Description Required?
transitionName Internal name (value of the Trigger field of the Edit Transition page) of the No

Transition to use to Transition the Content Item to another State. If no
value is provided for this parameter, the first Transition (alphabetically by
the value of the Trigger field) in the State for which the value of the
Default property is "yes" is used.



100 Default Effects

sys_PublishMandatory

This Effect is used in processing mandatory Relationships. It prevents Transition of the Content Item that
activated the Effect to a Public State unless the other Content Item in the Relationship is already in a
Public State.

If the value of the forceTransition parameter is "yes", and either a Transition for which the value of the
Trigger ficld matches the value of the appropriate TransitionName parameter or a Default Transition is
specified from the current State of the associated Content Item to the Public State of that Content Item's
Workflow, the associated Content Item will be Transitioned to the Public State along with the original
Content Item. If the associated Content Item cannot be Transitioned to a Public State, Rhythmyx
generates an error and the original Content Item is not allowed to make the Transition. The following
flowchart illustrates the processing of this Effect:



Default Effects 101

Transition to
Public

Run
sys_PublishMandatory
Effect

Relationzhips to other

False-

Content ltem?

True

Other Content l[tems

True

Fublic?

False

forceTransition Yes

Specified Transition
available?

M

Default
Transition Lo
Public?

Mer

Mo Transition;
Display error message
to user

Allow Transition o
Public

i

Transition
Associated I
Content [tems

voo ]

Figure 39: Processing of the sys _PublishMandatory Effect



102 Default Effects

Parameters
Name Description Required?
forceTransition Boolean flag ("yes" or "no") that specifies whether the Content Item Yes
associated in the Relationship will be forced to make the Transition, if the
Transition is possible.
If the value of this parameter is "no" and the associated Content Item is
already in a Public State, the Transition of the original Content Item fails.
ownerTransitionName Internal name (value of the Trigger field of the Edit Transition page) of the No

Transition to use to Transition the associated Content Item to another
State if that Content Item is the Owner in the Relationship. If no value is
provided for this parameter, the first Transition (alphabetically by the
value of the Trigger field) in the State for which the value of the Default
property is "yes" is used.

dependentTransitionName Internal name (value of the Trigger field of the Edit Transition page) of the No
Transition to use to Transition the associated Content Item to another
State if that Content Item is the Dependent in the Relationship. If no
value is provided for this parameter, the first Transition (alphabetically by
the value of the Trigger field) in the State for which the value of the
Default property is "yes" is used.



Default Effects 103

sys_TouchParentFolderEffect

This Effect runs when a Content Item is added to or removed from a Folder. The Effect touches all other
Content Items in the Folder (and in any Subfolders) that are in a Public or Quick Edit State, updating the
Last Modified Date to the current date. Touching these Content Items ensures that they will be re-
published during the next Incremental Publish run.



104 Default Effects

sys_UnpublishMandatory

This Effect is used in processing mandatory Relationships. It prevents Transition of the Content Item that
activated the Effect from a Public State unless the other Content Item in the Relationship is already in a
non-Public State.

If the value of the forceTransition parameter is "yes", and either a Transition for which the value of the
Trigger ficld matches the value of the appropriate TransitionName parameter or a Default Transition is
specified from the current State of the associated Content Item to a non-Public State of that Content Item's
Workflow, the associated Content Item will be Transitioned to the Public State along with the original
Content Item. If the associated Content Item cannot be Transitioned to a non-Public State, Rhythmyx
generates an error and the original Content Item is not allowed to make the Transition.

Parameters
Name Description Required?
forceTransition Boolean flag ("yes" or "no") that specifies whether the Content Item Yes
associated in the Relationship will be forced to make the Transition, if the
Transition is possible.
If the value of this parameter is "no" and the associated Content Item is
already in a non-Public State, the Transition of the original Content Item
fails.
ownerTransitionName Internal name (value of the Trigger field of the Edit Transition page) of the

Transition to use to Transition the associated Content Item to another
State if that Content Item is the Owner in the Relationship. If no value is
provided for this parameter, the first Transition (alphabetically by the
value of the Trigger field) in the State for which the value of the Default
property is "yes" is used.

dependentTransitionName Internal name (value of the Trigger field of the Edit Transition page) of the No
Transition to use to Transition the associated Content Item to another
State if that Content Item is the Dependent in the Relationship. If no
value is provided for this parameter, the first Transition (alphabetically by
the value of the Trigger field) in the State for which the value of the
Default property is "yes" is used.



Default Effects 105

sys Validate

Use this Effect to perform validation on Rhythmyx objects in Relationships. Use conditional statements
for the Effect to perform the validation.

You must define conditions inverse to the condition you want to validate. For example, if you want to
implement a Content Item validation (the request fails if the owner is not a Content Item), you would you
would make this Effect the first Effect in the Relationship and define the following conditional statement
for the Effect:

PSXContentItemStatus/CONTENTSTATUS.OBJECTTYPE != 1
(The objecttypeid of Content Items is "1".)

Parameters
Name Description Required?
errorMessage The text Rhythmyx displays if the object fails the validation. This text No

can be internationalized.



106 Default Effects

sys_ValidateFolder

NOTE: This Effect is deprecated in Rhythmyx Version 5.7. New installations of Rhythmyx 5.7 and later
do not include a registration for this Effect. During upgrade from earlier versions to Rhythmyx Version
5.7, the Effect will be flagged as deprecated in the Extension registration.

This Effect validates that the Owner in the Relationship is a Folder and that the Dependent in the
Relationship, if it is a Folder, has a name unique among all child Folders of the Owner. If the object fails
this validation, Rhythmyx displays an error message.

Parameters

None



107

IndeXx

A

Active Assembly * 82
Active Assembly - Mandatory * 84
Advanced Example
Translations « 12, 53
Advanced Reconfiguration

Conditional Cloning Based on the Locale of a

Translation * 53
C

Cloning * 4, 5

Cloning Panel * 23, 29

Components of Rhythmyx Relationships * 4
Creating Relationship Types * 37, 38

D

Default Effects ¢ 99

Default Relationships * 81

Defining Conditions for Exits, Effects, and
Cloning Processes * 30, 32, 34, 39, 40, 45, 60

Deleting Relationship Types * 37, 44

E

Effects 4, 6

Effects Panel « 23, 33

Example Effect « 15, 74

Example Implementation of Clone Field
Overrides * 61

Example of Relationships in Action * 7

Exit Panels « 23, 31

Exits* 4,5

F

Folder Content * 86
Forcing Items to Public « 10

Implementing Clone Field Overrides * 60
Implementing Relationships in Rhythmyx « 3

M
Maintaining Relationship Types * 37

Mandatory Relationships and Workflows ¢ 19
Modifying Relationship Configurations * 47
Modifying Relationship Types ¢ 37, 41

N
New Copy * 88
o)

Overrides in Action * 66

Overriding Content Item Fields in Clones ¢ 39,
59

Overriding the Community Field « 64

Overriding the sys_title Field * 62

P

Planning Clone Field Overrides * 46
Promotable Relationship Processing ¢ 5, 16
Promotable Version * 90

Properties * 4

R

Relationship Editor « 21
Relationship Processing ¢ 15
Relationship Properties Panel * 24
Relationships

Components * 4
Rule Editor « 30, 32, 34, 35, 39, 40
rxs_NavFolderCache « 101
rxs_NavFolderEffect « 99, 100

S

Simple Reconfiguration
Adding Forced Transition to a Mandatory

Relationship « 48

sys AddCloneToFolder « 99, 102

sys_isCloneExists * 99, 103

sys_Notify « 99, 104

sys_Promote * 99, 105

sys PublishMandatory * 19, 99, 106

sys_TouchParentFolderEffect « 99, 109

sys_UnpublishMandatory ¢ 110

sys Validate * 99, 111

sys_ValidateFolder « 99, 112

T

Translation * 92
Translation - Mandatory * 95

U
User Properties Panel « 23, 27



108 Index

Using the Translation - Mandatory Relationship
to Create the French Translation Content Item
*13

Using the Translation Relationship to Create the
Japanese Translation Content Item 14

w
Writing Effects « 73



	Implementing Relationships in Rhythmyx
	Components of Rhythmyx Relationships
	Properties
	Cloning
	Exits
	Effects

	Example of Relationships in Action
	Forcing Items to Public
	Advanced Example:  Translations

	Relationship Processing
	Promotable Relationship Processing

	Mandatory Relationships and Workflows

	Relationship Editor
	Relationship Properties Panel
	User Properties Panel
	Cloning Panel
	Exit Panels
	Effects Panel
	Rule Editor

	Maintaining Relationship Types
	Creating Relationship Types
	Modifying Relationship Types
	Deleting Relationship Types
	Defining Conditions for Exits, Effects, and Cloning Processes
	Planning Clone Field Overrides

	Modifying Relationship Configurations
	Simple Reconfiguration:  Adding Forced Transition to a Mandatory Relationship
	Advanced Reconfiguration:  Conditional Cloning Based on the Locale of a Translation

	Overriding Content Item Fields in Clones
	Implementing Clone Field Overrides
	Example Implementation of Clone Field Overrides
	Overriding the sys_title Field
	Overriding the Community Field
	Overrides in Action


	Writing Effects
	Example Effect

	Default Relationships
	Active Assembly
	Active Assembly - Mandatory
	Folder Content
	New Copy
	Promotable Version
	Translation
	Translation - Mandatory

	Default Effects
	rxs_NavFolderEffect
	rxs_NavFolderCache
	sys_AddCloneToFolder
	sys_isCloneExists
	sys_Notify
	sys_Promote
	sys_PublishMandatory
	sys_TouchParentFolderEffect
	sys_UnpublishMandatory
	sys_Validate
	sys_ValidateFolder

	Index

