
 Printed on 17 October, 2005

Rhythmyx

Implementing
Database

Publishing
Version 5.7

Copyright and Licensing Statement
All intellectual property rights in the SOFTWARE and associated user documentation, implementation
documentation, and reference documentation are owned by Percussion Software or its suppliers and are
protected by United States and Canadian copyright laws, other applicable copyright laws, and
international treaty provisions. Percussion Software retains all rights, title, and interest not expressly
grated. You may either (a) make one (1) copy of the SOFTWARE solely for backup or archival purposes
or (b) transfer the SOFTWARE to a single hard disk provided you keep the original solely for backup or
archival purposes. You must reproduce and include the copyright notice on any copy made. You may not
copy the user documentation accompanying the SOFTWARE.

The information in Rhythmyx documentation is subject to change without notice and does not represent a
commitment on the part of Percussion Software, Inc. This document describes proprietary trade secrets of
Percussion Software, Inc. Licensees of this document must acknowledge the proprietary claims of
Percussion Software, Inc., in advance of receiving this document or any software to which it refers, and
must agree to hold the trade secrets in confidence for the sole use of Percussion Software, Inc.

Copyright © 1999-2005 Percussion Software.
All rights reserved

Licenses and Source Code
Rhythmyx uses Mozilla's JavaScript C API. See http://www.mozilla.org/source.html
(http://www.mozilla.org/source.html) for the source code. In addition, see the Mozilla Public License
(http://www.mozilla.org/source.html).

Netscape Public License

Apache Software License

IBM Public License

Lesser GNU Public License

Other Copyrights
The Rhythmyx installation application was developed using InstallShield, which is a licensed and
copyrighted by InstallShield Software Corporation.

The Sprinta JDBC driver is licensed and copyrighted by I-NET Software Corporation.

The Sentry Spellingchecker Engine Software Development Kit is licensed and copyrighted by Wintertree
Software.

The Java™ 2 Runtime Environment is licensed and copyrighted by Sun Microsystems, Inc.

The Oracle JDBC driver is licensed and copyrighted by Oracle Corporation.

The Sybase JDBC driver is licensed and copyrighted by Sybase, Inc.

The AS/400 driver is licensed and copyrighted by International Business Machines Corporation.

The Ephox EditLive! for Java DHTML editor is licensed and copyrighted by Ephox, Inc.

This product includes software developed by CDS Networks, Inc.

The software contains proprietary information of Percussion Software; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information and
intellectual property contained herein is confidential between Percussion Software and the client and
remains the exclusive property of Percussion Software. If you find any problems in the documentation,
please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of Percussion Software.

AuthorIT™ is a trademark of Optical Systems Corporation Ltd.

Microsoft Word, Microsoft Office, Windows®, Window 95™, Window 98™, Windows NT®and MS-
DOS™ are trademarks of the Microsoft Corporation.

This document was created using AuthorIT™, Total Document Creation (see AuthorIT Home -
http://www.author-it.com).

Percussion Software
600 Unicorn Park Drive
Woburn, MA 01801 U.S.A
 781.438.9900
Internet E-Mail: technical_support@percussion.com
Website: http://www.percussion.com

 i

Contents

Prerequisites 3

Publishing to a Database 5
Overview of the Database Publisher Plugin ...6
Steps for Database Publishing ..7

Database Publishing Reference and Guide 9
Parent Table HTML Markup Rules ..10
Child Table HTML Markup ...13
sys_DatabasePublisher..14
Specifying the Repetition of XML Columns ..15
Encoding Data ..16
Table Definition Builder...17

Defining Target Database Connectivity Properties ...18
Selecting Tables and Creating the Table Definition ..22
Modifying the Table Definition File for Sequential Columns...23

Displaying a Database Logging View ..25
Database Publisher DTDs...26
Setting Up Tomcat Data Sources..27
Unpublishing with the Database Publisher ...29
Database Publishing Error Messages..31

Example: Publishing the News Content Type to a Database 33
News Repository Tables and Content Editor..34
XRDNEWS Table ..36
XRDCONTACT Table ...37
News Target Database ..38
CONTENT Table..39
CONTENT_CONTACT Table...40
Procedure for Building the News Publisher..41
Marking Up HTML Files for the News Target Database ...42
Creating the News Database Assembler Application ...44

Mapping the News content and contentContact resources ..45
Specifying Column Repetition in News Resources ...51
Creating the News Database Table Definition ..52
Registering the Database Assembly Variant ...55

Developing Variants, Resources, and Slots ..56
Variant Assembler Applications ...58
Building the News Content List Application..60
Registering News Publishing Components...62
Configuring Previews of Dynamic Content..64

Adding Code that Accesses the Dynamic Information..65
Configuring Your Web Application Server to Connect to Your Database......................................71

ii Contents

Setting up the Dynamic Preview Site ..72
Registering a Dynamic Preview Context and Location Scheme ...74
Registering a Dynamic Preview Location Scheme in the Publish Context75

Defining Publishing Variable Values for the Preview Site...77
Setting Up the Dynamic Preview Edition..78

Creating the Dynamic Preview Variant ..79
Setting Up the Dynamic Preview Content List..83
Testing the Dynamic Preview..86
Troubleshooting...91

Index 95

 3

Prerequisites
It is recommended that you:

� Install the archive file:
<Rhythmyx root>/Samples/DeprecatedSamples.pda
This file includes sample Rhythmyx components and applications which facilitate database
publishing and are referenced in this document. For help installing the archive file, see the
Installing Rhythmyx document.

NOTE: Do not install FastForward if you plan to install the archive file; FastForward
components and archive components may conflict with one another.

� Implement filesystem publishing before you attempt to implement database publishing. The
procedure for database publishing builds on the procedure for filesystem publishing.

� Read all chapters in this document. To successfully perform database publishing, you must
understand the steps and methods described in Chapters One and Two and how to apply them
to an example as described in Chapter Three.

C H A P T E R 1

 5

Publishing to a Database
The Database Publisher lets you to publish both raw content and formatted content into any database
schema. This allows Rhythmyx to support any delivery environment. For example, a Rhythmyx
environment could simultaneously support content delivery through Net/IIS, BEA Weblogic Portal, or
iPlanet/Apache Web Server, and custom built database driven delivery applications. The Database
Publisher simplifies this by letting you map raw data or formatted content snippets to any database schema
using the Rhythmyx mapper. Mapping between content fields and target database columns does not have
to be one to one; after retrieving content from the Rhythmyx repository, the Database Publisher can
assemble content fields into formatted variants and insert them into columns in the target database.

For example, portals are common in today’s Web delivery environment, either custom built or from
companies such as BEA, Plumtree or Yahoo! Each portal has its own unique schema to which the
Database Publisher can publish. Each schema is a mixture of raw content (for formatting by the portal),
metadata (for maintaining structure and indexing in the portal), formatted content snippets that the portal
developer can simply place within a page, or a finished document (such as a PDF) that can then be
downloaded from the site. The delivery application can then act upon and process the content as it
normally would using its own local datastore without having to integrate with another database for content
it needs.

Install the Database Publisher by selecting a Custom Publisher setup type and the Database Publisher
feature when you install the Rhythmyx suite. (See the Installing Rhythmyx document for detailed
installation instructions.) Rhythmyx installs the Database Publisher plugin into
<Rhythmyxroot>/AppServer/webapps/RxServices/WEB-
INF/lib/rxdbpublisher.jar. The Database Publisher plugin publishes all content lists that have a
deliverytype parameter of database.

C H A P T E R 2

6 Rhythmyx Implementing Database Publishing

Overview of the Database Publisher Plugin
Database publishing runs as part of Rhythmyx’s Publishing system, using the same building blocks,
including Sites, Editions, and Content Lists. To use the Database Publisher, you must create a special Data
Publishing XML variant in the Assembly system for each type of content to be published to a database.
Unlike standard file-based Publishing, which can publish any type of Assembly variant, the Database
Publisher can only publish these data variants, which are XML only, include RDBMS schema
information, and conform to sys_Database Publisher.dtd. To publish a formatted content variant, you must
insert it within the proper nodes of the database publishing XML variant. A typical XML variant for
database publishing defines a parent table and one or more child tables. It includes a <datapublisher> node
that defines the structure of the tables in <tabledefset> nodes. The child tables include <foreignkey>
elements that define the fields for matching them with the parent table.

Within the <datapublisher> node, the XML variant includes a <tabledefset> node defining the table
schema we are publishing to and a <tabledataset> node defining the table data to be published. The
<tabledataset> contains a <table> node for the parent table data. The <table> node includes one or more
<row> nodes that contain a <column> element for each column in the parent table. The Database
Publisher inserts or updates these rows into the target database. The <column> element can have an
@encoding attribute that tells the Database Publisher in what encoding format it receives the content. The
Database Publisher decodes the encoded content before storing it in the database.

For each child table, the <row> node also includes a <childtable> element with <row> and <column>
elements. The Database Publisher updates, inserts or deletes rows in the child table according to the
<row> specifications.

 Chapter 2 Publishing to a Database 7

Steps for Database Publishing
Before you configure database publishing, you must know which parent and child tables in your target
database you will be using and their structure, including their primary and foreign keys. If you are
publishing to parent-child tables, you must define a primary key relationship between the tables. You
must also know whether you want to publish the data in each column as raw content or a formatted
variant. If you want to publish the content as a formatted variant, you must know whether you want to set
the @encoding attribute to escaped or base64 (see Encoding Data (on page 16) for more information).
Most often, non text data is base64 encoded.

Once you have identified the data you want to publish to your database and its format, complete the
following steps to set up database publishing. These steps include creating the HTML file for each table
that Rhythmyx's XSpLit will transform into an XML file and an XSL stylesheet, and using the Table
Definition Builder to build your table definition XML with these tables. See Example: Publishing the
News Content Type to a Database (on page 33) for a detailed example that follows these steps. The steps
below reference specific topics in this example as well as other topics in this document and other
Rhythmyx documents that provide additional reference and information.

To set up Rhythmyx to publish to a database, include the following steps when you set up Publishing in
Rhythmyx:

1 In addition to following the standard procedure in "Registering a Publisher" in the
Implementing Publishing in Rhythmyx document:

� Define any of the optional parameters that your Database Publisher requires. See
"Descriptions of Publisher Parameters" in the Implementing Publishing in Rhythmyx
document for descriptions of optional parameters.

� Follow the steps in "Implementing a User-Created Plug-in" in the Implementing
Publishing in Rhythmyx document to register the plugin. Enter the Name database
and the Value com.percussion.publisher.client.PSDatabasePublisherHandler.

2 In addition to following the standard procedure for creating a Rhythmyx content assembler
application (see "Creating Assembly Applications" in the Implementing Content Editors and
Content Assembly document), create a Database Assembler application:

a) Create an HTML file for each parent table and child table to be published.

See Parent Table HTML Markup Rules and Child Table HTML Markup (on page 13) for
more information.

See Marking Up HTML Files for the News Target Database (on page 42) for an
example.

b) Drag and drop the files on the Rhythmyx Workbench to create query resources. Add the
sys_DatabasePublisher exit to the parent table resource. This exit looks up the table
definition and produces an output document in the correct format for the database.

See sys_DatabasePublisher (on page 14) and the topics "To Create a Query from an
HTML Page" in the Rhythmyx CMS Online Help for information.

8 Rhythmyx Implementing Database Publishing

See Creating the News Database Application (see "Creating the News Database
Assembler Application" on page 44) for an example.

c) For each resource, attach tables, define the Selector, and complete the Mapper.

See the topic “Defining How Data Maps to the Resource” in the Rhythmyx CMS Online
Help for information.

See Mapping the News content and contentContact Resources (on page 45) for an
example.

d) If the database has child tables that return multiple rows but does not specify <rowid>
elements, specify the repetition of XML columns.

See Specifying the Repetition of XML Columns (on page 15) for more information.

See Specifying Column Repetition in News Resources (on page 51) for an example.

e) If your assembler will publish any content that should be Base64 encoded, add a Base64
encoding UDF to the mapper in your XML resource. The UDF converts formatted content
to Base64 strings to prevent parsing errors.

For help determining which fields should be Base64 encoded and which Base64 encoding
UDF to use, see Encoding Data (on page 16).

f) Use the Table Definition Builder to create a table definition file for the database. You will
add the table definition XML file to the assembler application as a static file (copy it into
the database assembler application folder). To see the definitions of attributes and
elements in the Table Definition file that you create, see <Rhythmyx
Root>/DTD/sys_Tabledef.dtd.

See Table Definition Builder for information.

See Creating the News Database Table Definition (on page 52) for an example.

g) Register the Database Assembly Variant.

See Registering Database Assembly Variant for an example.

3 If you are publishing Variants (rather than raw data) to the body fields(s) in your target
database table:

a) Develop resource files, Variants, and Slots if they do not already exist.
See Developing Variants, Resource, and Slots for an example.

b) Create Variant assembler applications in the Rhythmyx Workbench if they do not already
exist.
See Variant Assembler Applications (on page 58) for an example.

4 Build a content list application. Map the deliverytype parameter to database, the Name you
assigned to the plugin parameter when registering the Database Publisher plugin.

See the section “Creating a Content List Application” in the document Implementing
Publishing in Rhythmyx for more information.

See Building the News Content List Application (on page 60) for an example.

5 Register the Publisher, Site, Edition and Content Lists in the Content Explorer.
See Registering News Publishing Components for an example.

6 Set up Data Sources in your server.

 9

Database Publishing Reference
and Guide
This chapter describes configuration options and procedures for some of the steps listed in Steps for
Database Publishing (on page 7). Read the topics in this chapter to understand how you must configure
the components of Database Publishing and the choices that you want to make to create the optimal setup
for your system.

To see a step by step example that guides you through the procedure outlined in Steps for Database
Publishing (on page 7), see the chapter Example: Publishing the News Content Type to Database (see
"Example: Publishing the News Content Type to a Database" on page 33).

C H A P T E R 3

10 Rhythmyx Implementing Database Publishing

Parent Table HTML Markup Rules
You must create an HTML file for the main table (or parent table) in your target database (and all sub-
tables associated with it, or child tables (see "Child Table HTML Markup" on page 13). Drag and drop the
HTML files onto the Rhythmyx Workbench to create query resources that you can map to the correct
backend information for content assembly

The following is a sample parent table HTML markup.
<html>
 <head>
 <title>CONTENT: parent table markup</title>
 </head>
 <body>
 <!-- The complete table definition, required in parent tables. -->

 <!-- The database definitions. @drivertype is always required.
 See the explanation below for the requirements regarding the
other attributes -->

 <!-- The table definition. -->

 <!-- Include all child tables, optional -->

 </body>
</html>

Each group of span tags in the markup includes HTML elements that form part of the table definition:

� psx-tabledefset - You must include the psx-tabledefset element to define the table definition.
The @lookup attribute is the location of the table definition file, usually created by the table
definition builder. Normally this file is stored in the application directory of the content
assembler.

� psx-database - You must include the psx-database element to provide database information.
The @drivertype attribute holds the driver type used (for example: jtds:sqlserver or
oracle:thin). The other three attributes differ depending on the database type and whether you
are publishing to a single instance or multiple instances of the database.

 Chapter 3 Database Publishing Reference and Guide 11

Oracle and DB2, publishing to single or multiple instances of the database:

� The @resourceName attribute holds the name of the resource (It must match the
Resource name and the ResourceParams name in the Publisher server configuration
file, server.xml.

� The @origin attribute holds the name of the target database schema. If @origin exists,
the @dbname attribute is optional and Rhythmyx ignores it.

� If @origin does not exist, @dbname is required and Rhythmyx uses its value for the
database schema.

� If the user or username parameter in the Publisher server configuration file,
server.xml, is not the same as the schema name, use the @origin attribute.

The attributes take the values of attributes of the Resource element in the context.xml file.

Example Resource element for Oracle:
<Resource name="jdbc/TEST2ORACLE" auth="Container"
type="javax.sql.DataSource" username="TEST2ORACLE"
password="PASSWORD"
driverClassName="oracle.jdbc.driver.OracleDriver="oracle:thin"
 url="jdbc:oracle:thin:@localhost:1521:UTF8" DatabaseName=""/>

Example Resource element for DB2:
<Resource name="jdbc/dbpubtarget" auth="Container"
type="javax.sql.DataSource"
driver="db2" driverClassName="com.ibm.db2.jcc.DB2Driver"
url="jdbc:db2://localhost:50000/GBRX56FF;user=db2admin;
password=db2admin"
maxActive="8" maxIdle="4"/>

 In the following context.xml Resource element for SQL Server or Sybase, Rhythmyx is
publishing to multiple instances of the database:

� The @dbname attribute is required and holds the target database name. The
@resourceName attribute holds the resource name from server.xml. The @origin
attribute remains blank.

The following is the Resource element in the sample context.xml for SQL Server. The
Resource name is “jdbc/test1”.
<Resource name="jdbc/test1" auth="Container"
type="javax.sql.DataSource" username="sa" password="demo"
driverClassName="com.inet.tds.TdsDriver" driver="TdsDriver"
url="jdbc:inetdae7:parmenion.percussion.com?database=test1"/>

The following is the Resource element in the sample context.xml for Sybase. The
Resource name is "jdbc/dbpubtarget".
<Resource name="jdbc/dbpubtarget" auth="Container"
type="javax.sql.DataSource"
driverClassName="com.sybase.jdbc2.jdbc.SybDriver"
driver="sybase" url="jdbc:sybase:Tds:162.138.53.222:5010"/>

12 Rhythmyx Implementing Database Publishing

� psx-table - You must include a psx-table element to define the table in which the data is
published. The @name attribute is the table name or the table alias.

� row sub-element - The row sub-element defines the table columns and child tables.
� 1 to n columnName elements - The names of the columnName elements must be the actual

table column names or aliases. The @isEmptyNull attribute indicates whether nulls are
allowed. Set it to yes (default) or no. The @encoding attribute specifies the type of
encoding. Its possible values are:
� text (default)

� escaped

� base64

Leave the value as text if the content you are publishing is raw data (metadata or any other
information that is left as an XML fragment). Set the value to base64 or escaped if the
content you are publishing is a formatted variant (this prevents the Publisher from confusing
format characters). For more information on deciding the type of encoding, see Encoding
Data (on page 16).

� 0 to n child elements - Each child element includes 0 to n child table Name elements. The
names of the child table Name elements do not have to be the actual child table names, but
they must be unique within the table definition. The @lookup attribute specifies the location
of the child table.

NOTE: For any aliases that you provide, you must include the real name in an aliasmap in the
sys_DatabasePublisher exit. You need to provide aliases only when the column names are not legal XML
names. For more information, see the topic “sys_DatabasePublisher” in the Rhythmyx CMS Online Help.

 Chapter 3 Database Publishing Reference and Guide 13

Child Table HTML Markup
You must create an HTML file for each child table (sub-table) to be published along with the parent table
(main table) in your target database. Drag and drop the HTML files onto the Rhythmyx Workbench to
create query resources.

The markup rules for child tables are the same as those for parent tables; however the table definition psx-
tabledefset and the database definition psx-database are not required. If these elements are included, the
assembler ignores them.

The following is a sample child table HTML markup.
<html>
 <head>
 <title>CONTENT_CONTACT: child table markup</title>
 </head>
 <body>
 <!-- The table definition. -->

 </body>
</html>

14 Rhythmyx Implementing Database Publishing

sys_DatabasePublisher
Context:
Java/global/percussion/contentassembler/

Description:
This exit is required on each database publisher parent table resource. This exit looks up the table
definition specified in the parent table mapper and produces the XML file that conforms to the
sys_DatabasePublisher.dtd.

Class name:
com.percussion.cas.PSDatabasePublisher

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description
action java.lang.String Action performed on the database:

r - (default) Inserts the row. Deletes it first if it already exists.

n - Inserts the row if it does not already exist.

u - Updates the row if it already exists.
d - Deletes the row if it already exists. Use d for unpublishing.

aliasmap java.lang.String Optional. Static XML file in the assembler application that contains table
and column name mappings to be used if the table or column names
contain characters that are not allowed in XML elements. The exit creates
XML files that use the aliases, and then reinserts the real names in the
output. Must conform to: ../dtd/aliasmap.dtd

 Chapter 3 Database Publishing Reference and Guide 15

Specifying the Repetition of XML Columns
In child tables that return multiple rows, columns may repeat within rows instead of appearing in separate
rows. To prevent this, in these child tables, change the definition of each column in the Page Datatank.

NOTE: This step is not necessary if the XML encloses column names within <rowid> elements.

To change the definition of each column:

1 Open the Page Datatank for the XML resource.

2 Right-click on each column name and select 1 Element can appear exactly once in the drop
list.

3 Click [OK].

16 Rhythmyx Implementing Database Publishing

Encoding Data
The Database Publisher requires formatted content to be encoded after it retrieves it from the source
database so that it does not incorrectly interpret formatting characters. It decodes the content before
inserting it into the target database. The @encoding attribute in the columnName element specifies how
the Database Publisher should encode each column of data from the source table.

The possible encoding types for Database Publishing are text (default), escaped (this represents “no-
escaping” encoding), and base64.

Use text for unformatted text, and escaped or base64 for formatted variants. The encoding attribute
tells the Database Publisher how it must decode the received content before storing it into the target
database. escaped formatting is easier to implement and allows you to view the variant during
processing to determine if it is correct. base64 requires more processing steps and does not allow you to
view the variant during processing. However, in cases where the formatting fields and characters on the
document would require very detailed xsl, it is simpler for you to use the base64 encoding UDF. When
you specify base64 encoding, you must map the target database body field to the output of a base64
encoding UDF. Rhythmyx provides several UDFs for this purpose:

� sys_Base64Encoder - Use this UDF if you are copying raw (unformatted) body data from the
source database into the target database. Also use this to copy binary data, such as an image or
PDF.

� sys_GetBase64EncodedBody - Use this UDF if you are copying the information between the
<BODY> tags of a formatted Variant from the source database to the target database.

� sys_GetBase64Encoded - Use this UDF if you are copying an entire Variant (including
<HTML>, <HEAD> and <BODY> tags) from the source database to a body field in the target
database.

For more information, see the topics "sys_Base64Encoder," "sys_GetBase64EncodedBody," and
“sys_GetBase64Encoded” in the Rhythmyx CMS Online Help.

Use the following guidelines to determine which type of encoding to use:

� use text for non-formatted text, such as metadata;
� use escaped for a formatted variant that comes from a single column in the source table and

includes text with some inline markup;
� use base64 for:

� Variants assembled from several columns in the source table;

� Variants that include binary files (including PDFs);

� Variants that may or may not be formatted (that is, if you are uncertain whether to use
escaped or base64, use base64).

 Chapter 3 Database Publishing Reference and Guide 17

Table Definition Builder
The Database Publisher refers to a table definition file, which supplies the schema of the target database.
You can create a Table Definition file using the Table Definition Builder supplied by Rhythmyx. Open
the Table Definition Builder dialog by running <Rhythmyxroot>/AppServer/bin/runtd.bat
(for Windows) or <Rhythmyxroot>/AppServer/bin/runTd.sh (for Unix). The runtd script is
installed with the Database Publisher.

If you are using the Microsoft SQLServer 2000 JDBC driver or the Sprinta JDBC driver:
The runtd.bat makes references to the following CLASSPATH entries, for use of the Microsoft
SQLServer 2000 JDBC driver:

� ../common/lib/msbase.jar

� ../common/lib/mssqlserver.jar

� ../common/lib/msutil.jar
Since this JDBC driver is not redistributable, you must download it from:
http://download.microsoft.com/download/SQLSVR2000/Install/2.2.0022/NT5X
P/EN-US/setup.exe for Windows

or:
http://download.microsoft.com/download/SQLSVR2000/Install/2.2.0022/UNIX
/EN-US/mssqlserver.tar for Unix

and then manually copy the 3 JAR files to the <Rhythmyxroot>/AppServer/common/lib.

Similarly, to use the Sprinta JDBC driver, you must copy the sprinta2000.jar file from the
/<Rhythmyxroot>/jdbc/sprinta folder to the
/<Rhythmyxroot>/AppServer/common/lib folder (this requires a license code). In addition, add
the following CLASSPATH entry: ../common/lib/Sprinta2000.jar
to the runTd.bat file immediately in front of the class definition entry:
com.percussion.tablefactory.tools.PSTDToolDialog.

18 Rhythmyx Implementing Database Publishing

You must insert a space between the CLASSPATH entry and the class definition. For example:
%EXECJAVA% -classpath ../webapps/RxServices/WEB-
INF/lib/rxtablefactory.jar;../webapps/RxServices/WEB-
INF/lib/rxclient.jar;../common/lib/xmlParserAPIs.jar;../webapps/RxServi
ces/WEB-INF/lib/xercesImpl.jar;../common/endorsed/xmlParserAPIs.jar;
../common/endorsed/xercesImpl.jar;../common/lib/jtds.jar;../common/lib/
classes12.jar;../common/lib/sybase.jar;../common/lib/msbase.jar;../comm
on/lib/mssqlserver.jar;../common/lib/msutil.jar;../webapps/RxServices/W
EB-INF/lib/saxon.jar;../common/lib/Sprinta2000.jar
com.percussion.tablefactory.tools.PSTDToolDialog

NOTE for Sprinta users: The Sprinta license is only available and licensed for Rhythmyx Servers licensed
for SQL Server access. If you want to run the Database Publisher on another machine, either use the
Microsoft Driver or obtain another Sprinta license.

Defining Target Database Connectivity Properties
The Table Definition Builder must connect to the target database before you can define the target schema.
To connect to the target database, the Table Definition Builder uses connectivity properties that you
provide.

To define target database connectivity properties:

1 Open the Table Definition Builder. Click the Connection tab if it is not selected.

Figure 1: Table Definition Builder, Connection Tab

2 In Database Server, enter the name or URL of the target database server. Required.

3 In Database Type enter a database type or choose one from the drop list. The drop list includes
all currently supported database types.

 Chapter 3 Database Publishing Reference and Guide 19

4 In Driver, enter a driver or choose one from the drop list. The drop list includes all currently
supported drivers. Required.

5 In Driver Class, enter a driver class or choose one from the drop list. The drop list includes all
currently supported driver classes. Required.

6 In Database Name, enter the name of the target database.

7 If the database type supports schemas, in Database Schema, enter the target database schema.

8 In User Id, enter the name of the user who has access to the target database.

9 In Password, enter the password associated with the User Id.

10 To test the connection information, click [Test].

� If the connection works, the tool displays the dialog:

Figure 2: Successful Database Connection

� If the connection fails, the tool displays an Error dialog. (You cannot save a
connection that fails.):

Figure 3: Database Connection Failure

11 After you confirm that the connection works, click the DBMS Builder tab to select target
database tables and create the target table definition file.

The following tables provide examples of the information required to connect to different database types.

20 Rhythmyx Implementing Database Publishing

for Tomcat 4.1.27 and later
Pa

ss
w

or
d

de
m

o

de
m

o

de
m

o

de
m

o

de
m

o

U
se

r
ID

sa

sa

sa

sa

sa

D
at

ab
as

e
Sc

he
m

a

N
/A

N
/A

R
X

_E
X

A
M

PL
ES

N
/A

N
/A

D
at

ab
as

e
N

am
e

db
pu

bt
ar

ge
t

db
pu

bt
ar

ge
t

db
pu

bt
ar

ge
t

db
pu

bt
ar

ge
t

N
/A

D
riv

er
 C

la
ss

ne
t.s

ou
rc

ef
or

ge
.jt

ds
.jd

bc
.D

riv
er

co
m

.m
ic

ro
so

ft.
jd

bc
.sq

ls
er

ve
r.

SQ
LS

er
ve

rD
riv

er

or
ac

le
.jd

bc
.d

riv
er

.O
ra

cl
eD

riv
er

co
m

.sy
ba

se
.jd

bc
2.

jd
bc

.S
yb

D
riv

er

C
O

M
.ib

m
.d

b2
.jd

bc
.a

pp
.

D
B

2D
riv

er

D
riv

er

jtd
s:

sq
ls

er
ve

r

sq
ls

er
ve

r

or
ac

le
:

th
in

sy
ba

se

db
2

D
B

 T
yp

e

jT
D

S

M
SS

Q
L

O
ra

cl
e:

th
in

SY
B

A
SE

D
B

2

D
at

ab
as

e
Se

rv
er

//l
oc

al
ho

st
:1

43
3

//l
oc

al
ho

st
:1

43
3

@
lo

ca
lh

os
t:1

52
1:

U
TF

8 Td
s:

lo
ca

lh
os

t:5
00

0

SA
M

PL
E

(d
at

ab
as

e
na

m
e

as
 sp

ec
ifi

ed
 in

th

e
C

lie
nt

C

on
fig

ur
at

io
n

A
ss

is
ta

nt
)

 Chapter 3 Database Publishing Reference and Guide 21

for versions of Tomcat prior to 4.1.27:
Pa

ss
w

or
d

<b
la

nk
>

tig
er

<b
la

nk
>

us
er

U
se

r
ID

sa

sc
ot

t

sa

sa
m

pl
e

D
at

ab
as

e
Sc

he
m

a

N
/A

R
X

_E
X

A
M

PL
ES

N
/A

N
/A

D
at

ab
as

e
N

am
e

rx
_e

xa
m

pl
es

N
/A

rx
_e

xa
m

pl
es

N
/A

D
riv

er
 C

la
ss

co
m

.m
ic

ro
so

ft.
jd

bc
.sq

ls
er

ve
r.

SQ
LS

er
ve

rD
riv

er

or
ac

le
.jd

bc
.d

riv
er

.O
ra

cl
eD

riv
er

co
m

.sy
ba

se
.jd

bc
2.

jd
bc

.S
yb

D
riv

er

C
O

M
.ib

m
.d

b2
.jd

bc
.a

pp
.

D
B

2D
riv

er

D
riv

er

sq
ls

er
ve

r

O
ra

cl
e:

th
in

sy
ba

se

db
2

D
B

Ty

pe

M
SS

Q
L

O
R

A
C

LE

SY
B

A
SE

D
B

2

D
at

ab
as

e
Se

rv
er

//l
oc

al
ho

st
:1

43
3

@
lo

ca
lh

os
t:1

52
1:

or

cl

Td
s:

db
se

rv
er

:5
00

0

SA
M

PL
E

(d
at

ab
as

e
na

m
e

as

sp
ec

ifi
ed

 in
 th

e
C

lie
nt

C

on
fig

ur
at

io
n

A
ss

is
ta

nt
)

22 Rhythmyx Implementing Database Publishing

Selecting Tables and Creating the Table Definition
You select target database tables from the tables cataloged using the connection specified in the
Connection tab. Therefore, you can only select database tables if your target database connection is valid.

To select target database tables:

1 Define target database connectivity properties (see "Defining Target Database Connectivity
Properties" on page 18). Click the DBMS Builder tab.

2 To list all tables cataloged with the database connection specified in the Connection tab, click
[Catalog]. If your connection is not valid, the tool displays an error. If your connection is
valid the dialog lists all tables cataloged with the database connection.

Figure 4: Table Definition Builder, DBMS Builder Tab

3 Click the checkboxes beside the table names to include the tables in your output schema.
Click [All] to check all of the tables. Click [None] to uncheck all of the tables. To select
specific tables, check them individually.

4 To save your output table schema to a table definition file, click [Save]. If you have not
selected any tables, the tool returns an error dialog.

 Chapter 3 Database Publishing Reference and Guide 23

If you have selected tables, the tool displays a Save dialog.

Figure 5: Save Dialog

5 Navigate to any directory and enter a File name. If you have not yet created your assembler
application, move the table definition file into its directory after you create it.

6 Leave Files of type as XML Files. The tool always saves to an .xml file that conforms to
sys_Tabledef.dtd in <Rhythmyx>/DTD/sys_DatabasePublisher.dtd.

7 Click [Save]. If your connection is valid, the tool saves your file.

Modifying the Table Definition File for Sequential Columns
If the table(s) defined in your table definition file has sequential columns, you must add a <sequence>
tag inside the <columndef> tag to avoid a key violation error.

In Oracle, the value in the <sequence> tag must be the name of the sequence used to obtain the value of
the column. In other databases (SQL Server, Solaris, DB2) the value in the <sequence> tag can be any
string.

If the row action is replace (“r”), the database server performs an update if the row exists, and an insert if
it does not exist. An update requires a valid key value. The server cannot obtain the value of sequential
columns; if your primary key contains sequential columns, you must add an update key (if an update key
does not already exist). The update key should not contain any sequential columns.

NOTE: The sys_Tabledef.dtd specifies that keys and index definitions must be defined in your
table definition file in the order: Primary Key, Foreign Key, Update Key, Index Definitions.

24 Rhythmyx Implementing Database Publishing

Example:

If a table has the primary key column ID, the Table Definition Builder creates the following column
definition for ID in the table definition file:

<columndef action=”c” name=”ID”>
 <jdbctype>INTEGER</jdbctype>
 <allowsnull>no</allowsnull>
</columndef>

If ID is a sequential column, you must manually edit its column definition in the table definition file and
add a <sequence> tag:

<columndef action=”c” name=”ID”>
 <jdbctype>INTEGER</jdbctype>
 <allowsnull>no</allowsnull>
 <sequence>ID</sequence>
</columndef>

If the table already exists and you want to change the action to replace “r”, you must have an update key.
If the table does not already have an update key and you cannot use an existing field as an update key, you
must add one to the table:

<primarykey action=”r”>
 <name>ID</name>
</primarykey>
<updatekey action=”r”>
 <name>CONTENTID</name>
</updatekey>

See tabledefset.xml example (see "Creating the News Database Table Definition" on page 52) for an
example of a complete table definition file created by the Table Definition Builder.

 Chapter 3 Database Publishing Reference and Guide 25

Displaying a Database Logging View
After filesystem Publishing in Rhythmyx, the Publication Detail Map displays links to each page on your
Web site and links to the corresponding content items as assembled by Rhythmyx. Since the Database
Publisher does not create a separate file for each published item, the links in the Filename column in the
Publication Details Map link to the publication log, which contains all item data that was published to the
target database for one content list. The CMS Link column in the Publication Detail Map displays links
to assembled items as it does for filesystem Publishing. Your entry in the Publishing Root Location field in
the Edit Site Properties page specifies what the Publication Detail Map displays as a header above the log
file names.

To specify the location that the Publication Details Map displays above log file names:

1 Set the Publishing Root Location in the Edit Site Properties page to
<server>:<port>/<database>/ or another appropriate description for the location of
the publishing tree. You must end the Publishing Root Location with a forward slash. In the
example below, the Publishing Root Location is tell:1433/rx_examples/.

Figure 6: Publication Details Map

NOTE: There is one log file per content list, so the same log file name may display repeatedly in the
Filename column when a single content list includes several items in the CMS Link column.

26 Rhythmyx Implementing Database Publishing

Database Publisher DTDs
The sys_DatabasePublisher.dtd and the aliasmap.dtd for the Database Publisher are installed to
<Rhythmyx>/DTD if your installation code includes Database Publishing.

� sys_DatabasePublisher.dtd - specifies the format for content items delivered to the Database
Publisher plugin; its main elements are:
� <tabledefset> - defines the table schema used for publishing items; its structure is

specified in sys_Tabledef.dtd, which is included in sys_DatabasePublisher.dtd;

� <tabledataset> - contains the table data that is published; its structure is specified in
sys_Tabledata.dtd, which is included in sys_DatabasePublisher.dtd;

� aliasmap.dtd - specifies the format for aliasmaps provided to the sys_DatabasePublisher exit.

 Chapter 3 Database Publishing Reference and Guide 27

Setting Up Tomcat Data Sources
Each content item delivered from the Publisher for database publishing is an XML file conforming to the
sys_DatabasePublisher.dtd (see "Database Publisher DTDs" on page 26). This XML file contains content
as well as information for the publishing connection and target database. The Database Publisher looks up
connections through JNDI. Therefore you must register all Data Sources in the server you are using.

To set up Tomcat Data Sources:

1 Shut down Tomcat (if it is running).

2 Open <Rhythmyxroot>\AppServer\webapps\RxServices\META-
INF\context.xml in a simple text editor.

3 Configure the <Resource> element to point to your RDBMS.

a) Uncomment the <Resource> element for your RDMS (Commented <Resource> elements
are provided for both the JTDS drive for Microsoft SQL Server and for Oracle.)

b) In the url attribute of the <Resource> element, modify the connect string to point to your
RDBMS.

c) Modify the username and password to the credentials required to access your RDBMS.
If you use the JTDS driver, the username and password are part of the connect string in
the url attribute. If you use any other RDBMS, the username and password are separate
attributes.

d) You can add other attributes to this element. For details about the attributes you can add,
see http://jakarta.apache.org/commons/dbcp/configuration.html.

4 Save your changes to context.xml.

5 Restart your Tomcat server.
To test your configuration, open a browser and enter the following URL:

http://host:port/RxServices/jnditest.jsp
Where

host is the name of the machine where your Rhythmyx server resides; and

port is the port on which your application server listens (9980 by default).
For example:

http://localhost:9980/RxServices.jnditest.jsp

28 Rhythmyx Implementing Database Publishing

If your data source is configured correctly, Tomcat will return a message similar to the following
screenshot:

 Chapter 3 Database Publishing Reference and Guide 29

Unpublishing with the Database Publisher
To unpublish with the Database Publisher, the sys_DatabasePublisher exit on your assembler
application must have an action parameter set to d. You can use the same assembler application for
publishing and unpublishing if you insert an HTML parameter in the action parameter’s Value field.

To set up a database content assembler to do both publishing and unpublishing:

1 Set the action in the sys_DatabasePublisher exit (see "sys_DatabasePublisher" on
page 14) to an HTML parameter instead of r.

Figure 7: Mapping the sys_DatabasePublisher exit

2 In the content list registration, add the HTML parameter name to the end of the URL. Set it
equal to d to unpublish. (You may set it to r to publish.)

30 Rhythmyx Implementing Database Publishing

Example unpublishing content list URL:
/Rhythmyx/xrd_casGeneric/contentlist_database.xml?sys_variantid
=329&sys_dbaction=d

3 When you set the sys_DatabasePublisher action parameter to sys_dbaction instead of a
value, you must explicitly pass the parameter to your content list application in the
sys_MakeAbsLinkSecure or sys_MakeAbsLinkSecureEx exit.

Figure 8: sys_dbaction parameter added to sys_MakeAbsLinkSecureEx

If you do not pass sys_dbaction through sys_MakeAbsLinkSecure or
sys_MakeAbsLinkSecureEx, sys_DatabasePublisher is never passed its value, and the value
defaults to r.

 Chapter 3 Database Publishing Reference and Guide 31

Database Publishing Error Messages
1 NameNotFoundException

Unexpected error:
Unexpected Exception in javax.naming.NameNotFoundException - Name
jdbc is not bound in this Context
javax.naming.NameNotFoundException: Name jdbc is not bound in
this Context at
org.apache.naming.NamingContext.lookup(NamingContext.java:811)

Meaning: DB Name in server.xml for resource does not match name in mapper for
resourceName.

2 NamingException

Meaning: driverclassname or url incorrect in content list application.

3 jdbcTableFactoryException - cannot process

Meaning: Target table does not contain a primary key or columns in tableDef.xml do not
match column names mapped in assembly application (case sensitive).

4 jdbcTableFactoryException - column definition

Meaning: Column names defined in tableDef.xml do not match the table names in the
assembly application mapping.

32 Rhythmyx Implementing Database Publishing

5 IllegalArgumentException - redirect not supported

Meaning: Link between Query Resource and page (XSL) broken.

6 PSJdbcTableFactoryException

Meaning: Column length not big enough (possibly of wrong type) to accommodate length of
data being inserted or "Elements can appear exactly once" not set in DTD.

7 Exception from service object: Publisher plugin

Meaning: When registering Publisher the parameter database and its value
com.percussion.publisher.client.PSDatabasePublisherHandler missing or entered incorrectly.

8 Unexpected Exception in javax.naming.NamingException - Problem creating connection
Unexpected error:
Unexpected Exception in javax.naming.NamingException - Problem
creating connection: Cannot create JDBC driver of
javax.naming.NamingException: Problem creating connection: Cannot
create JDBC driver of class 'oracle.jdbc.driver.OracleDriver' for
connect URL 'null'
class 'oracle.jdbc.driver.OracleDriver' for connect URL 'null'

Meaning: Username (name) not defined properly in server.xml.

 33

Example: Publishing the News
Content Type to a Database
The following example shows how to create the assembler for publishing a News content type to a target
database. You can use this example as a model for database publishing using any server.

This example publishes content in several formats:

� content metadata as raw data;
� a content abstract as rich text data;
� body content as a PDF;
� body content as an HTML fragment.

For details about how to use the tools and applications in this example, see the previous chapter, Database
Publishing Reference and Guide (on page 9).

C H A P T E R 4

34 Rhythmyx Implementing Database Publishing

News Repository Tables and Content Editor
The repository (source database) tables that store the News content in Rhythmyx are the user-created
XRDNEWS content table, the user-created XRDCONTACT contact metadata table, and the Rhythmyx
CONTENTSTATUS table. For detailed information about these tables, see XRDNEWS Table (on page
36), XRDCONTACT Table (on page 37), and the topic “CONTENTSTATUS” in the Rhythmyx CMS
Online Help.

Figure 9: News and Content Repository Tables

 Chapter 4 Example: Publishing the News Content Type to a Database 35

The following graphic shows the News content editor:

Figure 10: News Content Editor

36 Rhythmyx Implementing Database Publishing

XRDNEWS Table
This table stores content for the News content type.

Name Type Parameters Allows null values
CONTENTID (primary key) INT 4 no

REVISIONID (primary key) INT 4 no

DISPLAYTITLE NVARCHAR 100 yes

SUBTITLE NVARCHAR 100 yes

TITLE NVARCHAR 100 yes

PROMOTION NVARCHAR 512 yes

PRODUCT NVARCHAR 100 yes

BODY TEXT 16 yes

CATEGORY INT 4 yes

SUBCATEGORY INT 4 yes

ABSTRACT NVARCHAR 512 yes

 Chapter 4 Example: Publishing the News Content Type to a Database 37

XRDCONTACT Table
This table stores contact information.

Name Type Parameters Allows null values
SYSID (primary key) INT 4 no

CONTENTID (primary
key)

INT 4 no

REVISIONID (primary
key)

INT 4 no

SORTRANK INT 4 no

CONTACTNAME NVARCHAR 100 yes

DESCRIPTION NVARCHAR 255 yes

COMPANY NVARCHAR 30 yes

PHONE NVARCHAR 30 yes

FAX NVARCHAR 30 yes

EMAIL NVARCHAR 100 yes

URL NVARCHAR 255 yes

38 Rhythmyx Implementing Database Publishing

News Target Database
The target database will use two database tables: CONTENT and CONTENT_CONTACT. CONTENT is
the parent table and CONTENT_CONTACT is its child table. CONTENT_CONTACT is associated with
CONTENT by the key column ID. The CONTENT table holds the content body HTML and PDF variants
and content metadata. The CONTENT_CONTACT table holds contact information related to the content.

If you publish to a parent/child table structure as in this example (the CONTENT table is the parent and
the CONTENT_CONTACT table is the child table), you must specify a relationship. The example uses
the ID column in both tables to specify the relationship. The relationship used is stored in the
<foreignkey> element in the table definition file (see "Creating the News Database Table Definition" on
page 52).

Figure 11: CONTENT and CONTENT_CONTACT Tables

This example will publish content, content metadata and related contact information to the target database.

The example assumes:

� the News content editor and source database are already built and available;

� the database server (for the Rhythmyx repository and target database) is MS SQL;

� the Rhythmyx Publisher was installed with its standard servlet runner Tomcat.

 Chapter 4 Example: Publishing the News Content Type to a Database 39

CONTENT Table
This table stores content body variants and metadata.

Name Type Parameters Allows
null
values

Description

ID INT 4 no Primary key. Stores the
CONTENTSTATUS.CONTEN
TIDcolumn as raw data.

VERSION INT 4 yes Stores the
CONTENTSTATUS.CURREN
TREVISION column as raw
data.

AUTHOR NVARCHAR 50 yes Stores the
CONTENTSTATUS.CONTEN
TCREATEDBY column as raw
data.

LOCKER NVARCHAR 50 yes Stores the
CONTENTSTATUS.CONTEN
TCHECKOUTUSERNAME
column as raw data.

CREATED DATETIME 8 no Stores the
CONTENTSTATUS.CONTEN
TCREATEDDATE column as
raw data.

MODIFIED DATETIME 8 no Stores the
CONTENTSTATUS.CONTEN
TLASTMODIFIEDDATE
column as raw data.

ABSTRACT NTEXT 16 no Stores the
XRDNEWS.ABSTRACT
column as an HTML fragment.

BODY_HTML NTEXT 16 no Stores the XRDNEWS.BODY
column as an HTML page.

BODY_PDF BINARY 50 no Stores the XRDNEWS.BODY
column as a PDF.

40 Rhythmyx Implementing Database Publishing

CONTENT_CONTACT Table
This table stores contact information related to content in the CONTENT table. It is related to the
CONTENT table by the key column ID.

Name Type Parameters Allows
null
values

Description

ID INT 4 no Primary key field that
associates
CONTENT_CONTACT table
to CONTENT table by
matching CONTENT.ID field.

CONTACTID INT 4 no Primary key that stores
XRDCONTACT.SYSID field
as raw data

NAME NVARCHAR 50 yes Stores
XRDCONTACT.CONTACTN
AME field as raw data.

PHONE NVARCHAR 50 yes Stores
XRDCONTACT.PHONE field
as raw data.

EMAIL NVARCHAR 50 yes Stores
XRDCONTACT.EMAIL field
as raw data.

 Chapter 4 Example: Publishing the News Content Type to a Database 41

Procedure for Building the News Publisher
The following steps outline the procedure for building the News Publisher.

1 Build the assembler for publishing content, content metadata and related contacts to the target
database

a) Mark up HTML files for each target parent and child table (see "Marking Up HTML
Files for the News Target Database" on page 42).

b) Drag and drop the marked up HTML files onto the Workbench and attach the
sys_DatabasePublisher exit (see "sys_DatabasePublisher" on page 14) to the parent table.

c) For each resource, attach tables, define the Selector, and map the application resources
(see "Mapping the News content and contentContact resources" on page 45).

d) Specify the repetition of columns in the resources (see "Specifying Column Repetition in
News Resources" on page 51).

e) Attach sys_GetBase64EncodedBody and sys_Base64Encoder as UDFs to your content
resource.

f) Create the table definition file (see "Creating the News Database Table Definition" on
page 52).and copy it into the xrd_casGeneric directory as a static resource to the database
assembler application

g) Register the Database Assembly Variant.

2 Build the assemblers for creating formatted Variants.

a) Build resources, Slots and Variants.

b) Build Variant assembler applications (see "Variant Assembler Applications" on page
58).

3 Build the content list application to publish items to the database (see "Building the News
Content List Application" on page 60).

4 Register the Publisher, Site, Edition and Content Lists in the Content Explorer.

5 Set Up Tomcat Data Sources (see "Setting Up Tomcat Data Sources" on page 27).

42 Rhythmyx Implementing Database Publishing

Marking Up HTML Files for the News Target
Database
Create HTML markup files for the CONTENT and CONTENT_CONTACT tables to use as source files in
the assembler application.

Sample HTML markup file for CONTENT (the parent table):
<html>
 <head>
 <title>CONTENT: parent table markup</title>
 </head>
 <body>
 <!-- The complete table definition, required in parent tables. -->

 <!-- The database definitions, required in parent tables. -->

 <!-- The table definition. -->

 <!-- Include all child tables, optional -->

 </body>
</html>

The XML for the CONTENT table includes the required tabledefset and database elements that store the
table definition and the database name, driver type, resource name, and origin. It includes a table element
that stores the table name and a row element that stores all of the columns in the CONTENT table: ID,
VERSION, AUTHOR, LOCKER, CREATED, MODIFIED, ABSTRACT, BODY_HTML, and
BODY_PDF. The XML includes @encoding parameters for the ABSTRACT, BODY_HTML, and
BODY_PDF columns because they do not use the default encoding of text (they use escaping and
base64 instead). The row element also includes a children element that stores the child database table,
contentContact.

Sample HTML markup file for CONTENT_CONTACT (the child table):
<html>
 <head>
 <title>CONTENT_CONTACT: child table markup</title>

 Chapter 4 Example: Publishing the News Content Type to a Database 43

 </head>
 <body>
 <!-- The table definition. -->

 </body>
</html>

Because the CONTENT_CONTACT table is a child table, it does not require tabledefset and database
elements. It includes a table element that stores the table name, and the columns CONTACTID, NAME,
PHONE and EMAIL.

For explanations of the elements and attributes in these tables, see Parent Table HTML Markup Rules.

44 Rhythmyx Implementing Database Publishing

Creating the News Database Assembler
Application
Drag and drop the two HTML markup files onto an empty application in the Workbench. XSpLit
converts them into the content and contentContact resources as shown in the graphic below. To render
the XML page correctly, delete the created stylesheets and add the default stylesheet from the menu option
insert > page.

Then attach the sys_DatabasePublisher exit (see "sys_DatabasePublisher" on page 14) to the content
resource. In this exit, use the default action replace ("r") and no aliasmap. Save it as xrd_casGeneric.

Figure 12: News Resource

Next, populate the application with the required backend table, selectors, and pagers, and map it (see
"Mapping the News content and contentContact resources" on page 45).

 Chapter 4 Example: Publishing the News Content Type to a Database 45

Mapping the News content and contentContact resources

Mapper for content resource:
Map the content table definition and the contentContact child table as internal lookup requests. Provide
target database and connection information needed by the Database Publisher as literals.

The lookup for the table definition specifies the resource tabledefset.xml. You created this table definition
with the Table Definition Builder (see "Creating the News Database Table Definition" on page 52).

For information about using the Mapper, see the section “Rhythmyx Application Programming Interface”
in the Rhythmyx CMS Online Help.

Figure 13: Content Resource Mapper

46 Rhythmyx Implementing Database Publishing

C

om
m

en
ts

Th
e

U
R

L
us

ed
 b

y
th

e
sy

s_
D

at
ab

as
eP

ub
lis

he
r e

xi
t t

o
m

ak
e

an

in
te

rn
al

 re
qu

es
t t

ha
t l

oo
ks

 u
p

th
e

ta
bl

ed
ef

se
t.x

m
l f

ro
m

 th
e

ap
pl

ic
at

io
n.

Th
e

na
m

e
of

 th
e

ta
rg

et
 d

at
ab

as
e.

Th
e

da
ta

ba
se

 d
riv

er
 ty

pe
 to

 u
se

 to

pe
rf

or
m

 d
at

ab
as

e
pu

bl
is

hi
ng

.

Th
e

na
m

e
of

 th
e

re
so

ur
ce

.

N
am

e
of

 th
e

ta
rg

et
 d

at
ab

as
e

sc
he

m
a.

Th
e

na
m

e
of

 th
e

ta
rg

et
 ta

bl
e.

Th
e

co
nt

en
t I

D
. T

hi
s m

et
ad

at
a

fie
ld

ho

ld
s r

aw
 d

at
a

fr
om

 th
e

C
O

N
TE

N
TS

TA
TU

S
so

ur
ce

 ta
bl

e.

XM
L

PS
X

m
lF

ie
ld

/c
on

te
nt

/ta
bl

ed
ef

se
t/@

lo
ok

up

PS
X

m
lF

ie
ld

/c
on

te
nt

/d
at

ab
as

e/
@

db
na

m
e

PS
X

m
lF

ie
ld

/c
on

te
nt

/d
at

ab
as

e/
@

dr
iv

er
ty

pe

PS
X

m
lF

ie
ld

/c
on

te
nt

/d
at

ab
as

e/
@

re
so

ur
ce

N
am

e

PS
X

m
lF

ie
ld

/c
on

te
nt

/d
at

ab
as

e/
@

or
ig

in

PS
X

m
lF

ie
ld

/c
on

te
nt

/ta
bl

e/
@

na
m

e

PS
X

m
lF

ie
ld

/c
on

te
nt

/ta
bl

e/
ro

w
/ID

B
ac

ke
nd

sy
s_

M
ak

eI
nt

Li
nk

(ta
bl

ed
ef

se
t.x

m
l)

rx
_e

xa
m

pl
es

da
ta

ba
se

 d
ri

ve
r t

yp
e

M
ay

 b
e

on
e

of
 th

e
fo

llo
w

in
g

va
lu

es
,

de
pe

nd
in

g
on

 y
ou

r R
D

B
M

S:

�
in

et
da

e7

�
jtd

s:
sq

ls
er

ve
r

�
or

ac
le

:th
in

�

or
ac

le
:o

ci

�
db

2

jd
bc

/rx
_e

xa
m

pl
es

db
o

C
O

N
TE

N
T

C
O

N
TE

N
TS

TA
TU

S.
C

O
N

TE
N

TI
D

 Chapter 4 Example: Publishing the News Content Type to a Database 47

C
om

m
en

ts

Th
e

co
nt

en
t v

er
si

on
. T

hi
s m

et
ad

at
a

fie
ld

 h
ol

ds
 ra

w
 d

at
a

fr
om

 th
e

C
O

N
TE

N
TS

TA
TU

S
so

ur
ce

 ta
bl

e.

Th
e

co
nt

en
t a

ut
ho

r.
Th

is
 m

et
ad

at
a

fie
ld

ho

ld
s r

aw
 d

at
a

fr
om

 th
e

C
O

N
TE

N
TS

TA
TU

S
so

ur
ce

 ta
bl

e.

Th
e

co
nt

en
t c

re
at

io
n

da
te

. T
hi

s
m

et
ad

at
a

fie
ld

 h
ol

ds
 ra

w
 d

at
a

fr
om

 th
e

C
O

N
TE

N
TS

TA
TU

S
so

ur
ce

 ta
bl

e.

Th
e

us
er

 w
ho

 c
ur

re
nt

ly
 h

as
 th

is
 c

on
te

nt

ch
ec

ke
d

ou
t o

r l
oc

ke
d.

 T
hi

s m
et

ad
at

a
fie

ld
 h

ol
ds

 ra
w

 d
at

a
fr

om
 th

e
C

O
N

TE
N

TS
TA

TU
S

so
ur

ce
 ta

bl
e.

Th
e

co
nt

en
t’s

 la
st

 m
od

ifi
ca

tio
n

da
te

.
Th

is
 m

et
ad

at
a

fie
ld

 h
ol

ds
 ra

w
 d

at
a

fr
om

th

e
C

O
N

TE
N

TS
TA

TU
S

so
ur

ce
 ta

bl
e.

A
n

ab
st

ra
ct

 o
f t

he
 b

od
y.

 T
hi

s c
on

te
nt

fie

ld
 h

ol
ds

 H
TM

L
en

co
de

d
w

ith
 n

o
es

ca
pi

ng
 (e
s
c
a
p
e
d

).

Th
e

ty
pe

 o
f e

nc
od

in
g

fo
r t

he
 c

on
te

nt

A
bs

tra
ct

.
Se

e
E

nc
od

in
g

D
at

a
(o

n
pa

ge

16
) f

or
 m

or
e

in
fo

rm
at

io
n.

XM
L

PS
X

m
lF

ie
ld

/c
on

te
nt

/ta
bl

e/
ro

w
/V

ER
SI

O
N

PS
X

m
lF

ie
ld

/c
on

te
nt

/ta
bl

e/
ro

w
/A

U
TH

O
R

PS
X

m
lF

ie
ld

/c
on

te
nt

/ta
bl

e/
ro

w
/C

R
EA

TE
D

PS
X

m
lF

ie
ld

/c
on

te
nt

/ta
bl

e/
ro

w
/L

O
C

K
ER

PS
X

m
lF

ie
ld

/c
on

te
nt

/ta
bl

e/
ro

w
/M

O
D

IF
IE

D

PS
X

m
lF

ie
ld

/c
on

te
nt

/ta
bl

e/
ro

w
/A

B
ST

R
A

C
T

PS
X

m
lF

ie
ld

/c
on

te
nt

/ta
bl

e/
ro

w
/A

B
ST

R
A

C
T/

@
en

co
di

ng

B
ac

ke
nd

C
O

N
TE

N
TS

TA
TU

S.
C

U
R

R
EN

TR
EV

IS
IO

N

C
O

N
TE

N
TS

TA
TU

S.
C

O
N

TE
N

TC
R

EA
TE

D
B

Y

 C
O

N
TE

N
TS

TA
TU

S.
C

O
N

TE
N

TC
R

EA
TE

D
D

A
TE

 C
O

N
TE

N
TS

TA
TU

S.
C

O
N

TE
N

TC
H

EC
K

O
U

TU
SE

R
N

A
M

E

C
O

N
TE

N
TS

TA
TU

S.
C

O
N

TE
N

TL
A

ST
M

O
D

IF
IE

D
D

A
TE

X
R

D
N

EW
S.

A
B

ST
R

A
C

T

es
ca

pe
d

48 Rhythmyx Implementing Database Publishing

C
om

m
en

ts

Th
e

ba
se

64
 e

nc
od

ed
 H

TM
L

va
ria

nt
 o

f t
he

bo

dy
 c

on
te

nt
.

It
is

 n
ec

es
sa

ry
 to

 e
nc

od
e

th
is

 c
on

te
nt

 b
ec

au
se

 it
 in

cl
ud

es
 sp

ec
ia

l
ch

ar
ac

te
rs

.

To
 e

nc
od

e
th

e
bo

dy
 te

xt
 a

s b
as

e6
4,

 th
e

sy
s_

G
et

B
as

e6
4E

nc
od

ed
 e

xi
t r

eq
ui

re
s

pa
ra

m
et

er
s t

ha
t f

or
m

 th
e

U
R

L
of

 th
e

va
ria

nt
.

It
lo

ca
te

s t
he

 v
ar

ia
nt

, b
as

e6
4

en
co

de
s i

ts
 b

od
y,

 a
nd

 re
tu

rn
s i

t.
In

 th
is

ex

am
pl

e,
 sy

s_
G

et
B

as
e6

4E
nc

od
ed

en

co
de

s v
ar

ia
nt

id
 3

18
 o

f t
he

xr

d_
ca

sN
ew

s a
ss

em
bl

er
 a

pp
lic

at
io

n.

Se
e

 “
sy

s_
G

et
B

as
e6

4E
nc

od
ed

”
in

 th
e

Rh
yt

hm
yx

 C
M

S
O

nl
in

e
H

el
p

fo
r m

or
e

in
fo

rm
at

io
n

ab
ou

t t
he

 e
xi

t.

Th
e

ty
pe

 o
f e

nc
od

in
g

fo
r t

he
 H

TM
L

bo
dy

 v
ar

ia
nt

.
Se

e
E

nc
od

in
g

D
at

a
(o

n
pa

ge
 1

6)
 fo

r m
or

e
in

fo
rm

at
io

n.
 .

Th
e
b
a
s
e
6
4

 e
nc

od
ed

 P
D

F
va

ria
nt

 o
f t

he

bo
dy

 c
on

te
nt

.
It

is
 n

ec
es

sa
ry

 to
 e

nc
od

e
th

is
 c

on
te

nt
 b

ec
au

se
 it

 in
cl

ud
es

 sp
ec

ia
l

ch
ar

ac
te

rs
.

In
 th

is
 e

xa
m

pl
e,

 sy
s_

G
et

B
as

e6
4E

nc
od

ed

en
co

de
s v

ar
ia

nt
id

 3
19

 o
f t

he
 x

rd
_c

as
N

ew
s

as
se

m
bl

er
 a

pp
lic

at
io

n.

Se
e

th
e

co
m

m
en

ts
 fo

r
PS

X
m

lF
ie

ld
/c

on
te

nt
/ta

bl
e/

ro
w

/B
O

D
Y

_
H

TM
L

fo
r d

et
ai

ls
 a

bo
ut

 u
si

ng
 th

e
ou

tp
ut

 o
f t

he
 sy

s_
G

et
B

as
e6

4E
nc

od
ed

ex

it
as

 a
 fi

el
d.

XM
L

PS
X

m
lF

ie
ld

/c
on

te
nt

/ta
bl

e/
ro

w
/B

O
D

Y
_H

TM
L

PS
X

m
lF

ie
ld

/c
on

te
nt

/ta
bl

e/
ro

w
/B

O
D

Y
_H

TM
L/

@
en

co
di

ng

PS
X

m
lF

ie
ld

/c
on

te
nt

/ta
bl

e/
ro

w
/B

O
D

Y
_P

D
F

B
ac

ke
nd

sy
s_

G
et

B
as

e6
4E

nc
od

ed
(..

/x
rd

_c
as

N
ew

s/
N

ew
sP

ag
e.

ht
m

l,
sy

s_
co

nt
en

tid
,

PS
X

Pa
ra

m
/s

ys
_c

on
te

nt
id

, s
ys

_r
ev

is
io

n,

PS
X

Pa
ra

m
/s

ys
_r

ev
is

io
n,

 sy
s_

co
nt

ex
t,

PS
X

Pa
ra

m
/s

ys
_c

on
te

xt
, s

ys
_a

ut
ht

yp
e,

PS

X
Pa

ra
m

/s
ys

_a
ut

ht
yp

e,
 sy

s_
va

ria
nt

id
,

31
8,

sy

s_
si

te
id

,
PS

X
Pa

ra
m

/s
ys

_s
ite

id
)

ba
se

64

sy
s_

G
et

B
as

e6
4E

nc
od

ed
(..

/x
rd

_c
as

N
ew

s/
N

ew
sP

ag
e.

ht
m

l,
sy

s_
co

nt
en

tid
,

PS
X

Pa
ra

m
/s

ys
_c

on
te

nt
id

, s
ys

_r
ev

is
io

n,

PS
X

Pa
ra

m
/s

ys
_r

ev
is

io
n,

 sy
s_

co
nt

ex
t,

PS
X

Pa
ra

m
/s

ys
_c

on
te

xt
, s

ys
_a

ut
ht

yp
e,

PS

X
Pa

ra
m

/s
ys

_a
ut

ht
yp

e,
 sy

s_
va

ria
nt

id
, 3

19
,

sy
s_

si
te

id
,

PS
X

Pa
ra

m
/s

ys
_s

ite
id

)

 Chapter 4 Example: Publishing the News Content Type to a Database 49

C
om

m
en

ts

Th
e

ty
pe

 o
f e

nc
od

in
g

fo
r t

he
 c

on
te

nt

bo
dy

.
Se

e
E

nc
od

in
g

D
at

a
(o

n
pa

ge
 1

6)

fo
r m

or
e

in
fo

rm
at

io
n.

C
re

at
es

 a
n

in
te

rn
al

 lo
ok

up
 to

 th
e

ch
ild

ta

bl
e

re
so

ur
ce

 c
on

te
nt

C
on

ta
ct

. S
ee

"s

ys
_M

ak
eI

nt
Li

nk
"

in
 th

e
Rh

yt
hm

yx

C
M

S
on

lin
e

he
lp

 fo
r m

or
e

in
fo

rm
at

io
n.

XM
L

PS
X

m
lF

ie
ld

/c
on

te
nt

/ta
bl

e/
ro

w
/B

O
D

Y
_P

D
F/

@
en

co
di

ng

PS
X

m
lF

ie
ld

/c
on

te
nt

/ta
bl

e/
ro

w
/c

hi
ld

re
n/

co
nt

en
tC

on
ta

ct
/@

lo
ok

up

B
ac

ke
nd

ba
se

64

sy
s_

M
ak

eI
nt

Li
nk

(c
on

te
nt

C
on

ta
ct

.x
m

l,
sy

s_
co

nt
en

tid
, P

SX
Pa

ra
m

/s
ys

_c
on

te
nt

id
,

sy
s_

re
vi

si
on

, P
SX

Pa
ra

m
/s

ys
_r

ev
is

io
n,

sy

s_
co

nt
ex

t,
PS

X
Pa

ra
m

/s
ys

_c
on

te
xt

,
sy

s_
au

th
ty

pe
, P

SX
Pa

ra
m

/s
ys

_a
ut

ht
yp

e,

sy
s_

si
te

id
,

PS
X

Pa
ra

m
/s

ys
_s

ite
id

)

50 Rhythmyx Implementing Database Publishing

Mapper for contentContact resource
The table name is provided as a literal. All other columns are mapped as usual. Note that you do not need
to map the primary key in childtables, it is provided by the Database Publisher.

Figure 14: Content_contact Resource Mapper

Backend XML Comments
CONTENT_CONTACT PSXmlField/contentContact/table/@name The name of the target

table. This is a literal.

XRDCONTACT.SYSID PSXmlField/contentContact/table/row/CONTACTID The contact ID number.
This metadata field holds
raw data from the
XRDCONTACT source
table.

XRDCONTACT.CONTACTNAME PSXmlField/contentContact/table/row/NAME The contact name. This
metadata field holds raw
data from the
XRDCONTACT source
table.

XRDCONTACT.PHONE PSXmlField/contentContact/table/row/PHONE The contact phone number.
This metadata field holds
raw data from the
XRDCONTACT source
table.

XRDCONTACT.EMAIL PSXmlField/documentContact/table/row/EMAIL The contact email address.
This metadata field holds
raw data from the
XRDCONTACT source
table.

 Chapter 4 Example: Publishing the News Content Type to a Database 51

You must check the Return empty XML checkbox in all mappers for childtables. Otherwise the Database
Publisher tries to enter columns with invalid (empty) keys.

Figure 15: Mapper displaying Return empty XML checkbox

Specifying Column Repetition in News Resources
The Rhythmyx Workbench specifies that all XML columns can appear n times per row (* Element can
appear 0 or more times). This may cause columns to repeat in row elements instead of appearing in
separate rows. To prevent this in the News database, change the definition of each column in the
contentContact resource in the Page Datatank.

Figure 16: Page Datatank Properties

To change the definition of the column:

1 Open the Page Datatank for the XML resource.

52 Rhythmyx Implementing Database Publishing

2 Right-click on each column name (CONTACTID, NAME, PHONE, and EMAIL) and select 1
Element can appear exactly once in the drop list.

3 Click [OK].

NOTE: You must repeat this step each time you drag and drop the resource HTML file.

Creating the News Database Table Definition
Create the table definition file for the Database Publisher to use to determine the target schema. Use the
Table Definition Builder to create the file. For help using and filling out the fields in the Table Definition
Builder, see the section Table Definition Builder and its sub-topics.

In the Connection tab of this tool, provide the target database connection information. Test the connection
with the [Test] button.

Figure 17: Table Definition Builder, Connection Tab

 Chapter 4 Example: Publishing the News Content Type to a Database 53

Click the DBMS Builder tab. Click [Catalog] to catalog all tables available through the connection
specified. Select the CONTENT and CONTENT_CONTACT tables. Click [Save] to save the table
definition to the file system as tabledefset.xml. The created file conforms to the sys_Tabledef.dtd (see
"Database Publisher DTDs" on page 26).

Figure 18: Table Definition Builder, DBMS Tab

To add tabledefset.xml as a static resource to the assembler application, insert it into the xrd_casGeneric
directory in the Rhythmyx root after you create the application.

tabledefset.xml example
For definitions of the elements and attributes in this file, see <Rhythmyx root>/DTD/sys_Tabledef.dtd.

<?xml version="1.0" encoding="UTF-8"?>
<tabledefset>
 <tabledef allowSchemaChanges="n" alter="n" create="y" delolddata="n"
name="CONTENT">
 <rowdef>
 <columndef action="c" name="ID">
 <jdbctype>INTEGER</jdbctype>
 <allowsnull>no</allowsnull>
 </columndef>
 <columndef action="c" name="VERSION">
 <jdbctype>INTEGER</jdbctype>
 <allowsnull>yes</allowsnull>
 </columndef>
 <columndef action="c" name="AUTHOR">
 <jdbctype>VARCHAR</jdbctype>
 <size>50</size>
 <allowsnull>yes</allowsnull>
 </columndef>
 <columndef action="c" name="LOCKER">
 <jdbctype>VARCHAR</jdbctype>
 <size>50</size>
 <allowsnull>yes</allowsnull>

54 Rhythmyx Implementing Database Publishing

 </columndef>
 <columndef action="c" name="CREATED">
 <jdbctype>TIMESTAMP</jdbctype>
 <allowsnull>yes</allowsnull>
 </columndef>
 <columndef action="c" name="MODIFIED">
 <jdbctype>TIMESTAMP</jdbctype>
 <allowsnull>yes</allowsnull>
 </columndef>
 <columndef action="c" name="ABSTRACT">
 <jdbctype>LONGVARCHAR</jdbctype>
 <allowsnull>yes</allowsnull>
 </columndef>
 <columndef action="c" name="BODY_HTML">
 <jdbctype>LONGVARCHAR</jdbctype>
 <allowsnull>yes</allowsnull>
 </columndef>
 <columndef action="c" name="BODY_PDF">
 <jdbctype>BINARY</jdbctype>
 <size>50</size>
 <allowsnull>yes</allowsnull>
 </columndef>
 </rowdef>
 <primarykey action="c">
 <name>ID</name>
 </primarykey>
 </tabledef>
 <tabledef allowSchemaChanges="n" alter="n" create="y" delolddata="n"
name="CONTENT_CONTACT">
 <rowdef>
 <columndef action="c" name="ID">
 <jdbctype>INTEGER</jdbctype>
 <allowsnull>no</allowsnull>
 </columndef>
 <columndef action="c" name="CONTACTID">
 <jdbctype>INTEGER</jdbctype>
 <allowsnull>no</allowsnull>
 </columndef>
 <columndef action="c" name="NAME">
 <jdbctype>VARCHAR</jdbctype>
 <size>50</size>
 <allowsnull>yes</allowsnull>
 </columndef>
 <columndef action="c" name="PHONE">
 <jdbctype>VARCHAR</jdbctype>
 <size>50</size>
 <allowsnull>yes</allowsnull>
 </columndef>
 <columndef action="c" name="EMAIL">
 <jdbctype>VARCHAR</jdbctype>
 <size>50</size>
 <allowsnull>yes</allowsnull>
 </columndef>
 </rowdef>
 <primarykey action="c">
 <name>ID</name>
 <name>CONTACTID</name>

 Chapter 4 Example: Publishing the News Content Type to a Database 55

 </primarykey>
 <foreignkey action="c">
 <fkColumn>
 <name>ID</name>
 <externalTable>CONTENT</externalTable>
 <externalColumn>ID</externalColumn>
 </fkColumn>
 </foreignkey>
 </tabledef>
</tabledefset>

Registering the Database Assembly Variant
After you create the Database Assembler application, register the Variant that formats the data for the
CONTENT and CONTENT_CONTACT tables.

Figure 19: Database Assembler Variant

To create the Database Assembly Variant:

1 In Name, enter a name for the Variant.

2 Optionally, in Description, enter a description for the Variant.

3 In Style Sheet, enter default.xsl.

4 Choose Page as the Output Form.

5 Choose Non-HTML as the Active Assembly Format.

56 Rhythmyx Implementing Database Publishing

Developing Variants, Resources, and Slots
If your existing Variant assembly applications assemble body content into the format that you want to
store it in your target database, you may modify them or use them as they are to assemble content that you
publish to your database. However, you may also want to create new resource files, Variants, and Slots
for the particular formats in which you want to store content in your target database. See the instructions
in the Rhythmyx Workbench Online Help, “Managing Applications/Defining Page Content” section and
the topic “Defining Variants” in the document Implementing Content Editors and Content Assembly in
Rhythmyx for general help on creating assembler resources. After you create Variants and Slots in your
resources, you must register them with Rhythmyx.

The following graphic shows the sample registration for the HTML Variant for the News Content Type. In
this example, Snippet is selected as the output form because the Variant represents a portion of a page.
This sample Variant does not include any Slots.

Figure 20: HTML Variant Registration

The following graphic shows the sample registration for the PDF Variant for the News Content Type. In
this example, Page is selected as the output form because you are creating a PDF file. It is not necessary
to specify a Style Sheet when you are creating a PDF (or any binary file). The Active Assembly format is
Non-HTML because the Variant is in file format.

Figure 21: PDF Variant Registration

To register your Variants:

1 Enter a Name and optionally a Description for the Variant.

 Chapter 4 Example: Publishing the News Content Type to a Database 57

2 If your Variant represents formatted content, in Style Sheet, enter the stylesheet file name. If
your Variant represents an image or binary file, leave Style Sheet blank.

3 In URL enter the address of the Variant in your Rhythmyx root.

4 If you are using a single Location Scheme, enter a value in Location Prefix. See the section
Site Folder Publishing in the document Implementing Publishing for more information about
using a single Location Scheme.

5 In Output Form, indicate if the Variant represents a Snippet or a Page. Note: a Snippet is
assembled content that represents part of a Web page; a Page is assembled content that
represents a full Web page.

6 If your Variant represents formatted content, in Active Assembly Format, choose Normal. If
your Variant represents an image or binary file, in Active Assembly Format, choose Non-
HTML.

7 If your Variant represents formatted content, add the Slots that appear in the Variant. If your
Variant represents an image or binary file, do not add any Slots.

58 Rhythmyx Implementing Database Publishing

Variant Assembler Applications
The content resource in the xrd_casGeneric application obtains Variants produced by the xrd_casNews
assembler application and inserts the Variants into the BODY_HTML field and BODY_PDF field of the
CONTENT database table.

The graphic below shows xrd_casNews as it appears in the Rhythmyx Workbench. html.xsl produces the
HTML Variant and pdf.xsl produces the PDF Variant.

Figure 22: xrd_casNews

The html and pdf resources map information to the fields in the XML file like other Rhythmyx assembly
resources. The following graphic shows the mapping for the XML resource. Back-end data is mapped to
the displaytitle, bodycontent, and author elements. The HTML Variant (376) is mapped to the
location/page element of the XML resource and the PDF Variant (345) is mapped to the location/pdf
element of the XML resource:

Figure 23: NewsPage Mapper

 Chapter 4 Example: Publishing the News Content Type to a Database 59

To create your own Variant assembler applications for publishing body content to the IBM Portal:

1 Drag and drop the resource HTML for your Variants in a new application in the Workbench.

a) Attach the sys_casAddAssemblerInfo post-exit to any text resource.

b) Attach the sys_xdTextToTree post-exit to any text resource that that uses the
sys_EditLive control.

c) Create static resources for image files and binary files and map them. See “Mapping
Images and Other Mime Types” in the Rhythmyx Workbench online help.

d) For text resources, configure the back end tables, mappers, and selectors as specified in
the “Creating Assembly Applications” section in the Rhythmyx document Implementing
Content Editors and Content Assembly.

e) For resources that create inline images or inline links, requests are not made to backend
tables, so add the RXDUAL “dummy” table to your datatank and do not define any
requestor properties. Map elements as explained in the topic “Creating Inline Image and
Inline Link Assemblers” in the Implementing Content Editors and Content Assembly
document.

For more information about creating assembler applications, see the “Creating Assembly Applications”
section in the Rhythmyx document Implementing Content Editors and Content Assembly.

For more information about creating applications in the Rhythmyx Workbench, see the section “Managing
Applications” in the Rhythmyx Workbench online help.

For more information about creating PDF Variants, see the section “Assembling a PDF” in the Rhythmyx
Workbench online help.

60 Rhythmyx Implementing Database Publishing

Building the News Content List Application
Build a content list application for the News target database with a content list resource for the Database
Publisher that has its delivery type mapped to the literal database.

1 Open a new application.

2 Copy and rename the contentlist_generic resource from the rx_PubContentLists application in
the new application, or create a resource from scratch.

3 Define request properties for the content list.

4 Open the Resource Editor.

a) On the Page Datatank, drag and drop contentlist.dtd.

b) On the Backend Datatank, drag and drop the tables CONTENTVARIANTS,
CONTENTSTATUS, and STATES. Join the columns
CONTENTVARIANTS.CONTENTTYPEID and
CONTENTSTATUS.CONTENTTYPEID and the columns
CONTENTSTATUS.CONTENTSTATEID and STATEID.

c) In the Selector Properties, enter:
CONTENTVARIANTS.VARIANTID = PSXParam/sys_variantid

d) In the Result Page Properties, insert a pager that sorts on
CONTENTSTATUS.CONTENTID.

e) Enter the following in Mapper Properties:

Figure 24: News Content List Application Mapper

Backend XML
PSXParam/sys_context PSXXmlField/contentlist@context

sys_literal(database) PSXXmlField/contentlist/@deliverytype

CONTENTSTATUS.TITLE PSXXmlField/contentlist/contentitem/title

 Chapter 4 Example: Publishing the News Content Type to a Database 61

Backend XML
CONTENTSTATUS.CONTENTID PSXXmlField/contentlist/contentitem/@contenti

d

CONTENTSTATUS.CURRENTREVISION PSXXmlField/contentlist/contentitem/@revision

PSXParam/sys_variantid PSXXmlField/contentlist/@variantid

sys_MakeAbsLinkSecureEx(no,,,CONTENT.XML,
sys_contentid, CONTENTSTATUS.CONTENTID,
sys_revision,
CONTENTSTATUS.CURRENTREVISION,
sys_variantid, PSXParam/sys_variantid,
sys_context,PSXParam/sys_context,sys_authtype,
PSXParam/sys_authtype)

PSXXmlField/contentlist/contentitem/contenturl

sys_literal(rx_examples)

NOTE: The sys_literal parameter is the database
name.

PSXXmlField/contentlist/contentitem/delivery/lo
cation

CONTENTSTATUS.CONTENTLASTMODIFIED
DATE

PSXXmlField/contentlist/contentitem/modifydate

CONTENTSTATUS.CONTENTLASTMODIFIER PSXXmlField/contentlist/contentitem/modifyuser

CONTENTSTATUS.CONTENTEXPIREDATE PSXXmlField/contentlist/contentitem/expiredate

CONTENTSTATUS.CONTENTTYPEID PSXXmlField/contentlist/contentitem/contenttyp
e

5 Save the content list application.

62 Rhythmyx Implementing Database Publishing

Registering News Publishing Components
Register all the components for the Database Publisher in the Publishing Administrator of the CMS. See
the document Implementing Publishing in Rhythmyx for complete information about registering each
component.

1 Register a new Database Publisher in the Edit Publisher page. Add a configuration parameter
for the Database Publisher plugin called database. Set the value of this parameter to
com.percussion.publisher.client.PSDatabasePublisherHandler.

Figure 25: Publisher Registration for News Publisher

2 Register a site for the Database Publisher. The Publishing Root Location should be the label
that you want to appear in the Publication Details Map.

Figure 26: Site Registration

 Chapter 4 Example: Publishing the News Content Type to a Database 63

3 Register the content list that will publish the News content to the target database. The content
list URL should have the format:
/<Rhythmyx root>/<content list application name>/<content list
query>?sys_variantid=<# of application that uses source table>

For the news example, the content list URL is:
/Rhythmyx/xrd_casGeneric/contentlist_database.xml?sys_variantid
=329

Figure 27: Content List Registration for News Content List

4 Register the Edition that will publish the database. Include the content list created in the
previous step.

Figure 28: Edition Registration for News Edition

64 Rhythmyx Implementing Database Publishing

Configuring Previews of Dynamic Content
Some of your Variants may use code (for example, JSP or ASP code) that enables them to perform
dynamic processing, such as retrieving current data from a database, variable substitution, or conditional
branching. If you attempt to preview these Variants in Rhythmyx as you preview other Variants, the
Rhythmyx server cannot serve the dynamic processing code, and the preview Page may return an error or
render improperly. One way to avoid errors is to add conditional logic to your stylesheet so that it replaces
dynamic areas of the page with placeholder text and images when you perform a preview. Another option
is to perform the preview on the server that performs the dynamic processing (the Web application server).
Configuring this type of preview involves manually publishing the Content Item as its preview Variant to
the Web application server. When a user chooses Preview > [preview Variant] in the Action Menu for the
item, Rhythmyx redirects the user to the assembled item on the Web application server, and the user is
able to preview the Content Item with the dynamic content.

We illustrate the procedure for configuring this type of preview with an example of a Variant of a
FastForward Generic Content Type that displays dynamic data. The Variant creates an .asp file that
Rhythmyx publishes to an IIS Web application server for previewing. When previewed, our sample page
with dynamic data appears as:

Figure 29: Content Item viewd through dynamic preview

Note: The graphic in the upper right of the page is missing because it has not been published to the
preview site.

The dynamic portion of the page is the table under the markets header in the left panel. The table data is
retrieved from an external database that stores updated market information.

 Chapter 4 Example: Publishing the News Content Type to a Database 65

Dynamic previewing uses two types of Variants that we refer to as assembly Variants and preview
Variants. Assembly Variants are typical Rhythmyx Variants that format content for viewing. Preview
Variants supply URLs that redirect publishing of the assembly Variants to the Web application server
instead of the default publish location.

To configure previewing of dynamic content:

1 Add the code that accesses the dynamic information to a Variant of the Content Type.

2 Configure your Web application server to connect to your database (see "Configuring Your
Web Application Server to Connect to Your Database" on page 71).

3 Set up the dynamic preview Site (see "Setting up the Dynamic Preview Site" on page 72).

4 Register a dynamic preview Context and dynamic preview Location Scheme (see
"Registering a Dynamic Preview Context and Location Scheme" on page 74).

5 Register a dynamic preview Location Scheme in the Publish Context (see "Registering a
Dynamic Preview Location Scheme in the Publish Context" on page 75).

6 Define publishing variable values for the preview Site (see "Defining Publishing Variable
Values for the Preview Site" on page 77).

7 Create your preview Variant (see "Creating the Dynamic Preview Variant" on page 79).

8 Set up the dynamic preview Manual Edition and dynamic preview Content List (see "Setting
Up the Dynamic Preview Content List" on page 83).

9 Test the dynamic preview (see "Testing the Dynamic Preview" on page 86).
After you set up your system following these steps, users will automatically be redirected to the Web
application server that serves the dynamic content when they choose Preview > [dynamic preview
Variant] in an Action Menu.

Adding Code that Accesses the Dynamic Information
In order to add dynamic information to a Content Item, you must include script for accessing and
manipulating data from the database that contains the dynamic information. If you want to preview the
dynamic information, you must view it on a Web application server that can read the dynamic script. In
the Variant for the Content Item, you may either include the ASP script in an XSL statement or you may
embed an XSL statement that calls the ASP script which is included in another file. The benefit of
maintaining the script in a separate location is that the XSL embedded in the Variant remains simpler, and
the ASP script is easier to reuse and troubleshoot. However, if the ASP script is simple, it may be easier to
include it in the Variant.

In our example, we want the dynamic information to appear in the FastForward global template
enterprise-global-template.html. We embed an XSL statement that calls ASP script in the HTML of the
global template.

66 Rhythmyx Implementing Database Publishing

In this example, the script is included in the adovbs.inc file, which IIS uses to access the database that
contains the dynamic information. In addition to connection information, our adovbs.inc file includes the
ASP script that creates the portion of the page that displays the dynamic data. Our adovbs.inc file connects
to a database of stock market information and presents a table of current market data in the global
template that appears as:

Figure 30: Dynamic Content

The adovbs.inc file is included in the directory on the Web application Server where the files for preview
are published, in our example, Inetpub\wwwroot\EI_Home.

ASP Script
Our example adovbs.inc file which includes our ASP script is shown below. The first six lines create the
connection to the marketsdb database and establish that data is being retrieved from the MARKETS table.
The code that follows creates a table of dynamic market information using data from the MARKETID,
RATE, and CHANGE columns in the MARKETS table:

 <%
set con = server.createobject("ADODB.Connection")
set cmd = Server.CreateObject("ADODB.Command")

con.open "PROVIDER=SQLOLEDB;DATA
SOURCE=MKTSERVER\MKTDATA;UID=sa;PWD=password;DATABASE=marketsdb"
Set cmd.ActiveConnection = con
cmd.CommandText = "SELECT * FROM MARKETS"

'Creates a read-only, forward only recordset
Set rs = cmd.execute

'response.write "<table width='160' border='1' cellspacing='0'
cellpadding='0' bgcolor='#FFFFFF' bordercolor='#666666'>"
Do While Not rs.EOF
 'wrapper table
 response.write "<tr>"
 response.write "<td width='53'>"
 response.write "<table width='160' border='0' cellspacing='0'
cellpadding='0' class='bodyblacksmall'>"
 response.write "<tr>"
 For iCtr = 0 To rs.fields.Count - 1
 If rs.fields(iCtr).Name = "MARKETID" Or rs.fields(iCtr).Name =
"RATE" Then
 response.write "<td align='left' valign='middle' width='50'
class='bodyblacksmall' height='10'>"
 If rs.fields(iCtr).Name = "RATE" Then
 response.write FormatNumber(rs.fields(iCtr).Value, 2)
 Else
 response.write rs.fields(iCtr).Value

 Chapter 4 Example: Publishing the News Content Type to a Database 67

 End If
 response.write "</td>"
 End If
 If rs.fields(iCtr).Name = "CHANGE" Then
 response.write "<td align='right' valign='middle' width='50'
class='bodyblacksmall' height='10'>"
 If CInt(rs.fields(iCtr).Value) > 0 Then
 response.write "+"
 End If
 response.write FormatNumber(rs.fields(iCtr).Value, 2) & "</td>"
 End If
 Next
 response.write "</tr></table></td></tr>"
 rs.MoveNext
Loop

'cleanup
Set rs = Nothing
Set cmd = Nothing
con.Close
set conn = nothing
%>

Embedded XSL Statement
In our example, we embed the XSL statement that calls the adovbs.inc file in our FastForward enterprise-
global-template.html because the dynamic table appears in the global template portion of the Web page.
Below, we include the beginning of the the horizontal_nav portion of the file, where the markets table is
coded. The adovbs.inc include statement is in bold. It is followed by commented out code for a markets
table including static information. Note: The enterprise-global-template.html file is located in <Rhythmyx
root>/rxs_GlobalTemplates.

 <!-- =========== HORIZONTAL NAV STARTS HERE =========== -->
 <div id="horizontal_nav">
 <!-- start slot nav_top --><xsl:variable name="rxslot-
enterprise-global-template-12"><rxslot psxeditslot="no"
slotname="nav_top" template="nav_top"><xsl:copy-of
select="$related/linkurl[@slotname='nav_top']"/></rxslot></xsl:v
ariable><xsl:apply-templates mode="rxslot-enterprise-global-template"
select="$rxslot-enterprise-global-template-12/*"/><!-- end slot nav_top
-->
 </div>
 </div>
 <div id="MainPortion">
 <div id="LeftSide">
 <div id="LeftNav">
 <!-- start slot nav_left --><xsl:variable name="rxslot-
enterprise-global-template-14"><rxslot psxeditslot="no"
slotname="nav_left" template="nav_left"><xsl:copy-of
select="$related/linkurl[@slotname='nav_left']"/></rxslot></xsl:
variable><xsl:apply-templates mode="rxslot-enterprise-global-template"
select="$rxslot-enterprise-global-template-14/*"/><!-- end slot nav_left
-->
 </div>
 <div class="leftTables">
 Markets

68 Rhythmyx Implementing Database Publishing

 <!-- begin XSL -->
 <xsl:comment>#include
file="adovbs.inc"</xsl:comment>
 <!-- end XSL -->
 <!--

<table width="160" border="0" cellspacing="0" cellpadding="0"
class="bodyblacksmall">

<tr>

<td align="left" valign="middle" class="bodyblacksmall" width="50"
height="10"> DJIA</td>

<td align="left" valign="middle" width="50" class="bodyblacksmall"
height="10">8,022.02</td>

<td class="bodyblacksmall" align="right" valign="middle" height="10"
width="50">+108.81</td>

</tr>

</table>

</td>

</tr>

<tr>

<td width="53">

<table width="160" border="0" cellspacing="0" cellpadding="0"
class="bodyblacksmall">

<tr>

<td align="left" valign="middle" class="bodyblacksmall" width="50"
height="10"> NASDAQ</td>

<td align="left" valign="middle" width="50" class="bodyblacksmall"
height="10">1,327.99</td>

<td class="bodyblacksmall" align="right" valign="middle" height="10"
width="50">+14.16</td>

</tr>

</table>

</td>

</tr>

<tr>

 Chapter 4 Example: Publishing the News Content Type to a Database 69

<td width="53">

<table width="160" border="0" cellspacing="0" cellpadding="0"
class="bodyblacksmall">

<tr>

<td align="left" valign="middle" class="bodyblacksmall" width="50"
height="10"> S&P500 </td>

<td align="left" valign="middle" width="50" class="bodyblacksmall"
height="10">850.17</td>

<td class="bodyblacksmall" align="right" valign="middle" height="10"
width="50">+11.24 </td>

</tr>

</table>

</td>

</tr>

<tr>

<td width="53">

<table width="160" border="0" cellspacing="0" cellpadding="0"
class="bodyblacksmall">

<tr>

<td align="left" valign="middle" class="bodyblacksmall" width="50"
height="10"> RJQ</td>

<td align="left" valign="middle" width="50" class="bodyblacksmall"
height="10">45.09</td>

<td class="bodyredsmall" align="right" valign="middle" height="10"
width="50">-1.18</td>

</tr>

</table>

</td>

</tr>

<tr>

<td width="53">

70 Rhythmyx Implementing Database Publishing

<table width="160" border="0" cellspacing="0" cellpadding="0"
class="bodyblacksmall">

<tr>

<td align="left" valign="middle" class="bodyblacksmall" width="50"
height="10"> WKM</td>

<td align="left" valign="middle" width="50" class="bodyblacksmall"
height="10">13.16</td>

<td class="bodyblacksmall" align="right" valign="middle" height="10"
width="50">+4.98</td>

</tr>

</table>

</td>

</tr>

<tr>

<td width="53">

<table width="160" border="0" cellspacing="0" cellpadding="0"
class="bodyblacksmall">

<tr>

<td align="left" valign="middle" class="bodyblacksmall" width="50"
height="10"> YTB</td>

<td align="left" valign="middle" width="50" class="bodyblacksmall"
height="10">23.73</td>

<td class="bodyredsmall" align="right" valign="middle" height="10"
width="50">-18.71</td>

</tr>

</table>

</td>

</tr>

<tr>

<td width="53">

<table width="160" border="0" cellspacing="0" cellpadding="0"
class="bodyblacksmall">

<tr>

 Chapter 4 Example: Publishing the News Content Type to a Database 71

<td align="left" valign="middle" class="bodyblacksmall" width="50"
height="10"> TWUR</td>

<td align="left" valign="middle" width="50" class="bodyblacksmall"
height="10">56.27</td>

<td class="bodyredsmall" align="right" valign="middle" height="10"
width="50">-1.01</td>

</tr>

</table>

</td>

</tr>

</table>

-->

Configuring Your Web Application Server to Connect to
Your Database
Check the documentation provided with your Web application server and the database containing your
dynamic data for information about connection requirements for the type of dynamic page that you are
using.

We use the IIS Web application server and a SQL Server database. One way to connect IIS to the database
is to use an ASP page that begins with the following connection information:

set con = server.createobject("ADODB.Connection")
set cmd = Server.CreateObject("ADODB.Command")

con.open "PROVIDER=SQLOLEDB;DATA
SOURCE=SQLSERVERNAME\SQLSERVERINSTANCE;UID=sa;PWD=mypassword;DATABASE=db
name"

 We include this information at the top of the Inetpub\wwwroot\EI_Home\adovbs.inc file.

NOTE: Depending on the way your database server is defined, you may be able to set SOURCE in the
above configuration to localhost. However, the actual SQL server name and instance may be necessary to
avoid errors stating that the page cannot be displayed or the connection is not valid.

72 Rhythmyx Implementing Database Publishing

Setting up the Dynamic Preview Site
Your dynamic preview Site may be located on your publishing Web Server or on another Web Server that
can serve your dynamic content. In our example, the Variants are assembled as .asp files and are
published to an IIS Web application server. In our IIS publishing root, we create a subfolder named
EI_Home which will hold the ASP files that we publish during the preview process.

To set up the dynamic preview Site:

1 In the Web application server’s document root, create the folder where you want to publish
your content for dynamic preview. In our example, we publish to the IIS Web Server which
has the document root: Inetpub/wwwroot. We add the subfolder EI_Home:
Inetpub/wwwroot/EI_Home. We will publish the dynamic content that we want to preview to
the EI_Home folder.

Check your particular Web application server’s documentation for additional steps you must
take when creating the subfolder.

NOTE: Since our output document looks for certain static files associated with the preview Site under
the name of the folder where they are stored on our publishing site, we give our dynamic previewing
sub-folder the same name as our publishing sub-folder, EI_Home.

2 Copy the static resources, including your global templates and managed navigation
components into the locations in the Web application server where your preview document
will look for them. You may omit any static images if it is unimportant for them to appear in
the dynamic preview. In our example we include the following:

� We copy the rx_resources folder and the enterprise_investments portion of the web_resources
folder from our Rhythmyx root to the EI_Home Folder. Along with static Rhythmyx files, the
rx_resources file includes our global template xsl files. The web_resources folder contains
Site design elements. We rename rx_resources to resources to match the folder specified in
the publisher variables for our publishing context.

� We also insert folders containing static images and navigation graphics into the EI_Home
Folder; normally these files would be published to the Site during a full publish, and in that
manner become available as static resources. We place the files in the locations where our
published preview items look for them (in our example, our published preview items look for
them in the EI_Home folder and the sub-folders they would be published to during publishing:
About Enterprise Investments, Files, Images, InvestmentAdvice, MortgagesAndHomeFinance,
and ProductsAndServices. We generated these folders and graphics by doing a full publish to
the publishing site root, and then copied the folders into the dynamic preview site root).

� Notice that the adovbs.inc file is also included in the EI_Home Folder.

 Chapter 4 Example: Publishing the News Content Type to a Database 73

Figure 31: Dyanmic Preview Site

1 Register the dynamic preview Site in Rhythmyx. In the Publishing tab, open the Sites section
and click New Site.

Figure 32: Site registration for dynamic preview Site

74 Rhythmyx Implementing Database Publishing

a) Enter a Site Name.

b) In Site Address, enter the URL as you would enter it in your browser address line. (In IIS
we have mapped the http://devserver virtual path to the physical path
C:\Inetpub\wwwroot).

c) In Publishing Root Location, enter the absolute value of your Web application server’s
publishing directory. In our example, we enter the default publishing root for IIS,
C:/Inetpub/wwwroot.

d) In Publisher, choose the default publisher or a publisher that you have defined for
publishing for dynamic preview.

e) In Folder Root we enter the Content Explorer Folder Root that contains our managed
navigation components, //Sites/EnterpriseInvestments. If your output pages use managed
navigation, you must enter the Folder Root. It is the same as the Folder Root that you
would enter if you were performing Site Folder Publishing.

f) In Global Template, choose the global template that you want to use for the dynamic
preview. In our example, we choose the global template for the FastForward Enterprise
Investments Site, enterprise-global-template.

Registering a Dynamic Preview Context and Location
Scheme
When you preview dynamic content, you use your default publish Context and a dynamic preview context
that you must register. Location Schemes registered by the generic publish Context are not used when
Previewing dynamic content.

Rhythmyx uses the publish Context when it assembles the output. The dynamic preview Context generates
the URL to which the Preview Action redirects publication of the file.

Add to the dynamic preview context a Location Scheme that specifies the address of the Web application
Server and the filenames given to the preview Variants when they are published.

To register the dynamic preview Context:

1 Register a new Context for dynamic preview only.

Figure 33: Dynamic Preview Context

 Chapter 4 Example: Publishing the News Content Type to a Database 75

To register a dynamic Preview Location Scheme:

1 Enter a Name and optionally, a Description for the Location Scheme.

2 Choose the Generator that you want to use to generate the Location Scheme. Our example
uses sys_casConcatAssemblyLocation, which concatenates the Location Scheme Parameters
in the order indicated.

3 Set Content Type to the Content Type that you will be previewing dynamically and set Variant
Type to the assembly Variant.

4 Assign the absolute Value of the Web application Server to the first Location Scheme
Parameter in the Sequence to prevent Rhythmyx from concatenating the Publishing Root
Location in front of the Location Scheme. Depending on the way your database server is
defined, if you use localhost instead of the server name, your Web application server may be
unable to locate the database server.

5 Assign values to the other parameters as you would for any Location Scheme. In our example,
we use the common pattern of concatenating the word page in front of the contentid.

6 Assign the final parameter to the file type to be previewed on the Web application server. In
our example, we hard code the file type as .asp.

NOTE: You could also use the Content Editor sys_suffix field to specify the file extension. In this
example, you would set the value with a drop list that would let users choose .asp or .htm depending on
the Variant they intend to use for the Content Item.

Figure 34: Dynamic Preview Location Scheme in Preview Context

Registering a Dynamic Preview Location Scheme in the
Publish Context
If you have installed FastForward, you already have a location scheme for publishing the Generic Content
Type in your Publish Context. If this location scheme were publishing the Content to the location where
we are performing our dynamic previews, we could simply use this location scheme. However, in
FastForward we publish to our AppServer directory, and in this example we dynamically preview on the
IIS publish Site. Therefore, we have to add a dynamic preview location scheme in our publish Context
that links to the IIS publish Site.

76 Rhythmyx Implementing Database Publishing

To register the dynamic preview Location Scheme in the Publish Context:

1 Open the Publish Context.

2 Click New Location Scheme.

Figure 35: Dynamic Preview Location Scheme in Publish Context

3 Enter a Name and optionally, a Description for the Location Scheme.

4 Since this Location Scheme is almost identical to the Dynamic Preview Context’s Dynamic
Preview Location Scheme, as the Generator, choose sys_casConcatAssemblyLocation, which
concatenates the Location Scheme Parameters in the order indicated.

5 Set Content Type to the Content Type that you will be previewing dynamically and set
Variant Type to the preview Variant.

6 Assign the Value of the publish directory in the Web application Server to the first Location
Scheme Parameter in the Sequence. Rhythmyx will concatenate the Publishing Root Location
in front of the Location Scheme.

7 Assign the same values to the other parameters as those in the Dynamic Preview Context’s
Dynamic Preview Location Scheme.

 Chapter 4 Example: Publishing the News Content Type to a Database 77

Defining Publishing Variable Values for the
Preview Site
As in regular Rhythmyx publishing, the locations of some of the static resources are specified in variables.
Set the value of publishing variables that apply to the preview Site.

To set the values of publishing variables:

1 In the Publisher tab, open the Variables page, and add values for variables that point to the
static content that you have put on the preview Site.

Figure 36: Publishing Variables including those for Dynamic Preview

In our example, we add the value /EI_Home/resources to the Enterprise Investments variable
for the Dynamic Preview Site/Dynamic Preview Context and the Dynamic Preview
Site/Publish Context because our output document looks for static resources in both Contexts.

Note that the static resources stored under wwwroot/EI_Home/web_resources are not located through
publishing variables, so the path does not have to be added in this screen.

78 Rhythmyx Implementing Database Publishing

Setting Up the Dynamic Preview Edition
Dynamic preview Editions are manual Editions that specify the Web application server as a destination
site.

Register a manual Edition for publishing dynamic preview Variants that specifies your dynamic preview
Site and Content List.

Figure 37: Dynamic Preview Edition

To register the manual

1 Enter an Edition Name and optionally a Description.
2 In Destination Site, choose the Site you registered on your Web application server for dynamic

preview.

3 In Edition Type, choose Manual.

4 Leave Recovery Publication and Mirror Source Site blank.

5 Include the Content List that you create for dynamic previewing (we provide the sample
Manual Content List). Set the Context to Publish. Since the Content List is populated by the
sys_PublishEditionForPreview exit, you cannot preview the Content List in this screen.

Clicking returns an error page.

 Chapter 4 Example: Publishing the News Content Type to a Database 79

Creating the Dynamic Preview Variant
For each dynamic preview Variant registered, a corresponding Variant without the dynamic portion
always exists because it is required to format the Variant. In our example, our dynamic preview Variant is
P – ASP Preview, and the non-dynamic preview (assembly) Variant associated with it is P – EI Generic.

The XSL for the Variant for dynamic preview redirects the file to the URL on the Web application Server.
A dynamic preview Variant is supplied in your default implementation in the
rxs_DynamicPreview_cas/p_dynamic_preview resource and the corresponding p_aspRedirect.xsl. You
must modify some of the values in the resource to match your implementation and associate the XSL with
an assembly Variant.

Figure 38: Application for redirecting dynamic previews

To modify the Variant for dynamic preview:

1 In the Workbench, open the mapper for the p_dynamic_preview resource.

Figure 39: p_dynamic_preview resource mappings

80 Rhythmyx Implementing Database Publishing

2 The XML field <urlforASPEngine> holds the URL to which the Variant is redirected on the
Web application server. The sys_casGeneratePubLocation user-defined function creates the
URL. Double-click sys_casGeneratePubLocation to open its properties.

Figure 40: Properties for sys_casGeneratePubLocation

3 Change the value of variantid to the ID of the assembly Variant.

4 Change the value of the context to your dynamic preview Context.

5 Set the siteid equal to your dynamic preview Site ID.

6 Click [OK].

7 The XML field <refreshDelay> holds the number of seconds that the Web application server
waits before serving the page with the dynamic content. If the delay is too brief, the Web
server may attempt to serve the page before it is published. Increase <refreshDelay> if you
have encountered this problem.

8 Click [OK].

 Chapter 4 Example: Publishing the News Content Type to a Database 81

9 On the p_dynamic_preview resource, double-click the post-exit to open it.

Figure 41: Values for sys_PublishEditionForPreview

10 In editionID, enter the ID of the manual edition for dynamic previewing.

11 In assemblyVariant, enter the ID of the Variant that formats the content.

12 In previewVariant, enter the ID of the Variant that redirects the preview to the Web
application server. (This is the Variant that you edited in the beginning of this section.
FastForward provides you with a sample of this Variant for the Generic Content Type named
P-ASP Preview.)

13 The other parameters take default values. See the topic sys_PublishEditionForPreview in the
Workbench online help for information about these parameters.

14 Open p-aspRedirect.xsl and change the value of the Variant to the value of your preview
Variant.

82 Rhythmyx Implementing Database Publishing

15 Click [OK].

16 Save rxs_DynamicPreview_cas to apply your changes to the current session.

17 In the System tab of Content Explorer open the Variant for dynamic preview, P – ASP
Preview. You must add the Site associated with the Variant.

Figure 42: Registration for Preview Variant

To complete the registration of the Variant for dynamic Preview :

1 If you have changed any of the default names for the application or resources for dynamic
preview, change the names in the registration.

2 Do not change Active Assembly Format from Non-HTML; dynamic preview Variants cannot
be actively assembled on the Rhythmyx Server.

3 In Output Form choose Page so that Rhythmyx can publish the output.

4 Set Publish When to Never. Otherwise, it may appear as an option for Default Variant in the
Content Editor or Site Folder Publishing may publish it..

5 Click Add Site, and associate that Site that you have registered for dynamic preview with the
Variant.

By default, the Dynamic Preview Variant is disabled for all Communities because you must complete its
configuration before it works properly.

To enable the Dynamic Preview Variant for Communities:

1 In the System tab of Content Explorer, go to the Communities page.

 Chapter 4 Example: Publishing the News Content Type to a Database 83

2 Click the name of the Community that you want to give access to the Dynamic Preview
Variant.

3 Click Variants.

4 Click Add Variant.

5 Check the Dynamic Preview Variant.

6 Click [Save].

The Dynamic Preview Variant is now included in the list of Action Menu preview options for
Content Items of the associated Content Type. A corresponding Variant without the dynamic
portion always exists because it is required to format the Variant. In our example, the non-
dynamic preview Variant associated with P – ASP Preview is P – EI Generic.

Figure 43: Dynamic Preview Variant in Preview menu

Setting Up the Dynamic Preview Content List
Dynamic preview Content Lists are associated with Manual Editions so that only the Content Item chosen
for preview is published.

A default application and registration for the dynamic preview content List are included in Rhythmyx. The
application is rx_pubPreviewEdition. It contains the resource contentlist_manual which generates the
Content List containing the Content Item to be previewed. It also contains the resources queryEdition and
updateEdition. These resources update the RXEDITIONITEMS table with the Content Item to be
previewed and delete it from the table after it is previewed.

The resources in the rx_PubPreviewEdition application perform the following functions:

� updateEdition updates the RXEDITIONITEMS table with the Content Item to preview;
� queryEdition queries the RXEDITIONITEMS table to access the Content Item to preview;

84 Rhythmyx Implementing Database Publishing

� contentlist_manual generates the Content List for the manual Edition and select which Edition
to publish;

� updateEdition deletes the Content Item from the RXEDITIONS table after the user has
previewed the Content Item.

The sys_PublishEditionForPreview exit in the assembly resource uses the update resource to write the row
for the Edition ID in RXEDITIONITEM, and then to delete it after the Publisher delivers the content. It
also uses the query resource to retrieve the row for the preview item and publish it to the preview server.

Figure 44: rx_PubPreviewEdition

 Chapter 4 Example: Publishing the News Content Type to a Database 85

To map rx_pubPreviewEdition to your own values for Variant, Context, or Site:

1 Open the mapper in contentlist_manual and double-click on the function
sys_casGeneratePubLocation to open it.

Figure 45: sys_casGeneratePubLocation values

2 Set varaintid equal to your preview Variant ID.

3 Set Context to your publish Context (1 by default).

4 Set siteid equal to PSXSingleHtmlParameter/sys_siteid.

5 Close the mapper and save the application.

The registration for the Content List for dynamic publishing is also included by default. Note
that the Edition ID is passed as a parameter through the URL. The Edition ID is included
because the Publisher uses the Edition ID to read the RXEDITIONITEM table to get the
Content Item to be published.

86 Rhythmyx Implementing Database Publishing

Figure 46: Dynamic Preview Content List

To customize the Content List for dynamic previewing:

1 In URL, change sys_editionid to match the id of the edition that you are publishing.

Testing the Dynamic Preview
To test the dynamic Preview Variant, view the non-dynamic version of the Variant, and then compare it to
the dynamic preview version. View the dynamic preview version a few times to make sure that the
publishing mechanism is working as intended. The first time you preview it, it is actually published to the
Site; after that, the publishing mechanism should detect it on the Site and Rhythmyx should display the
preview to you without attempting to publish it again (unless you modify it).

1 Create a new Content Item of the Content Type associated with the dynamic preview Variant.

 Chapter 4 Example: Publishing the News Content Type to a Database 87

2 Right-click on the Content Item to open the Action Menu and preview the non-dynamic
version of the Variant. Since our example is taken from FastForward, the preview action is
called Enterprise Preview. To preview the non-dynamic version of the Variant, we choose
Enteprise Preview > P – EI Generic. The non-dynamic version of the Variant opens. Notice
that:

� The URL indicates that it is generated from the Rhythmyx server;

� Nothing appears beneath the Markets header in the left panel because the .asp code is
not included (and cannot be read on the Rhythmyx server);

� Through active assembly, a graphic is included in the upper right corner of the page.

Figure 47: Assembly Variant

1 Close the page.

2 Make sure that your Publishing application server and your Web application server are both
running.

88 Rhythmyx Implementing Database Publishing

3 Preview the Content Item through the dynamic preview Variant. In our example, we choose
Enterprise Preview > P – ASP Preview.

Figure 48: Dynamic Preview Variant selected

 Chapter 4 Example: Publishing the News Content Type to a Database 89

The dynamic version of the Variant opens. Notice that:

� The URL indicates that the page is served from the Web application server.

� The table of dynamic content now appears under the Markets header in the left panel.

� The image included through active assembly does not appear because it has not been
published to the preview Site. (You can make sure content included through active
assembly is included by publishing it to the preview Site.)

Figure 49: Dynamic Preview Variant

1 In Content Explorer, on the Publishing tab, open the Publication log. Verify that your Edition
has published successfully and that one Content Item has been added.

Figure 50: Publishing Log for Dynamic Previewing

90 Rhythmyx Implementing Database Publishing

Either click on the Date/Time link or go to the Preview Site in Windows Explorer to verify
that the published Content Item is in the expected location:

Figure 51: Dynamic Preview Site after item has been previewed

2 Preview the Content Item through the dynamic preview Variant again. The same page should
open. Check the Publishing log. The Edition should not have been published again since the
Publisher should have detected that the Content Item already exists on the Site and has not
been modified.

Figure 52: Publishing Log for Dynamic Previewing

3 Edit the Content Item and make a change in any field. Then preview it through the dynamic
preview Variant again. The page that opens should reflect the change if it appears in a field
that this Variant displays. Check the Publishing log. The Edition should have been published
again, and the log should indicate that one Content Item was updated:

Figure 53: Publisher log after updated item is previewed

Note: If you simply delete the published items from the preview site and attempt to preview them
dynamically again, your Web application server returns an error message. You must unpublish the items
so that they are removed from all of the Rhythmyx backend tables that record them as published.

 Chapter 4 Example: Publishing the News Content Type to a Database 91

Troubleshooting
Errors occurring during the dynamic preview process are generally due to publishing problems or a failed
connection between the Web application server and the external database.

The following topics cover some common errors that may occur.

The page cannot be found
The page cannot be found/HTTP 404 – File not found

Figure 54: Page Cannot Be Found error

Possible causes and resolutions:

1 The preview file was not published, or was not published to the correct location.

 To resolve:

a) In the Publisher tab of Content Explorer, go to the Publisher log.

92 Rhythmyx Implementing Database Publishing

b) If there is an entry for the Edition with a status of Error, click on the word Error.

Figure 55: Error Link

If the link opens the following page, you have probably failed to start the publishing
application Server (by default, Tomcat). Start the publishing application server, and attempt
the preview again.

Figure 56: Open socket message

c) If there is an entry for the edition with a status of Success, your redirection URL may not
match the location where you published the content.

Look at the Site to determine where the content has published. Then check your Site
registration’s Site Address and Publishing Root Location and the dynamic preview
Context’s Location Scheme to determine where you entered an incorrect path. Correct the
path and attempt the preview again.

2 The preview mechanism is attempting to display the content before it is published.

To verify and resolve:

a) Wait a few seconds and check the Publisher log to see if the item published successfully.
Then check the Site to see if the Content Item has published to the correct location. If the
item published successfully, the server is probably refreshing too quickly.

In the Workbench, open the mapper in rxs_DynamicPreview_cas/p_dynamic_preview.
Increase the value of refreshDelay.

 Chapter 4 Example: Publishing the News Content Type to a Database 93

The page cannot be displayed
The page cannot be displayed/HTTP 500.100 – Internal Server Error – ASP error/Internet Information
Services

Figure 57: Page cannot be displayed error

This type of error page indicates an IIS error. The lower part of the page gives specific information. In
most cases, IIS cannot connect to the server. In this instance, the message under Error Type “(Invalid
Instance()).]Invalid connection /preview/adovbs.inc, line 5” indicates that IIS cannot resolve the server
name on line 5 of the adovbs.inc file. This may occur if your SQL server is defined as a named instance.

Possible causes and resolutions:

To resolve:

Open the adovbs.inc file and check the connection information in line 5. In this case the
connection information appears as:

con.open "PROVIDER=SQLOLEDB;DATA
SOURCE=localhost;UID=sa;PWD=password;DATABASE=marketsdb"

Since IIS could not resolve the server name, we set source to the actual name and instance
instead of localhost:

94 Rhythmyx Implementing Database Publishing

con.open "PROVIDER=SQLOLEDB;DATA
SOURCE=MKTSERVER\MKTDATA;UID=sa;PWD=password;DATABASE=marketsdb"

See support.microsoft.com for information about similar errors of this type.

Missing static files
Although you have copied the static files to the publishing root on the Web application Server, some of
them appear to be missing:

Figure 58: Dynamic Preview with Missing Images

Possible causes and resolutions:

Navimages are missing because they are placed on a Site when the navigation components are
published to the site.

To resolve:

Either display the previews without the navigation images, or manually copy the image files
onto the Site, or publish the navigation components to the Site.

For additional errors relating to the publishing process, refer to the Troubleshooting section of
Rhythmyx’s online publishing documentation or the document Implementing Publishing in Rhythmyx.

 95

Index
A
Adding Code that Accesses the Dynamic

Information • 65
ASP Script • 66

B
Building the News Content List Application • 8,

41, 60

C
Child Table HTML Markup • 7, 10, 13
Configuring Previews of Dynamic Content • 64
Configuring Your Web Application Server to

Connect to Your Database • 65, 71
CONTENT Table • 39
CONTENT_CONTACT Table • 40
Creating the Dynamic Preview Variant • 65, 79
Creating the News Database Assembler

Application • 8, 44
Creating the News Database Table Definition •

8, 24, 38, 41, 45, 52

D
Database Publisher DTDs • 26, 27, 53
Database Publishing Error Messages • 31
Database Publishing Reference and Guide • 9, 33
Defining Publishing Variable Values for the

Preview Site • 65, 77
Defining Target Database Connectivity

Properties • 18, 22
Developing Variants, Resources, and Slots • 56
Displaying a Database Logging View • 25, 62

E
Embedded XSL Statement • 67
Encoding Data • 7, 8, 12, 16, 47, 48, 49
Example

Publishing the News Content Type to a
Database • 7, 9, 33

M
Mapping the News content and contentContact

resources • 8, 41, 44, 45
Marking Up HTML Files for the News Target

Database • 7, 41, 42
Missing static files • 94
Modifying the Table Definition File for

Sequential Columns • 23

N
News Repository Tables and Content Editor • 34
News Target Database • 38

O
Overview of the Database Publisher Plugin • 6

P
Parent Table HTML Markup Rules • 10
Prerequisites • 3
Procedure for Building the News Publisher • 41
Publishing to a Database • 5

R
Registering a Dynamic Preview Context and

Location Scheme • 65, 74
Registering a Dynamic Preview Location

Scheme in the Publish Context • 65, 75
Registering News Publishing Components • 62
Registering the Database Assembly Variant • 55

S
Selecting Tables and Creating the Table

Definition • 22
Setting Up the Dynamic Preview Content List •

65, 83
Setting Up the Dynamic Preview Edition • 78
Setting up the Dynamic Preview Site • 65, 72
Setting Up Tomcat Data Sources • 27, 41
Specifying Column Repetition in News

Resources • 8, 41, 51
Specifying the Repetition of XML Columns • 8,

15
Steps for Database Publishing • 7, 9
sys_DatabasePublisher • 7, 14, 29, 41, 44

T
Table Definition Builder • 17

96 Index

Testing the Dynamic Preview • 65, 86
The page cannot be displayed • 93
The page cannot be found • 91
Troubleshooting • 91

U
Unpublishing with the Database Publisher • 29

V
Variant Assembler Applications • 8, 41, 58

X
XRDCONTACT Table • 34, 37
XRDNEWS Table • 34, 36

	Prerequisites
	Publishing to a Database
	Overview of the Database Publisher Plugin
	Steps for Database Publishing

	Database Publishing Reference and Guide
	Parent Table HTML Markup Rules
	Child Table HTML Markup
	sys_DatabasePublisher
	Specifying the Repetition of XML Columns
	Encoding Data
	Table Definition Builder
	Defining Target Database Connectivity Properties
	Selecting Tables and Creating the Table Definition
	Modifying the Table Definition File for Sequential Columns

	Displaying a Database Logging View
	Database Publisher DTDs
	Setting Up Tomcat Data Sources
	Unpublishing with the Database Publisher
	Database Publishing Error Messages

	Example: Publishing the News Content Type to a Database
	News Repository Tables and Content Editor
	XRDNEWS Table
	XRDCONTACT Table
	News Target Database
	CONTENT Table
	CONTENT_CONTACT Table
	Procedure for Building the News Publisher
	Marking Up HTML Files for the News Target Database
	Creating the News Database Assembler Application
	Mapping the News content and contentContact resources
	Specifying Column Repetition in News Resources
	Creating the News Database Table Definition
	Registering the Database Assembly Variant

	Developing Variants, Resources, and Slots
	Variant Assembler Applications
	Building the News Content List Application
	Registering News Publishing Components
	Configuring Previews of Dynamic Content
	Adding Code that Accesses the Dynamic Information
	Configuring Your Web Application Server to Connect to Your Database
	Setting up the Dynamic Preview Site
	Registering a Dynamic Preview Context and Location Scheme
	Registering a Dynamic Preview Location Scheme in the Publish Context

	Defining Publishing Variable Values for the Preview Site
	Setting Up the Dynamic Preview Edition

	Creating the Dynamic Preview Variant
	Setting Up the Dynamic Preview Content List
	Testing the Dynamic Preview
	Troubleshooting

	Index

