

Printed on 4 October, 2005

Rhythmyx

Implementing
Content Editors

Version 5.7

Copyright and Licensing Statement

All intellectual property rights in the SOFTWARE and associated user documentation, implementation
documentation, and reference documentation are owned by Percussion Software or its suppliers and are
protected by United States and Canadian copyright laws, other applicable copyright laws, and
international treaty provisions. Percussion Software retains all rights, title, and interest not expressly
grated. You may either (a) make one (1) copy of the SOFTWARE solely for backup or archival purposes
or (b) transfer the SOFTWARE to a single hard disk provided you keep the original solely for backup or
archival purposes. You must reproduce and include the copyright notice on any copy made. You may not
copy the user documentation accompanying the SOFTWARE.

The information in Rhythmyx documentation is subject to change without notice and does not represent a
commitment on the part of Percussion Software, Inc. This document describes proprietary trade secrets of
Percussion Software, Inc. Licensees of this document must acknowledge the proprietary claims of
Percussion Software, Inc., in advance of receiving this document or any software to which it refers, and
must agree to hold the trade secrets in confidence for the sole use of Percussion Software, Inc.

Copyright © 1999-2005 Percussion Software.
All rights reserved

Licenses and Source Code
Rhythmyx uses Mozilla's JavaScript C API. See http://www.mozilla.org/source.html
(http://www.mozilla.org/source.html) for the source code. In addition, see the Mozilla Public License
(http://www.mozilla.org/source.html).

Netscape Public License

Apache Software License

IBM Public License

Lesser GNU Public License

Other Copyrights
The Rhythmyx installation application was developed using InstallShield, which is a licensed and
copyrighted by InstallShield Software Corporation.

The Sprinta JDBC driver is licensed and copyrighted by I-NET Software Corporation.

The Sentry Spellingchecker Engine Software Development Kit is licensed and copyrighted by Wintertree
Software.

The Java™ 2 Runtime Environment is licensed and copyrighted by Sun Microsystems, Inc.

The Oracle JDBC driver is licensed and copyrighted by Oracle Corporation.

The Sybase JDBC driver is licensed and copyrighted by Sybase, Inc.

The AS/400 driver is licensed and copyrighted by International Business Machines Corporation.

The Ephox EditLive! for Java DHTML editor is licensed and copyrighted by Ephox, Inc.

This product includes software developed by CDS Networks, Inc.

The software contains proprietary information of Percussion Software; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

http://www.mozilla.org/source.html
http://www.mozilla.org/source.html

Due to continued product development this information may change without notice. The information and
intellectual property contained herein is confidential between Percussion Software and the client and
remains the exclusive property of Percussion Software. If you find any problems in the documentation,
please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of Percussion Software.

AuthorIT™ is a trademark of Optical Systems Corporation Ltd.

Microsoft Word, Microsoft Office, Windows®, Window 95™, Window 98™, Windows NT®and MS-
DOS™ are trademarks of the Microsoft Corporation.

This document was created using AuthorIT™, Total Document Creation (see AuthorIT Home -
http://www.author-it.com).

Percussion Software
600 Unicorn Park Drive
Woburn, MA 01801 U.S.A
 781.438.9900
Internet E-Mail: technical_support@percussion.com
Website: http://www.percussion.com

http://www.author-it.com

 i

Contents

Introduction to Content Editors 5
Content Editor Definition Files...6

Local Definition Structure ...6
Shared Definition Structure ...10
Understanding the System Definition..12

Maintaining Content Editors 13
Content Editor Maintenance Dialogs..14

Content Editor Properties Dialog...14
Content Editor Settings Dialog..15
Rule Editor ..20

Content Editor Maintenance ...21
Creating a Content Editor Resource ..21
Activating a Content Editor Resource for Edit ..23
Content Type ...23
Attaching Tables to a Content Editor ..23
Maintaining Content Editor Settings ...24

Maintaining Content Editor Fields 31
Field Maintenance Dialogs ...32

New Field Properties Dialog ...33
Field Properties Dialog..34
Child Editor Field Properties Dialog ...35

Creating a New Field ..36
Quick Field Creation ...37

Field Maintenance ..38
Editing a Field ...38
Deleting a Field ...38
Child Editors..38

Field Data 39
Source of Field..40
Type of Field...41
Show in Preview...42
Name of Field ...43
Label of Field..44
Mnemonic...45
Error Label..46
Control ..47

Adding Parameters to a Control ..47
Specifying a URL for a Control ..49
Managing Dependencies in a Control..51
Adding Choices to a Control ...52

ii Contents

Data Type ...55
Occurrence of Field ..56
Format of Field ...57
Default Value of Field ..58
Treating Text as Binary ..59
Clearing Binary Data from a Field..60
Show in Summary...61
Search Properties ..62

Content Editor Field Controls 63
Content Editor Control Dialogs ..64

Display Control Properties Dialog...64
URL Request Properties Dialog ..68
Create Choice Lookup Request Dialog ...71

Configuring a Content Editor Control ..72

Adding Data Validation 75
Field-Level Validation..76

Transition-Dependent Field-Level Validation...78
Item-Level Validation...80

Sample Item Validation Exit ...81
Sample Error Page...83

Visibility and Read-only Rules 85
Visibility Rules ...86

Example: Hiding the Workflow Field in the Content Editor System Definition86
Read-only Rules..89

Setting a Field in a Content Editor to Read-Only..90

Text Extraction 91
Implementing Text Extraction in Rhythmyx ..92
Uploading External Binary Files into Rhythmyx..93
Creating a Content Editor that Extracts Text ..94
Displaying Extracted Text in a Content Editor ...97
sys_TextExtraction ...98
Continuous Conversion Example ...100
Migration Example ...108

Customizing the ArticleWord Content Editor 111
How Word-based Content Editors Work ..113
How to Create a Word-based Content Editor ...114

Creating the Word Template File ..116
Modifying the Style Sheet for Parsing Fields..116
Modifying the Content Assembler to Display Custom Word-based Content Editor Fields118

 Contents iii

Installing New Features of Rhythmyx Word Connector 119
Moving Rhythmyx Word Connector Files to the Correct Directory...120
Setting the Address in the Word Template Files ..122
Processing Related Links..124
Copying the Template File to the Client Word Application ...126
Updating the sys_FileWord Content Editor Control...127

Appendices 129
Implementing a Content Editor Manually ..131

Registering a New Content Type...131
Creating the Content Editor Definition..131
Updating the Content Type Registration ...143
Creating the Content Editor Application ...144
Validating the Content Editor Definition...145

Content Editor Control Reference ..147
Control Header ..147
Control Template Standards ..148
Control Events ...148
Standard Rhythmyx Controls ..149
Creating an Internal Lookup Query...195

Content Editor XML Reference..197
Basic Objects ...197
Content Editor Local Def ..250
Content Editor Shared Def ..254

Index 257

 5

Introduction to Content Editors
Rhythmyx Content Editors are the tools Business Users employ to create, modify, and preview content.
Content Editors display the fields defined for the Content Type with which it is associated, and make
fields eligible for modification available to the user.

When a user takes an action, such as submitting a new item or editing an item, Rhythmyx passes a URL to
the server with an attached command parameter indicating the type of action. Available actions include:

� New (displays content editor with default values)
� Edit (displays existing content item)
� Preview (displays a preview of the formatted content item)
� Modify (updates database with new information for the content item)
� Workflow (performs a workflow action on the content item)
� Clone (creates a duplicate of the content item)

The server uses the command parameter to determine what action to perform on the content item.
 Rhythmyx then directs the user to a new page or updates the display. Business rules may affect the
processing of the data before it is updated to the database or may influence the display formatting of
updated data.

C H A P T E R 1

6 Rhythmyx Implementing Content Editors

Content Editor Definition Files
Rhythmyx Content Editors are composed of three layers of data, each controlled by one or more XML
definition files. The base level is system data, which is provided by Percussion Software. System data is
common to all Content Editors, and is controlled by a single XML file for the entire system. This file is
overwritten when Rhythmyx is upgraded; therefore, it should not be customized.

The intermediate level of data is shared data. Shared data is data that is shared by two or more Content
Editors, but is not common to all Content Editors. A Rhythmyx content management system can include
any number of shared field XML definition files; most implementations include at least one.

The final level is local data, which is data specific to each individual editor. Each Content Editor has its
own XML file, which defines fields specific to the individual Content Editor, the shared fields that are
included in the Content Editor, and any local overrides to the default names of system and shared field
labels.

The following sections explain the details of each level of Content Editor definition. For detailed
descriptions of the XML elements that comprise these files, see the appendix "Content Editor XML
Reference".

Local Definition Structure
Each content editor is defined by a unique XML document that defines:

� the fields in the Content Editor;
� the individual behavior of each field;
� the collective behavior of all the fields in the Content Editor;
� and the functionality and look and feel of the editor itself.

The root node of the content editor is the PSXContentEditor element.

 Chapter 1 Introduction to Content Editors 7

NOTE: All illustrations use XML Spy's Grid View.

The field level behavior is defined in the PSXDataSet, which is the overall container for data definitions
in the content editor. Nested within this element is the PSXContentEditorPipe, which is the direct
container for the field-level definitions.

The PSXContentEditorPipe has two children, the PSXContainerLocator and the
PSXContentEditorMapper. The PSXContainerLocator stores the definitions of the backend
database tables where the data for the fields in the content editor are stored.

8 Rhythmyx Implementing Content Editors

The PSXContentEditorMapper contains one or more PSXFieldSet elements, each of which
defines a set of fields specific to the content editor. The fields are defined using the PSXField element.

The PSXUIDefinition child of the PSXContentEditorMapper defines the user-interface
controls for the fields in the content editor. The PSXUIDefinition includes one
PSXDisplayMapper element for each PSXFieldSet element, and one PSXDisplayMapping
element for each PSXField element, which defines the user interface for that field.

 Chapter 1 Introduction to Content Editors 9

Note that the value of the fieldSetRef attribute of the PSXDisplayMapper must match the name
attribute of the PSXFieldSet for which you are defining the user interface. Note also the that
PSXDisplayMapping includes a number of fields not included in the PSXFieldSet. These fields
are derived from the system definition and any shared fields included in the PSXFieldSet. System
fields are included in every Content Editor automatically, but you can specify individual system fields to
exclude in the SystemFieldExcludes child of the PSXContentEditorMapper. Shared Fields
are only included if you specify the shared field sets in a PSXSharedFieldIncludes element.
Specify the shared field group to include in a SharedFieldGroupName element. If you want to
exclude specific fields from a SharedFieldGroup, specify those fields in a
SharedFieldExcludes child of the SharedFieldGroup.

The remaining immediate children of the PSXContentEditor node fall into two categories: editor
behavior definition and item-level definitions.

Editor behavior definition specifies the functionality and the look and feel of the content editor. The
PSXCommandHandlerStylesheet element defines the stylesheets that format the content editor
page. The PSXApplicationFlow element determines the page to which the user should be directed
after each non-query request to the server. These nodes are optional; any stylesheets or application flows
defined here are overrides to the default stylesheets and application flows defined in the system definition.
The SectionLinkList element defines links to other Rhythmyx components included in the content
editor, such as lookups for Slot content and Variants for previews.

Item-level definitions define the processing of the data in the fields of the content editor as a whole.
PSXValidationRules define the processing to ensure the data in the content editor meets the
requirements specified, for example, that date fields are numeric and in the correct format.
PSXOutputTranslations converts data from one form to another when the user requests the data
from the database. PSXInputTranslation convert data from one form to another when the user
updates data to the database.

10 Rhythmyx Implementing Content Editors

Shared Definition Structure
Fields that are shared by two or more content editors are defined in one or more separate XML definition
files that conform to the sys_ContentEditorShared DTD. Most systems include at least one
shared definition file. A sample Shared definition file is installed with Rhythmyx in
<Rhythmyxroot>/Samples/SharedDef. A SQL script to create a table to store data for the fields
in the sample shared definition is also in this directory.

The shared field XML definition files share many elements with the local definition XML definition files,
but have a slightly different structure because the sets of fields are shared. The root element of all shared
field XML definition files is the PSXContentEditorSharedDef. This node contains one or more
PSXSharedFieldGroup children. Each PSXSharedFieldGroup element defines a set of fields
and each stores its data in a table specific to that shared field group. (Note that the you must create the
table before implementing a Content Editor that uses the shared field group. The table must include
columns for the Content ID and Revision ID; when joining this table to a Content Editor application, you
must define joins to CONTENTSTATUS.CONTENTID and
CONTENTSTATUS.CURRENTREVISION.)

The value of the name attribute of each PSXSharedFieldGroup element in the system must be
unique. Shared field groups are included in Content Editors by specifying the name of the shared field
group to include.

Each PSXSharedFieldGroup element has three children:

� The PSXContainerLocator node specifies the table used to store the data for the shared
definition.

� The PSXFieldSet defines the set of fields in the field set. The value of the name attribute
of the PSXFieldSet element must match the value of the name attribute of the
PSXSharedFieldGroup and also of the fieldSetRef attribute of the
PSXDisplayMapper node of the PSXUIDefinition. The individual fields in the field

 Chapter 1 Introduction to Content Editors 11

� set are defined using the PSXField element.
� The PSXUIDefinition defines the user interface for the fields in the field set. The

PSXUIDefinintion node requires the child PSXDisplayMapper. The value of the
fieldSetRef attribute of the PSXDisplayMapper element must match the value of the
name attribute of the PSXFieldSet element and the PSXSharedFieldGroup element.
For each PSXField child defined in the PSXFieldSet element, the
PSXDisplayMapper must include a corresponding PSXDisplayMapping element that
defines the default user interface for that field.

A shared field group can include field rules that define the processing of the data in the shared field group
as a whole. The PSXValidationRules child defines the rules for ensuring that the data in the field
meets the requirements of the field, for example, that dates are all numeric and in the correct format.
PSXOutputTranslations converts data from one form to another when the user requests the data
from the database. PSXInputTranslation convert data from one form to another when the user
updates data to the database.

12 Rhythmyx Implementing Content Editors

Understanding the System Definition
The system definition XML file defines fields common to all editors. This file contains fields defined by
Percussion Software, and is overwritten when the system is upgraded. It should never be customized at
the installation site.

The system definition XML specifies the following fields:

Start Date: Determines the date the content item is eligible to be published to an active site.

Expiration Date: Determines the date the content will be removed from all active sites.

Reminder Date: Defines a date on which a reminder can be generated to Business Users.

System Title: Defines the text displayed in the Title bar for the content item when it is published or
previewed.

Pub Date: Displays the date the content item was published.

Path Name: Determines the path to the directory where the file associated with the content item is
stored.

Suffix: Defines the extension of the file (for example, .pdf or .ppt).

Community ID: Specifies the Community with which a Content Item is associated.

Workflow ID: Specifies the Workflow with which a Content Item is associated.

 13

Maintaining Content Editors
A Content Editor is a unique Rhythmyx resource that runs from an XML file that conforms to the
sys_ContentEditorLocalDef DTD. The Rhythmyx Workbench includes a special dialog, the Content
Editor Properties dialog, to maintain Content Editors.

Figure 1: Content Editor Properties Dialog

You can also maintain a Content Editor XML manually, but this is recommended only for advanced users
or to access features that are not currently available in the Content Editor Properties dialog.

C H A P T E R 2

14 Rhythmyx Implementing Content Editors

Content Editor Maintenance Dialogs
Rhythmyx provides two dialogs to maintain editor-level data. The Content Editor Properties dialog is the
main interface for maintaining Content Editors and their data. A variety of additional properties are
available on the Content Editor Settings dialog.

Content Editor Properties Dialog
The Content Editor Properties dialog is the central interface for maintaining Content Editors. It provides
options for maintaining data about the Content Editor as a whole. It also lists the fields available in the
Content Editor and provides the ability to add or delete fields, as well as a the ability to edit a limited set
of data for the fields on the Content Editor.

Rhythmyx displays the Content Editor Properties dialog when you double-click on a Content Editor

resource: .

Figure 2: Content Editor Properties Dialog

 Chapter 2 Maintaining Content Editors 15

For details about the columns in the main table, see the appropriate topic in the chapter "Content Editor
Field Data".

The Content Editor Properties dialog displays one tab for the main Content Editor, and an additional tab
for each child editor (Detail Editor).

Field Descriptions
Name Required. The name of the Content Editor you are editing.

Content Type Drop list. The Content Type for which you are defining the Content Editor. To define a
new Content Type, click the [New...] button.

Content Editor Settings Dialog
Use the Content Editor Settings dialog to specify settings for the Content Editor as a whole including:

� support for related content
� support for search
� input and ouput translation
� item-level validation

To access the Content Editor Settings dialog, on the Content Editor Properties dialog, click [Advanced].

The Content Editor Settings dialog consists of five tabs:

� General
� Workflow
� Input Translations
� Output Translations
� Item Validation

16 Rhythmyx Implementing Content Editors

Content Editor Settings General Tab
Use the General tab of the Content Editor Settings dialog to define general settings for the Content Editor.
Settings available on this this tab include:

� support for related content, and
� support for searches of Content Editor fields.

Figure 3: Content Editor Settings General Tab

The Allow fields in this Content Editor to be searched box is only available if you have installed the
Rhythmyx full-text search engine. If this box is checked, fields in the Content Editor are eligible to be
indexed for full-text search, and the Allow this field to be searched checkbox is checked for each field in
the Content Editor by default, making each field eligible to be searched. You can uncheck the Allow this
field to be searched checkbox for each field in the Content Editor individually.

If the Allow fields in this Content Editor to be searched box is unchecked, none of the fields in the Content
Editor are eligible to be searched, and the Allow this field to be searched checkbox is unavailable for all
fields.

If the Support related content box is checked, you can use Active Assembly to add related Content Items
to the Content Items edited using this Content Editor. If this box unchecked, you cannot add related
content to Content Items edited using this Content Editor.

 Chapter 2 Maintaining Content Editors 17

Content Editor Settings Workflow Tab
Use the Workflow tab of the Content Editor Settings dialog to specify the default Workflow for Content
Items created using the Content Editor, and any other Worflows that might be available for the Content
Item.

Figure 4: Content Editor Settings Workflow Tab

Field Descriptions
Default Workflow Drop list. Specifies the Workflow new Content Items enter by default when no
Workflow has been specified.

Allow items to enter any workflow Radio button. When selected, Content Items created using this Content
Editor can enter any Workflow defined in the system.

Allow items to enter all workflows except the following Radio button. When selected, Content Items
created using this Content Editor can enter any Workflow defined in the system except those selected in
the Workflows box.

Allow items to enter the following workflows only Radio button. When selected, Content ITems created
using this Content Editor can enter only the Workflows selected in the Workflows box.

Workflows Text box. List of Workflows in the system. Used to specify the Workflows available or
disallowed for Content Items created using this Content Editor. You can selected multiple Workflows
listed (use Control-click to select multiple workflows).

18 Rhythmyx Implementing Content Editors

Content Editor Settings Content Item Input and Output Translations
Tabs
Use the Content Item Input Translation tab to specify exits to convert data when uploading the data to the
Repository (in other words, data input to the Repository). Use the Content Item Output Translation tab to
specify exits to convert data when downloading it from the Repository (in other words, database output
from the Repository).

Translations can convert data in a variety of ways, such as:

� combining the data in two Content Editor fields into one string to upload to a single database
column;

� splitting the data from one Content Editor field into multiple strings to upload to different
database columns;

� converting the encoding or format of the data;
� converting string data into a file or a file into string data.

Data conversions are performed by exits; input translation is performed by pre-exits and output translation
is performed by post-exits. You can specify conditions that activate the extension to convert the Content
Item data.

Figure 5: Content Editor Input Translations Tab

When you double-click in a row of the Extension table, the row is activated, and you can select an exit
from the drop list. Options are all exits available in the system. The C column indicates whether you
have specified a Condition to activate the translation exit.

 Chapter 2 Maintaining Content Editors 19

Content Editor Settings Item Validation Tab
Use the Content Editor Settings Item Validation tab to specify post-exits to perform validation on the
Content Item as a whole. Use item-level validation to compare the values in multiple fields, for example,
such as when the values valid for one field depend on the value assigned to another field. (To validate that
a specific field contained data and or that the data in the field was in the correct format, you would use
field-level validation; for details see Field-Level Validation (on page 76)).

You can specify conditions for activating each validation post-exit. If you do not specify conditions for an
exit, it is activated whenever you Transition or upload a the Content Item.

Figure 6: Content Editor Settings Item Validation Tab

When you click in a row in the Extension table, the row is activated and you can select an exit from the
drop list. Options include all post-exits in the system.

The C column specifies whether a condition has been specified to activate that exit.

The Maximum number of errors before stopping validation field specifies the maximum number of errors
generated during item validation before terminating validation and reporting the errors to the user.

20 Rhythmyx Implementing Content Editors

Rule Editor
Use the Rule Editor to specify the conditions that trigger an Exit or Effect, or that permit a specific type of
Cloning.

You can write simple Rules in the Rule Editor itself. For example, you can write a rule that tests an
HTML parameter against a literal value right in the Rule Editor. However, more complicated Rule,
particularly Rules that require reference to other objects in the system, may require an Extension. For
example, if you wanted to evaluate whether a Slot contains a certain number of Content Items, the Rule
Editor does not have the facilities to perform the check. You would have to write an extension to evaluate
this rule. The extension must be a UDF that generates a boolean value (in other words, either TRUE or
FALSE.

To access the Rule Editor, double click on the icon in the C column on the Cloning, Exits, or Effects
panel of the Relationship Editor.

Figure 7: Rule Editor

Columns

Type Drop List. Specifies the type of Rule. Two options are available: Condition and Extension.

Rule Defines the Rule. If the Type is Condition, you must specify the conditions to me met (for example,
psx-locale=fr=fr) in this column. Use the Conditional Property dialog to specify the conditions. If the
Type is Exension, you must sepcify the Extension to produce the result. The extension must result in a
boolean value (in other words, either TRUE or FALSE).

Op Specifies a boolean operator to join multiple rules. Options are AND or OR, or null.

 Chapter 2 Maintaining Content Editors 21

Content Editor Maintenance
This section describes:

� how to create a Content Editor resource (see "Creating a Content Editor Resource" on page
21);

� how to activate a Content Editor for editing (see "Activating a Content Editor Resource for
Edit" on page 23);

� how to define and maintain the Content Type for a Content Editor (see "Content Type" on
page 23);

� how to attach tables to a Content Editor (see "Attaching Tables to a Content Editor" on page
23); and

� how to maintain settings for a Content Editor (see "Maintaining Content Editor Settings" on
page 24).

Creating a Content Editor Resource
You can create a content editor in the Rhythmyx workbench:

� from scratch;
� by defining a Content Editor XML file and dropping it into the Rhythmyx workbench; or
� by dropping the Content Editor database table into the Rhythmyx workbench.

Creating a Content Editor from Scratch
Each content editor you create must be based on a template. The template determines which content
editor data is already defined. Rhythmyx includes the following default template:

� sys_default.xml: includes a small set of system fields:
� sys_title

� sys_communityid

� sys_lang

� sys_currentview

� sys_workflowid

22 Rhythmyx Implementing Content Editors

When you create a content editor from scratch, you are also defining the database table that will store the
data for the content editor. Rhythmyx creates the database table when you save the content editor if you
have defined the following data for the content editor.

� Name (becomes the name of the database table);
� at least one local field name (the name of each field becomes the name of the database table

column that stores data for that field);
� a Data Type for each field you have defined (defines the data type of the database column);

and
� for certain Data Types (such as string), a Data Format.

¾ To create a content editor resource from scratch:
1 In the Rhythmyx Workbench, start a new application.

2 In the Menu bar of the Rhythmyx Workbench, choose Insert > Content Editor.

Rhythmyx displays the Content Editor Templates dialog

3 Choose the template you want to use for this content editor.
Rhythmyx inserts the content editor into the active application.

Creating a Content Editor from an XML File
You can define an XML file manually, and then drop it into the workbench to create a content editor
application. For more details, see Implementing a Content Editor Manually (on page 131).

NOTE: You must use a manually created XML file based on the sys_ContentEditorLocalDef.dtd file.
You cannot use drag and drop with a template file. Template files are only intended to be used when
adding a new Content Editor resource through the Menu bar.

Creating a Content Editor from a Database Table
If you have already defined a database table for a content type, you can create a content editor for that
content type by dropping the table into the Rhythmyx workbench.

Note: You cannot create a Content Editor from a system table (tables Rhythmyx uses to operate). If you
attempt to drop a system table, the pop-up menu does not include the option Content Editor.

To create a content editor from a database table:

1 Drag the database table into the application.

2 On the pop-up menu, choose Content Editor. (Note that if you dropped a system table, this
option will not be available. Right-click to cancel the drop.)

3 Rhythmyx displays the Content Editor Templates dialog. Choose the template you want to
use for the content editor.

4 Rhythmyx generates a content editor XML based on the template you chose and mapped to
the table you dropped. This table becomes the primary content table for the content editor.

5 Edit the content editor and field properties.

 Chapter 2 Maintaining Content Editors 23

Activating a Content Editor Resource for Edit
To activate a content editor resource for edit, double-click on it, or right-click on it and choose Properties
from the pop-up menu. Rhythmyx will display the Content Editor Properties dialog.

Content Type
Each content editor must manage the data for a specific content type. In most cases, you will create a new
content type when you create a new editor. In special circumstances, you can choose the content type for
the editor from the Content Type drop list. To create a new content type:

1 On the Content Editor Properties dialog, click [New].

2 Rhythmyx displays the Create Content Type dialog.

Figure 8: Create Content Type dialog

3 Enter the Name and optional Description of the new content type.

4 Click [OK].

Attaching Tables to a Content Editor
To add tables to a content editor, drag them from the data tab in the workbench and drop them on the
content editor resource. Rhythmyx displays a pop-up menu with the available options.

Option Comment
Primary editor content This is the default selection if the editor does not yet

have a primary table.

Multi-valued choice (such as check box group of
drop list with multiple values)

This is the default choice if the table has a single,
non-system column.

Child content with a 1 to many relationship to the
parent

This is the default choice if no other choice is the
default.

Child content with a 1 to 1 relationship to the parent

24 Rhythmyx Implementing Content Editors

Maintaining Content Editor Settings
To maintain settings for a Content Editor:

1 On the Content Editor Properties dialog, click the [Advanced] button.

Rhythmyx displays the Content Editor Settings dialog.

2 To specify general settings for the Content Editor:

a) Choose the General tab (this is the default tab for the dialog).

b) To enable searches on all fields of the Content Editor, check the Allow fields in this
content editor to be searched checkbox. Note that you can disable search on specific
individual fields in the Content Editor.

c) To allow Content Items edited with this Content Editor to create Active Assembly
Relationships to other Content Items, check the Support Related Content checkbox.

3 To specify the Workflow settings for the Content Editor:

a) Choose the Workflow tab.

b) In the Default Workflow drop list, select the Workflow you want Content Items edited with
this Content Editor to enter by default when no Workflow is specified.

c) If you want to allow Content Items to enter any Workflow defined in the system, select
the Allow items to enter any workflow radio button.

d) If you want to allow Content Items to enter any Workflow except a specific set, select the
Allow items to enter all workflows except the following radio button and select the
Workflows you do not want available for the Content Items in the Workflows box. Use
Control-click to select multiple Workflows.

e) If you want to allow Content Items to enter only a specific set of Workflows, select the
Allow items to enter the following workflows only radio button and select the Workflows
you want to be available for the Content Items in the Workflows box. Use Control-click
to select multiple Workflows.

4 To add input translations (conversions of Content Item data uploaded to the database) to the
Content Editor:

a) Choose the Item Input Translation tab.

b) Click in the first available row and select the exit you want to add as an input translation
for the Content Editor.

Rhythmyx displays the Extension Parameter Editor.

c) Specify the values for the parameters of the exit.You can specify values manually or use
the Value Selector. When you have specified values for each parameter of the exit, click
the [OK] button to return to the Content Editor Settings dialog.

d) To specify a condition for activating the exit, click the button.

Rhythmyx displays the Rule Editor.

e) Specify the Rules you want to activate the exit.

 Chapter 2 Maintaining Content Editors 25

5 To add output translations (conversions of Content Item data downloaded from the database)
to the Content Editor:

a) Choose the Item Output Translation tab.

b) Follow substeps b through f of Step 5 to add output translation exits and conditions.

6 To add item-level validation to the Content Editor:

a) Choose the Item Validation tab.

b) Click in the first available row and select the exit you want to add as an input translation
for the Content Editor.

Rhythmyx displays the Extension Parameter Editor.

c) Specify the values for the parameters of the exit.You can specify values manually or use
the Value Selector. When you have specified values for each parameter of the exit, click
the [OK] button to return to the Content Editor Settings dialog.

d) To specify a condition for activating the exit, click the button.

Rhythmyx displays the Rule Editor.

e) Specify the Rules you want to activate the exit.

f) The default value of Maximum number of errors before stopping validation is 10. You
can change this value to any numeric value.

Defining Conditions for Exits, Effects, and Cloning Processes
When adding an Exit or an Effect to a Relationship, you can specify conditions that trigger that extension.
You can also define conditions for both the deep and shallow cloning processes.

To define conditions for an extension or cloning process:

1 Double-click the icon in the row of the extension or cloning process to which you want to
add conditions.

Rhythmyx displays the Rule Editor.

2 To add a Rule as a Condition:

a) In the first blank row on the Rule Editor, click in the Type field and choose Conditional.

b) Double click in the Rule column of the same row to activate the Rule field.

c) Click on the browse button (...).

d) Rhythmyx displays the Conditional Properties dialog.

e) Click in the Variable column, then click the browse button to display the Value Selector.
Specify the Value for the Variable.

f) In the Op column, choose an operator.

g) Click the Value column, then click the browse button to display the Value Selector.
Specify the Value for the Value.

26 Rhythmyx Implementing Content Editors

h) If you want to add another condition, click in the bool field and choose the boolean
operator for the additional condition. Options are AND and OR. Note that if you add
multiple conditions on this dialog, they are treated as a single Rule on the Rule Editor. In
other words, the result of the entire set of conditions is treated as the result of the Rule.

i) Click [OK] to save the condition.

3 To specify an Exit to process the Rule:

a) In the first blank role on the Rule Editor, click in the Type field and choose Extension.

b) Double-click in the Rule field of the same column and select the extension you want to
use for the Rule. The extension should be a UDF that generates a boolean result (in other
words, eithe TRUE or FALSE).

4 If you want to add another Rule, click in the Op column of the Rule and choose the boolean
operator you want to use to process the additional rule. Options are AND and OR.

5 Click [OK] to save your rules.

Using the Value Selector
The Value Selector is available from many different fields to help you enter the data for the field. When
you click in a field in which you can enter a value, Rhythmyx activates the field and displays a browse
button (. . .). You can enter the value into the field manually, but using Value Selector is often faster.
Click the browse button to activate the Value Selector.

Field Descriptions
Type Drop list. Specifies the classification of the Value. Options include:

Type Description
Backend Column Value is derived from a backend database column. Available options

are all columns in all database tables associated with the Resource.

CGI Variable Value is derived from the value of the specified CGI variable.
Available options include all CGI variables.

 Chapter 2 Maintaining Content Editors 27

Type Description
Content Item Data Value is derived from the specified Content Item Field. This option

may return a Collection of Values. See Collections Processing,
below, for details about the processing of Collections.

Content Item Status Value is derived from one of the following tables:

� CONTENTSTATUS
� STATES
� WORKFLOWAPPS

Most commonly, you will want either the name
(STATES.STATENAME) or ID
(CONTENTSTATUS.CONTENTSTATEID) of the current State of
the Content Item when using this class of values.

Cookie Value is derived from the specified Cookie. You must enter the name
of the Cookie manually.

Date Value is a date. Use SQL syntax when specifying the date value.

HTML Parameter Value is derived from the specified HTML parameter. This Value
type should only be selected if the HTML parameter could potentially
store multiple values (for example, if the values are derived from a
sys_CheckBoxGroup control). If the parameter only stores a single
value, you should use the SIngle HTML Parameter type.

Literal Value is the literal value you enter manually in the Value field.

Macro Value is returned by the macro selected in the drop list.

Number Value is the numeric value you enter manually in the Value field.

Relationship (Triggering) Used only with Effects. Value is derived from the specified property
of the Relationship that triggered the Effect. Available options are all
properties (including User Properties) of the Relationship Type of the
Relationship that triggered the Effect.

Relationship (Current) Used only with Effects. Value is derived from the specified property
of the Relationship current being processed. Available options are all
properties (including User Properties) of the Relationship Type that is
being processed.

Single HTML Parameter Value is derived from the specified HTML parameter. Unless the
parameter could potentially store multiple values (for example, if the
values are derived from a sys_CheckBoxGroup control), you should
use this Value type when specifying HTML parameters. If a
parameter could store multiple values, use the HTML Parameter value
type.

User Context Value is derived from a user context variable, which stores
information about the user logged in and the current session.

Value The selected value.

Choices The options available for the Value Type.

To use the Value Selector:

1 Click the browse button in the field for which you want to enter a value.

28 Rhythmyx Implementing Content Editors

2 Rhythmyx displays the Value Selector dialog.

3 Select the Value Type.

4 Specify the Value.

� For most Value Types, a list of available Values will be listed in the Choices field.
Select the value you want to specify.

� For a Literal or Number Value Type, enter the value. Numeric values should not
include commas or periods.

� For the Date Value Type, enter the SQL date expression.

5 Click [OK] to add your choice to the field.

Collections Processing
Content Value Data and Relationship Value Types may return collections of values rather than single
values. The result of the processing depends on which side of the operand the collection is on.

Collection to Left of Operand

Operation Behavior
=, != If the collection consists of a single item, it is processed; otherwise,

returns false.

LIKE Behaves as a set of conditional statements linked by ORs: (left1 LIKE
right) OR (left2 LIKE right) OR (left3 LIKE right)...

NOT LIKE Behaves as a set of conditional statements liked by ANDs: (left1 LIKE
right) AND (left2 LIKE right) AND (left3 LIKE right)...

<, <=, >, >= Behaves as a set of conditional statements liked by ANDs: (left1 LIKE
right) AND (left2 LIKE right) AND (left3 LIKE right)...

IS NULL If the collection is empty, returns true; otherwise, returns false.

IS NOT NULL If the collection is empty, returns false; otherwise, returns true.

BETWEEN, NOT BETWEEN Illegal if the right side of the equation consists of a single value. Displays
an error message.

IN, NOT IN If the collection contains exactly 1 entry, it is processed; otherwise, results
in an error.

Collection to Right of Operand

Operation Behavior
=, != If the collection consists of a single item, it is processed; otherwise, returns

false.

LIKE Behaves as a set of conditional statements linked by ORs: (left1 LIKE
right) OR (left2 LIKE right) OR (left3 LIKE right)...

NOT LIKE Behaves as a set of conditional statements liked by ANDs: (left1 LIKE
right) AND (left2 LIKE right) AND (left3 LIKE right)...

 Chapter 2 Maintaining Content Editors 29

Operation Behavior
<, <=, >, >= Behaves as a set of conditional statements liked by ANDs: (left1 LIKE

right) AND (left2 LIKE right) AND (left3 LIKE right)...

IS NULL Not allowed. Results in an error.

IS NOT NULL Not allowed. Results in an error.

BETWEEN, NOT BETWEEN If the collection contains exactly 2 entries, it is processed; otherwise, results
in an error.

IN, NOT IN The collection is processed.

Collection on Both Sides of Operand

Operation Behavior
=, != If both collections consists of exactly 1 item, they are processed; otherwise

returns false.

LIKE If each collection consists of 1 or more items, each item in the left
collection is compared to each item in the right collection; if, for any pair of
items, a match is found, returns true; otherwise returns false.

NOT LIKE If each collection consists of 1 or more items, each item in the left
collection is compared to each item in the right collection; if, for any pair of
items, a match is found, returns false; otherwise returns true.

<, <=, >, >= Illegal operand; results in an error.

IS NULL Illegal operand; results in an error.

IS NOT NULL Illegal operand; results in an error.

BETWEEN, NOT BETWEEN If the Left collection contains exactly 1 entry and the right collection
contains exactly 2 entries, the equation is processed; otherwise, results in an
error.

IN, NOT IN Processed similar to LIKE and NOT LIKE.

 31

Maintaining Content Editor Fields
Each content editor defines a set of fields. Each field either modifies the data in a backend table column
or points to a child editor.

NOTE: You can also make a field read-only by editing the content editor XML file directly. See
Implementing a Content Editor Manually (on page 131) for details.

When you create an editor by dropping a database table, Rhythmyx creates a field for each non-system
field in the table you dropped. The name of the column (all lower-case) becomes the name of the field
and the HTML display name for the field. The default control assigned to fields a parent in is the standard
text control (sys_EditBox). If you chose Multi-valued choice or Child content with a 1 to 1 relationship to
the parent when you dropped the table, the default control is the first control in the list that supports the
data type array. If you chose Child content with a 1 to many relationship to the parent when you dropped
the table, the default control is the first control in the list that supports the data type table.

The fields are defined in the content editor in the following sequence:

� Primary fields (in the order defined in the table)
� Choice sets
� Multi-values, single choice fields, in table order
� Children with a one to many relationship to the parent
� System fields

C H A P T E R 3

32 Rhythmyx Implementing Content Editors

Field Maintenance Dialogs
A limited set of data is available for maintenance directly in the Content Editor Properties dialog. To
access complete data for a Content Editor field, use one of the field maintenance dialogs:

� New Field Properties dialog
� Field Properties dialog
� Child Editor Field Properties dialog

 Chapter 3 Maintaining Content Editor Fields 33

New Field Properties Dialog
Rhythmyx displays the New Field Properties dialog when you click [Edit] after selecting a field on the
Content Editor Properties dialog that has not yet been linked to a column in a Repository database table.
 If you are creating a new field, Rhythmyx creates a column in the content type table when you save the
content editor.

The fields on this dialog define data for the Content Editor field. For details about each field, see the
appropriate topic in Field Data (on page 39).

Figure 9: New Field Properties dialog

34 Rhythmyx Implementing Content Editors

Field Properties Dialog
Rhythmyx displays the Field Properties dialog when you click [Edit] after selecting a field on the Content
Editor Properties dialog that is linked to a column in a Repository database table, if the Type of the field is
field.

Figure 10: Field Properties dialog

 Chapter 3 Maintaining Content Editor Fields 35

Child Editor Field Properties Dialog
Rhythmyx displays the Child Editor Field Properties dialog when you click [Edit] after selecting a field
on the Content Editor Properties dialog that is linked to a column in a Repository database table, if the
Type of the field is child.

Figure 11: Child Editor Field Properties dialog

Field Descriptions
Editor Name: Name of the field on the editor for the child editor is defined.

Allow user to reorder entries Check this box to allow users to change the order of entries in the child
editor.

Allow fields in this child to be searched Check this box to make fields in the child editor eligible to be
indexed for full-text search. Checking this box also checks the Allow this field to be searched box for
each field on the child editor by default. If this box is unchecked, none of the fields on the child editor are
eligible to be searched.

36 Rhythmyx Implementing Content Editors

Creating a New Field
To create a new field:

1 On the Content Editor Properties dialog, click in the Source column of an empty row and
choose the content editor definition file where the field will be stored. Options are local def
(adds the field to the content editor local definition), shared def (adds a field from a shared
definition file; the field must exist in the shared definition file; if it does not already exist in
that field, you must add it to a shared definition file), and system def (adds a field from the
system definition file; the field must already exist in the system definition file).

2 Click in the Type column of the same row and select the type of data stored in this field.
 Options are field and child.

3 Double-click in the Name column of the same row and enter a name for this field. This name
should match the database table name of the column that will store the data for the field. If
you have not attached a table to the editor, this name becomes the name of the column.
 Spaces are not allowed; use underscores instead.

4 Click the [Edit] button.

Rhythmyx displays the New Field Properties dialog.

5 Choose the Data Type from the drop list. Options include: text, number, binary, date, time,
and datetime. NOTE: This field is not available for fields in child editors.

6 If the Data Type is text or binary, enter the maximum number of characters or bytes for the
field in the Format field. The default is max. If Data Type has any other value, the Format
field is not available.

7 Enter a Default Value for the field.

� If you want to use a system value, click the browse button […] and choose Other
Value. Rhythmyx displays the Value Selector dialog, where you can choose the
system value you want to assign to the field.

� If you want the system to calculate the default value for the field, click the browse
button […]and choose User Defined Function. Rhythmyx displays the Function
Properties dialog, where you can choose or enter the function to calculate the value.

8 If the field will store large text files, check the Treat text as binary box.

9 Enter a Label and Error Label for the field. If you do not define an Error Label, the value
defaults to the same value as Label.

10 Choose a Control to use to display the field.

11 In Mnemonic, enter the keystroke for accessing the field. In the Content Editor, a user must
enter ALT + the keystroke to access the field.

 Chapter 3 Maintaining Content Editor Fields 37

12 Check options to show the field in summary view and preview, and to clear binary data.

� The Show in Summary option is only available for fields in child editors, and only
when Treat Data as Binary is not checked. Check this option if you want Rhythmyx to
display a summary of the field in the parent editor. Typically, this field is checked
unless it stores a large amount of text data.

� Check Show in Preview if you want Rhythmyx to display the field when displaying
the content editor in Preview mode. This option is not available if Treat Data as
Binary is checked. In most cases, you will check this option.

� The Show 'clear field' checkbox in binary control option is only available if Treat Data
as Binary is checked. Check this option if you want the content editor to display a
box the user can check to clear the database table column before uploading binary
data.

13 Choose an Occurrence option. Options include: optional and required for parent editors and
optional, required, and count for child editors. If you choose count, you must enter the
Quantity.

14 Click [OK] to save the field record.

Quick Field Creation
You can create a field quickly by entering data in the columns of the Content Editor Properties dialog.
 You can define the Source, Type, Name, Label, Control, Occurrence, Data Type, and Format on this dialog.
 To define the default value or error label, and to access display options, binary field clearing options, and
advanced occurrence settings, you must edit the field.

38 Rhythmyx Implementing Content Editors

Field Maintenance
Field maintenance includes creating new fields, editing an existing field (see "Editing a Field" on page
38), or deleting a field (on page 38). You can also maintain some data about the child editor field on the
parent editor (see "Child Editors" on page 38).

Editing a Field
To edit a field, select the field you want to edit and click the [Edit] button. Rhythmyx will display the
Field Properties dialog. You can modify any field displayed.

Deleting a Field
To delete a field, select the field you want to delete (you can select multiple adjacent fields) and click the
[Delete] button.

Child Editors
A child editor is an editor that processes content that has a one-to-many relationship with the parent (in
other words, the parent editor may result in several child items from the child editor). The left-most tab in
the Content Editor Properties dialog is the mapper for the parent editor. Each tab to the right is the
mapper for a child editor. The order that the child editors are rendered on the parent editor is determined
by the order in which they are defined on the parent editor.

 39

Field Data
Each Content Editor field is composed of a set of data that defines the properties of the field. This chapter
describes each of the properties available to a Content Editor field.

C H A P T E R 4

40 Rhythmyx Implementing Content Editors

Source of Field
The Source of the field specifies the content editor XML definition document where the content editor
field is defined.

Content editor definition documents fall into three classes. Each implementation of Rhythmyx includes a
single system field document, which conforms to the sys_ContentEditorSystemDef DTD. This document
defines all fields that will be common to all content editors in the implementation, such as creation and
expiration date fields. System fields are included in each editor by default unless specifically excluded.
 To define a system field, select system def for the Source. To exclude a system field, select the field and
click [Delete]. The field will not be included in the content editor, but it still exists in the system.

Generally, each implementation also includes one shared field definition document (although there can
theoretically be more than one shared field definition XML). This document defines fields that are shared
by more than one content editor. To include a shared field, select shared def for the Source.

You cannot edit either the system field definition or the shared field definition in the Content Editor
Properties dialog. You can only include from these two documents or exclude them. To edit a system or
shared field definition, you must edit the field manually in the XML file.

Each individual editor is defined by a local definition document, which conforms to the
sys_ContentEditorLocalDef DTD. To define a local field, select local def for the Source. Each
content editor requires at least one local field.

 Chapter 4 Field Data 41

Type of Field
The value in the Type field Indicates whether the data for this content editor field is maintained in this
editor or in a child editor. If the Type is field, the data for the field is maintained using this editor. If the
Type is child, the data for the field is maintained using a child editor.

42 Rhythmyx Implementing Content Editors

Show in Preview
If you check this box (the default), the field will appear in the content editor in preview mode. If the box
is unchecked, the field will not appear in preview mode.

 Chapter 4 Field Data 43

Name of Field
If the value in the Type field is field, this field defines the Rhythmyx name for the content editor field.
 The value in the Name field is the name Rhythmyx will use when processing the content editor field. It is
not the name displayed for the content editor field, which is either the Label or the Error Label.
If you are creating a content editor from scratch, and generating the database table for the editor,
Rhythmyx will create a column in the database table with the same name when you save the content
editor. If you change the name of the field later, the name of the database column will not change, but the
field will still be linked to the same column.

If the value in the Type field is child, the value in this field is the name of the child editor where the data
for content editor field is maintained.

44 Rhythmyx Implementing Content Editors

Label of Field
This is the label Rhythmyx will display for the content editor field when rendering the content editor. If
you created the editor by dropping a table, Rhythmyx generates the Label by converting all underscores in
the Name to spaces and capitalizing each letter preceded by a space, as well as the first letter in the string.

 Chapter 4 Field Data 45

Mnemonic
This field holds the keystroke that accesses the field. The user must enter ALT + Mnemonic to access the
field.

46 Rhythmyx Implementing Content Editors

Error Label
This label will override the default Label if Rhythmyx generates a validation or translation error when
processing the field data. If this field is blank, the value defaults to the same value as the Label field.

 Chapter 4 Field Data 47

Control
This field specifies the control used to display the content editor field. For details about configuring
controls for a field, see Content Editor Field Controls (on page 63). For technical details about controls
in general and about the controls available with Rhythmyx by default, see Content Editor Control
Reference (on page 147) in the Appendix.

Adding Parameters to a Control
Some controls require parameters to operate. The Inline Link Properties are used in fields where you want
to enable inline links and inline images. These fields must use either the sys_EditBox or sys_EditLive
controls. To allow inline links in a field, check the mayHaveInlineLinks box. To clean up inline references
to purged Content Items, check the cleanupBrokenInlineLinks box.

To add parameters to a control:

1 Click the browse button […] in the Control column of the Content Editor Properties dialog or
next to the Control field in the Field Properties dialog.

48 Rhythmyx Implementing Content Editors

Rhythmyx displays the Display Control Properties for (field) dialog.

Figure 12: Display Control Properties for Associations dialog

2 Click in a row in the Param name column and select a parameter from the drop list.

3 Click in the same row in the Value column.

4 If the control definition specifies a choice list for this parameter, Rhythmyx displays the
choices. Choose the choice for the parameter.

5 If the control definition does not specify a choice list for the parameter, choose an option from
the drop list. Options available include: Link (displays the URL Request Properties dialog,
where you define a URL to an application that calculates the parameter), User Defined
Function (displays the standard Function Properties dialog), and Other Value (Displays the
Value Selector dialog).

 Chapter 4 Field Data 49

6 Repeat steps 2 through 5 for each parameter.

7 If the control includes a choice list, you must define the choices (see "Adding Choices to a
Control" on page 52).

8 Click [OK] to save your control definition.

Specifying a URL for a Control
A URL for a control parameter can be either an internal request or an external request. An internal request
is used when all processing of the parameter is internal to Rhythmyx. If the client browser processes the
request, you must use an external request.

Use the URL Request Properties dialog to specify the URL for a control.

Specifying an External Request
To specify an external request:

1 On the URL Request Properties dialog, choose the External radio button.

Figure 13: URL Request Properties dialog for external URLs

2 In the Base href field, enter the relative path to the Rhythmyx application that will generate
the URL.

3 Click in a blank row in the Param name column and enter the name of a parameter in the
application.

50 Rhythmyx Implementing Content Editors

4 Click in the Value column of the same row and select the Value from the Value Selector
dialog (or enter Literal text directly into the field).

5 Repeat steps 3 and 4 for all parameters in the application.

6 Click [OK] to save the URL request.

Specifying an Internal Request
To specify an internal request:

1 On the URL Request Properties dialog, choose the Internal radio button.

Figure 14: URL Request Properties dialog for internal requests

2 Choose the Application name of the Rhythmyx application that will build the URL from the
drop list.

3 Choose the Resource name of the resource in the application that build the URL from the drop
list.

4 Click in a blank row of the Param name column and enter the name of a parameter in the
application.

5 Click in the Value column of the same row and select the Value from the Value Selector
dialog (or enter Literal text directly into the field).

6 Repeat step 5 for all parameters in the resource.

7 Click [OK] to save the URL request.

 Chapter 4 Field Data 51

Managing Dependencies in a Control
NOTE: Most users will not have to change the dependencies in controls. Only refer to the following topic
if you are an advanced user.

Dependencies are pre-exits that a control requires. They are defined in
../sys_resources/sys_Template.xsl. The DTD for dependencies is
../DTD/sys_LibraryControlDef.dtd.

If a control has dependencies, the Display Control Properties for <Field> dialog includes the
[Dependencies] button. When you click this button, Rhythmyx displays a drop list showing all
dependencies for the control. Dependencies appear as exit_name (parameter1, parameter2, . . .).

Figure 15: Display Control Properties for Associations Dialog with Dependency

If the dependency includes no editable parameters, the dependency name appears as a disabled link. If the
dependency includes editable parameters, the dependency name appears as an enabled link. Rhythmyx
displays the Exit Properties dialog when you click the dependency name.

52 Rhythmyx Implementing Content Editors

If the occurrence setting of the dependency in the control library metadata is single occurrence, all
instances of the dependency in a content editor use the same parameters. If the occurrence setting of the
dependency is multiple occurrence, you must define the parameters for each instance of the
dependency in the content editor.

Adding Choices to a Control
If a control provides a list of choices to the user, you will need to specify how those choices are generated.

To specify choices for a control:

1 On the Display Control Properties for (control) dialog, click the Choices tab.

Figure 16: Display Control Properties for Associations dialog showing Choices tab selected

2 Choose the Entry-set source. Options are:

� Pre-defined set from RXLOOKUP Table. If you choose this option, you must choose
the category of the choices from the drop list.

� Get choices from a Rhythmyx application. If you choose this option, you must specify
the URL of the application that generates the choice list.

� (The Get choices from a custom URL option is disabled for all systems except legacy
systems that used this option in the past. This option caused errors in some
implementations and has been deprecated. If you use this option, you should migrate
to the Get choices from a Rhythmyx application option.)

 Chapter 4 Field Data 53

� Define choices for this control only. If you choose this option, you must define the
choice list for this control by entering a Display Name (the name displayed in the
browser when the control is rendered) and Value (the value Rhythmyx uses when
processing the choice) for each choice.

3 Check the radio button specifying the Sort Order of the choices. Options are

� Ascending (ascending alphanumeric order)

� Descending (descending alphanumeric order)

� User-Specified (choices appear in the order specified by the SequenceID if derived
from the RXLOOKUP Table, or in the order defined or received if defined for the
control or generated by a Rhythmyx application)

4 If RXLOOKUP Table is checked in the Entry-set sources box, select the Default value(s) of the
choice list. Otherwise, enter the Default Value(s).

5 In the Empty Entry box, enter the Display name (name displayed when the editor is rendered if
there is no default entry for the choice list) and Value (value Rhythmyx uses for processing if
there is no default entry for the choice list).

Specifying the URL of a Choices Application
If you choose to derive choices for a choice list in a content editor field from a Rhythmyx application, you
must specify the URL of the application. You can enter the URL manually in the URL field on the Choices
tab of the Display Control Properties for <control> dialog or you can use the Create Choice Lookup
Request dialog. To create a URL in the Create Choice Lookup Request dialog:

1 Click the browse button [. . .] next to the URL field on the Display Control Properties for
<control> dialog.

2 Rhythmyx displays the Create Choice Lookup Request dialog.

3 Choose the Application Name of the Rhythmyx application that generates the choice list.

4 Choose the Resource Name of the resource within that application that generates the choice
list.

5 Click in a row in the Param name column and select a parameter from the drop list.

6 Click in the same row in the Value column and enter the value or click the browse button [. . .]
to display the Value Selector dialog.

7 To remove a parameter, click the [Remove] button.

8 Click [OK] to save the URL specification.

54 Rhythmyx Implementing Content Editors

Create Choice Lookup Request Dialog
Use the Create Choice Lookup Request dialog to automate entry of the URL to the Rhythmyx application
that creates choices for a choice list in a content editor control. To access the Create Choice Lookup
Dialog, click the browse button […] next to the URL field on the on the Choices tab of the Display Control
Properties for <control> dialog.

Figure 17: Create Choice Lookup Request Dialog

Field Descriptions
Application name Drop list. Name of the Rhythmyx application from which the list of choices is derived.
Options include all applications defined in your system.

Resource name Drop list. Name of the resource within the Rhythmyx application from which the list of
choices is derived. Options include all resources in the specified application.

Params Table. Parameters for the lookup request.

 Name Name of the parameter.

 Value Value of the Parameter. You can specify the value manually or use the Value Selector (see
"Using the Value Selector" on page 26).

 Chapter 4 Field Data 55

Data Type
The Data Type specifies the generic type of data stored in the content editor field. You can only define
the Data Type for a new field. Options are text, number, binary, date, time, and datetime.

56 Rhythmyx Implementing Content Editors

Occurrence of Field
The value in this field defines whether the content editor field is required or optional, and for child fields,
how many times it must repeat. If the value in the Type field for this content editor field is field, options
are required and optional. If the value in the Type field for this content editor field is child, options are
required, optional, and count. If the value of Occurrence is count, you must enter the Quantity to define
how many times the field must appear.

NOTE: When defining a field in the Content Editor Properties dialog, enter the quantity in the Occurrence
column, which sets the value of Occurrence to count.

 Chapter 4 Field Data 57

Format of Field
The Format is required if the Data Type is text or binary. This field defines the size of the field by
specifying the maximum number of characters (text; default is 50) or bytes (binary; default is max, which
mean the field stores the greatest amount of data available for the data type in the RDBMS).

58 Rhythmyx Implementing Content Editors

Default Value of Field
The Default Value property defines the default value Rhythmyx will display in the content editor field.
 You can enter a literal value directly, specify a value using the Value Selector, or specify a UDF that will
generate the default value.

 Chapter 4 Field Data 59

Treating Text as Binary
The Rhythmyx server treats fields with binary data differently than it treats text data. When you add a
new content item or update a content item that includes binary data in a field, the binary data is stored in
the database. If the field does not contain any data, the database column is not changed. When editing a
binary field, the binary data is not stored in the content editor. You must request the binary data file using
the binary command. You may want to treat large text fields the same way. To treat a text field as
though it contains binary data, check Treat text as binary.

60 Rhythmyx Implementing Content Editors

Clearing Binary Data from a Field
If a field maintains binary data, the user may need to clear the backend database column before saving
new data to it. To provide this option to the user, check Show 'clear' field checkbox in binary control. The
field will include a checkbox the user can check to clear the database before saving binary data.

You can also make this option available if you checked the Treat text as binary box.

 Chapter 4 Field Data 61

Show in Summary
This checkbox is available only if the field is in a child editor and is not a binary field or treated as a
binary field. If you check this box, this field will be shown in the summary view on the parent editor.
 Typically, this box is unchecked for large text fields that do not make sense in summary view. For all
other fields, it is usually checked.

62 Rhythmyx Implementing Content Editors

Search Properties
Search properties define whether the field is eligible to be searched, and controls how the full-text search
editor indexes the field for searching. Content Items are indexed for searching when the are created and
any time they are uploaded to the Repository. (You can also reindex manually; see the topic "Server
Console Commands for Search" in the Rhythmyx Server Administrator Help.

The Allow this field to be searched checkbox specifies whether the field is eligible to be searched. If this
box is checked, the field is indexed for searching. If the box is unchecked, the field is not indexed for
searching. In addition, the other search properties are unavailable if this box is unchecked.

NOTE: If you uncheck this box after already indexing some Content Items, those Content Items will be
returned in search queries that match data for the field. If you re-index, the Content Items will longer be
included in the index, and they will not be returned.

The Enable Transformation checkbox controls whether the content of the field is converted to raw text
before it is added to the index. Transforming the text removes extraneous data, such as HTML markup,
leaving only the document text. For fields with certain data types (such as BLOB), this box is checekd by
default and cannot be unchecked. In general, you want to check this box for fields that contain binary or
rich-text data (such as a field that uses the sys_file control or uses a rich text editor such as the
sys_EditLive DHTML editor. Checking this box for fields that only store plain text data (such as fields
that use the sys_editbox control) will not affect the results of indexing, but will slow performance.

The Visible for global query checkbox defines whether the field is searched when a user enters a query
string into the Search for field on the search dialog. If the Allow this field to be searched checkbox is
checked, this box is also checked by default. Some fields, however, should not be searched automatically;
examples include the Content ID or Workflow. Fields with this box unchecked can be searched using the
Advanced search capability in the Content Explorer.

The Punctuation is part of word checkbox controls how the search engine parses words during indexing. If
this field is unchecked, punctuation marks are treated as word separators rather than as part of a word. If
the box is checked, punctuation marks are treated as part of the word. Check this box for fields that will
contain values such as file names or product IDs that include hyphens or other punctuation marks. Note
that if the field stores dates, this box is unchecked and unavailable for editing.

If the value of the Type for the field is child, then only one checkbox, Allow fields in this child to be
indexed, is included. If this box is checked, fields in the child editor are eligible to be indexed for full-text
search, and the Allow this field to be searched checkbox is checked for each field in the child editor by
default, making each field eligible to be searched. You can uncheck the Allow this field to be searched
checkbox for each field in the child editor individually.

If the Allow fields in this child to be indexed, box is unchecked, none of the fields in the Content Editor are
eligible to be searched, and the Allow this field to be searched checkbox is unavailable for all fields in the
child editor.

 63

Content Editor Field Controls
The control specified for a field defines the interface for the field and its behavior. In general, you select a
control by clicking in the Control Name column in the Content Editor Properties dialog or the Control
Name field in Field Properties dialog, and selecting the control you want to assign to the field.

C H A P T E R 5

64 Rhythmyx Implementing Content Editors

Content Editor Control Dialogs
When you assign a control to a Content Editor field, use the Control Properties for <control> dialog to
define. If a control includes a limited set of optional values, you may need to use the URL Request
Properties dialog to define the URL from which the values for the field are derived.

Display Control Properties Dialog
Use the Display Control Properties for <control> dialog to define the properties of the control. To access
the Display Control Properties dialog:

� on the Content Editor Properties dialog, click in the Control column of the row of the field for

which you want to maintain the control, then click the browse button .
� On the Field Properties dialog click the browse button next to the Control field.

The Display Control Properties dialog includes two tabs: Control and Choices.

 Chapter 5 Content Editor Field Controls 65

Control Tab
Use the Control tab of the Display Control Properties dialog to define the properties for the control.

Figure 18: Control Tab of Display Control Properties Dialog

Field Descriptions
Name Drop list. The name of the control being specified for the field.

Data Type Read only. Specifies the dimension of the control, which defines the form of data the control
expects. Available values include:

Value Description
single Data is zero or one value.

66 Rhythmyx Implementing Content Editors

Value Description
array Data is a sequence of 0 or more values.

table Data is a table of values.
Param name Drop list. The name of a parameter for the control.

Value The value of the parameter. May be derived from a Rhythmyx application, from a UDF, or
assigned using the Value Selector.

Field Data Properties List of addition properties for the field.

mayHaveInlinelinks Specifies whether the control supports inline links. Only useful for rich-text
editor controls, such as sys_EditLive.

cleanupBrokenInlineLinks Specifies that Rhythmyx should clean up inline references to purged
Content Items.

mayContainIDs Specifies that the value of the field may include identifiers of other parts of the
implementation. For example, the field may specify the URL of an automated index query.
Among the parameters of the query may be a Variant ID. This checkbox is used by Multi-Server
Manager so it can detect these identifiers when discovering dependencies while building an
archive.

 Chapter 5 Content Editor Field Controls 67

Choices Tab
The choices tab is only available for controls that can take set of values. Use this tab to specify how the
control derives the options.

Figure 19: Choices Tab of Display Control Properties Dialog

The three options for deriving the values for the control are selected using radio buttons:

� Predefined set from RXLOOKUP

68 Rhythmyx Implementing Content Editors

This option derives the possible values for the control from the RXLOOKUP table in the
Repository. You must specify the Category of the lookup used to derive the options in the
associated drop list. This option is most useful if the control uses a defined set of values that
are shared by several Content Editors.

� Get choices from a Rhythmyx application
This option derives the possible values for the control from a Rhythmyx application. You
must specify the URL of the application used to generate the values for the lookup. This
option is most useful if the set of options is generated dynamically; for example, of the set of
options is derived from data maintained in other Content Editors.

� Define entries for this control only
This option derives the set of values from a list defined locally in the control. Use the table
associated with this radio button to define the choices for this control. Each option must
consist of both a Display Name (the name displayed to the user for the choice) and a Value (the
values used internally in Rhythmyx for processing).

NOTE: The fourth option (Get choices from a custom URL) is only available on legacy systems that used
this option in the past. This option caused errors in some implementations and has been deprecated. If you
use this option, you should migrate to the Get choices from a Rhythmyx application option.

Default Values specify the default values for the control. This option is only valid if you have chosen the
Predefined set from RXLOOKUP or Define entries for this control only radio buttons. You can select
multiple values using Control-click.

Sort order defines the order in which the options are sorted. Options include:

� Ascending
� Descending
� User specified (choices appear in the order specified by the SequenceID if derived from the

RXLOOKUP Table, or in the order defined or received if defined for the control or generated
by a Rhythmyx application)

Use the Empty Entry options to specify the Display Name and Value for a null entry, such a s drop list that
does not have a default value when first displayed..

URL Request Properties Dialog
Use the URL Request Properties dialog to specify the URL from which the value of the parameter is
derived. A URL for a control parameter can be either an internal request or an external request. An
internal request is used when all processing of the parameter is internal to Rhythmyx. If the client browser
processes the request, you must use an external request.

 Chapter 5 Content Editor Field Controls 69

URL Request Properties Dialog for External Requests
Use this version of the dialog when the client browser processes the request. To use this version of the
dialog, click the External radio button.

Figure 20: URL Request Properties Dialog with External Radio Button Selected

The Base href field specifies the relative path to the source of the data.

The params table specifies a set of parameters to append to the request. The Param name specifies the
name of the parameter, the Value specifies the value of the parameter.

70 Rhythmyx Implementing Content Editors

URL Request Properties Dialog for Internal Requests
Use this version of the dialog when all processing of the parameter is internal to Rhythmyx. To use this
version of the dialog, click the Internal radio button.

Figure 21: URL Request Properties Dialog with External Radio Button Selected

Field Descriptions
Application name Drop list. Name of the Rhythmyx application from which the list of choices is derived.
Options include all applications defined in your system.

Resource name Drop list. Name of the resource within the Rhythmyx application from which the list of
choices is derived. Options include all resources in the specified application.

Params Table. Parameters for the lookup request.

 Name Name of the parameter.

 Value Value of the Parameter. You can specify the value manually or use the Value Selector (see
"Using the Value Selector" on page 26).

 Chapter 5 Content Editor Field Controls 71

Create Choice Lookup Request Dialog
Use the Create Choice Lookup Request dialog to automate entry of the URL to the Rhythmyx application
that creates choices for a choice list in a content editor control. To access the Create Choice Lookup
Dialog, click the browse button […] next to the URL field on the on the Choices tab of the Display Control
Properties for <control> dialog.

Figure 22: Create Choice Lookup Request Dialog

Field Descriptions
Application name Drop list. Name of the Rhythmyx application from which the list of choices is derived.
Options include all applications defined in your system.

Resource name Drop list. Name of the resource within the Rhythmyx application from which the list of
choices is derived. Options include all resources in the specified application.

Params Table. Parameters for the lookup request.

 Name Name of the parameter.

 Value Value of the Parameter. You can specify the value manually or use the Value Selector (see
"Using the Value Selector" on page 26).

72 Rhythmyx Implementing Content Editors

Configuring a Content Editor Control
To configure a Content Editor control:

1 On the Content Editor Properties dialog, in the Control column of the row of the Content
Editor field for which you want to configure the control, double-click, then click the browse
button;

OR

On the New Fields Properties dialog or the Field Properties dialog, click the browse button
next to the Control field

Rhythmyx displays the Display Control Properties dialog.

2 In the Name drop list, select the control you want to assign to the field. See Appendix II,
Content Editor Control Reference (on page 147), for a list of standard controls included in
Rhythmyx. You can also implement your own specialized controls.

3 Click in the Param name column of the first empty row in the parameters table and select the
parameter for which you want to specify a value from the drop list. A list of the parameters
for each control is included with the reference information for the control in Appendix II,
Content Editor Control Reference.

4 If you want to derive the value for the parameter from a Rhythmyx resource or other URL:

a) On the popup menu, click Link.

Rhythmyx displays the URL Request Properties dialog.

b) If the request for the value is processed by the browser, click the External radio button.
Specify the Base href of the request URL.

c) If the request for the value is processed internally in the Rhythmyx server, click the
Internal radio button. Select the Rhythmyx Application and Resource from which to derive
the value.

d) To add a parameter to the request, click in the Param name column of the first empty row
in the Params table and enter the name of the parameter. Then click in the Value column
and use the Value Selector (see "Using the Value Selector" on page 26) to specify the
value for the parameter.

5 If you want to derive the value for the parameter from a UDF:

a) On the popup menu, click User Defined Function.

b) Rhythmyx displays the Function Properties dialog.

c) Select the Function you want to use to provide the value for the parameter from the drop
list.

d) To specify values for the UDF parameters, click in the Value column of row of the
parameter for which you want to supply a value. You can enter a value manually or use
the Value Selector to specify the value.

 Chapter 5 Content Editor Field Controls 73

6 If you want to specify the value directly, on the popup menu, choose Other Value and use the
Value Selector (see "Using the Value Selector" on page 26) to specify the value.

7 To remove a parameter from the control, select the parameter you want to remove and click
the [Remove] button.

8 If you are configuring the sys_EditLive control (or a custom control that supports inline
links):

� if you want to support inline links in the control, check the mayHaveInlineLinks
checkbox.

� to clean up inline references to purged Content Items, check the
cleanupBrokenInlineLinks checkbox.

9 If the value of the field may include identifiers of other parts of your implementation, check
the mayContainIDs checkbox. For example, if the control is used for the URL of the query for
an auto index, the parameters in the URL may include a Variant ID. You would need to flag
this field so Multi-Server Manager could discover these identifies when building deployment
archives.

10 Click [OK] to save your configuration.

 75

Adding Data Validation
When you create a new content editor, you can add data validation for fields entered in the user interface.
 Data validation occurs either at the field level or the item level.

Field-level validation checks whether the content in an individual field has the required format. For
example, use field-level validation to check if a date field is numeric and uses the format yyyymmdd.
Rhythmyx performs field validation each time it inserts or updates a document.

Item-level validation checks the relationship between fields in a content item. For example, use item-level
validation to check that a user enters a file name in a FileName field when the user sets an IncludeFile
field to "yes." Rhythmyx performs item validation each time a workflow transition occurs.

C H A P T E R 6

76 Rhythmyx Implementing Content Editors

Field-Level Validation
In most cases, you can set up field-level validation within the PSXField definition in the content editor
XML. However, if you want to perform extensive or complicated field-level validation, you can use a
UDF to perform field-level validation. The UDF must return a Boolean object that is "true" if the field is
valid and "false" if the field is not valid.

NOTE: The Content Editor Properties dialog and Field Properties dialogs do not include interfaces for
defining field-level translations. To add field-level validation, you must edit the local definition XML for
the Content Editor.

To set up field-level validation within a content editor, add a <PSXFieldValidationRules>
element within the <PSXField> definition. In the <PSXFieldValidationRules> element, you
can include

� <PSXRule> elements that specify validation conditions
� a <PSXApplyWhen> element that specifies when to apply the condition
� an <ErrorMessage> element to specify the error message to return when the validation

condition is not met.
In the following example, a validation rule is set up for the startdate field. The validation rule
requires that the field not be null.

<PSXField name="startdate" showInSummary="yes" showInPreview="yes"
forceBinary="no">
 <DataLocator>
 <PSXBackEndColumn id="0">
 <tableAlias>RX_DATE</tableAlias>
 <column>STARTDATE</column>
 <columnAlias/>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType/>
 <OccurrenceSettings dimension="required" multiValuedType="delimited"
delimiter=";"/>
 <FieldRules>
 <PSXFieldValidationRules name="isValidStartDate">
 <PSXRule>
 <PSXConditional id="1">
 <variable>
 <PSXSingleHtmlParameter id="0">
 <name>startdate</name>
 </PSXSingleHtmlParameter>
 </variable>
 <operator>IS NOT NULL</operator>
 <value>
 <PSXTextLiteral id="0">
 <text/>
 </PSXTextLiteral>
 </value>
 </PSXConditional>
 </PSXRule>

 Chapter 6 Adding Data Validation 77

 <PSXApplyWhen ifFieldEmpty="yes">
 <PSXRule>
 <PSXConditional id="2">
 <variable>
 <PSXTextLiteral id="0">
 <text>1</text>
 </PSXTextLiteral>
 </variable>
 <operator>=</operator>
 <value>
 <PSXTextLiteral id="0">
 <text>1</text>
 </PSXTextLiteral>
 </value>
 </PSXConditional>
 </PSXRule>
 </PSXApplyWhen>
 <ErrorMessage>
 <PSXDisplayText>This field cannot be empty.</PSXDisplayText>
 </ErrorMessage>
 </PSXFieldValidationRules>
 </FieldRules>
</PSXField>

In the <PSXRule> element of this example, the <PSXConditional> element specifies that the field
startdate cannot be null. The <ErrorMessage> element specifies that Rhythmyx display the error
message "This field cannot be empty" when the condition is not met. By default the XSL displays the
message at the top of the returned page and displays the field name in red.

Figure 23: Rhythmyx Content Editor displaying a validation error

78 Rhythmyx Implementing Content Editors

By default, <PSXApplyWhen> only checks fields with data entered; if you want to validate when the
field is empty, set the ifFieldEmpty attribute to "yes" (ifFieldEmpty="yes"). In the preceding
example, the <PSXApplyWhen> element specifies that the content editor apply the rule when the
startdate field is empty.

Transition-Dependent Field-Level Validation
You can set up transition-dependent field-level validations using attributes of the
<OccurenceSettings> element.

� You can specify that a field is required (must have a value) for all transitions by setting the
<OccurrenceSettings> dimension attribute to "required":

<PSXField name="firstname" showInSummary="yes"
showInPreview="yes" forceBinary="no">
 <DataLocator>
 <PSXBackEndColumn id="0">
 <tableAlias>RX_PERSON</tableAlias>
 <column>FIRSTNAME</column>
 <columnAlias/>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType/>
 <OccurrenceSettings dimension="required"
multiValuedType="delimited" delimiter=";"/>
</PSXField>

� You can specify that a field is required (must have a value) for a specific transition by setting
its <OccurrenceSettings> transitionId attribute to the transition ID and its
dimension attribute to “required”. You can include more than one
<OccurrenceSettings> attributes, but each must have a different transitionId and
only one can have no transitionId. When a transition occurs with an ID that is not an
attribute of an <OccurrenceSettings> element, the transition uses the
<OccurrenceSettings> element with no transitionId.

In the following example, the firstname field is not required for transitions 1, 2, and 3, but it is
required for transitions 4, 5, and 6.

<PSXField name="firstname" showInSummary="yes"
showInPreview="yes" forceBinary="no">
 <DataLocator>
 <PSXBackEndColumn id="0">
 <tableAlias>RX_PERSON</tableAlias>
 <column>FIRSTNAME</column>
 <columnAlias/>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType/>
 <OccurrenceSettings dimension="optional"
multiValuedType="delimited" delimiter=";" />
<OccurrenceSettings dimension="required"
multiValuedType="delimited" delimiter=";" transitionId=4/>
<OccurrenceSettings dimension="required"
multiValuedType="delimited" delimiter=";" transitionId=5/>

 Chapter 6 Adding Data Validation 79

<OccurrenceSettings dimension="required"
multiValuedType="delimited" delimiter=";" transitionId=6/>
</PSXField>

NOTE: While you can set OccurranceSettings in the Field Properties dialog, you cannot set the
Transition ID. If you want to validate a field for a specific Transition, you must edit the local
definition XML.

80 Rhythmyx Implementing Content Editors

Item-Level Validation
Item-level validation occurs after field-level validation when a user performs a workflow action, but
before transitions occur.

When a user performs a workflow action, Rhythmyx checks whether any validation exits have been
assigned to the Content Editor. If conditions have been assigned to the Content Type, Rhythmyx
evaluates any conditions that have been assigned to trigger the validation. If the Content Item meets the
conditions, Rhythmyx passes the Content Item XML document to the exit that validates the item.

The validation exit must implement the IPSResultDocumentProcessor interface. The exit receives
an XML document conforming to the sys_ContentEditor document. This document contains the
parent editor information as well as all children. If item validation passes, the exit should return the same
document. If it fails, the exit should return a new document conforming to the
sys_ItemValidation.dtd. Use the com.percussion.util.PSItemErrorDoc class to
create the error document.

Use the Item Validation tab of the Content Editor Settings dialog (see "Content Editor Settings Item
Validation Tab" on page 19) to assign item-level validation exits to a Content Editor. For details about
assiging a validation exit, see Maintaining Content Editor Settings (on page 24).

You can also assign item-level validation exits manually. The call to the Java exit appears in a
<PSXValidationRules> element, which is a child of the <PSXContentEditor> element and a
child of the <PSXSharedFieldGroup> element.

The following XML fragment shows an example of a call to a Java post-exit that performs item validation.
Within the <PSXValidationRules> element, include a call to one or more Java exits in
<PSXExtensionCall> elements.

<PSXValidationRules maxErrorsToStop="10">
 <PSXConditionalExit maxErrorsToStop="10">
 <PSXExtensionCallSet id="0">
 <PSXExtensionCall id="0">
 <name>Java/global/percussion/contenteditor/

ItemValidationTest</name>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXTextLiteral id="0">
 <text>3</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 </PSXExtensionCall>
 </PSXExtensionCallSet>
 </PSXConditionalExit>

In <PSXConditionalExit>, the optional <maxErrorsToStop> attribute specifies the maximum
number of errors that the exit must find before returning error messages. In <PSXValidationRules>
the optional parameter <maxErrorsToStop> indicates the total number of errors that all item
validation exits must find before the resource stops validating and returns the error page to the user. If the
exits do not find the number of errors indicated in <maxErrorsToStop>, the resource completes the
process of validating the entire item and returns any errors that it finds.

 Chapter 6 Adding Data Validation 81

Sample Item Validation Exit
You can model your item validation exit on the following sample, which returns an error page.

The following example takes one parameter that specifies the number of validation errors to produce. It
does not do an actual validation, but it shows how to produce an error document.

/*[PSFixXmlRows.java
]***
 *
 * COPYRIGHT(c)2001 by Percussion Software, Inc.,Stoneham,MA USA
 * All rights reserved. This material contains unpublished, copyrighted
work including confidential and proprietary information of Percussion.
 *
 **/
package com.percussion.ce;
import com.percussion.extension.IPSExtensionDef;
import com.percussion.extension.IPSResultDocumentProcessor;
import com.percussion.extension.PSExtensionException;
import com.percussion.extension.PSExtensionProcessingException;
import com.percussion.server.PSConsole;
import com.percussion.server.IPSRequestContext;
import com.percussion.util.PSItemErrorDoc;
import com.percussion.xml.PSXmlDocumentBuilder;
import java.io.File;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
/**
 * Sample item validation. Returns an error page. Does not include
validation code.
 */
public class PSItemValidationTest implements IPSResultDocumentProcessor
{
 /**
 * Implementation of the method defined by the interface.
 *
 * @param params[0] the first and only parameter this exit takes
specifies
 * the number of item Validation errors that this test exit should
 * produce.
 */
 public Document processResultDocument(Object[] params,
 IPSRequestContext request, Document resultDoc)
 throws PSExtensionProcessingException
 {
 Document doc = resultDoc;
 try
 {
 if (params != null && params.length >= 1)
 {
 int errors = Integer.parseInt(params[0].toString());
 if (errors > 0)

82 Rhythmyx Implementing Content Editors

 {
 // create a new error document
 doc = PSXmlDocumentBuilder.createXmlDocument();
 for (int i=0; i<errors; i++)
 {
 String submitName = SUBMIT_NAME + " " + i;
 String displayName = DISPLAY_NAME + " " + i;
 Object[] args =
 {
 submitName,
 displayName
 };
 PSItemErrorDoc.addError(doc, submitName,
 displayName, STRING_PATTERN, args);
 }
 }
 }
 }
 catch (Throwable t)
 {
 PSConsole.printMsg("Exit:" + ms_fullExtensionName, t);
 }
 return doc;
 }
 /*
 * Implementation of the method defined by the interface
 */
 public void init(IPSExtensionDef extensionDef, File file)
 throws PSExtensionException
 {
 try
 {
 ms_fullExtensionName = extensionDef.getRef().toString();
 }
 catch (Throwable t)
 {
 throw new PSExtensionException(extensionDef.getRef(),
 t.getLocalizedMessage());
 }
 }
 /* Implementation of method defined by the interface */
 public boolean canModifyStyleSheet()
 {
 return false;
 }
 /* The fully qualified name of this extension. */
 static private String ms_fullExtensionName = "";
 /* The submit name prefix displayed in the error page.*/
 private static String SUBMIT_NAME = "Submit Name";
 /* The display name prefix shown on the error page. */
 private static String DISPLAY_NAME = "Display Name";
 /**
 * The item error message taking 2 parameters:
 * [0]: the submit name
 * [1]: the display name
 */

 Chapter 6 Adding Data Validation 83

 private static String STRING_PATTERN =
 "Item error for submit name {0}. The display name is: {1}";}

Sample Error Page
The sample item validation exit returns the following error page, which conforms to
sys_ItemValidation.dtd:

Figure 24: Sample Error Page

The link at the top of the page takes the user to the original item that caused the errors. The Field Display
Name column lists the field that appears on the screen, the Field Submit Name lists the field that the content
editor uses internally, and the Error Message column lists the error messages.

To change the appearance of the page, change the default stylesheet, which is specified in the following
node in ContentEditorSystemDef.xml:

<CommandName>workflow</CommandName>
 <PSXParam name="com.percussion.defaultItemError">
 <DataLocator>
 <PSXTextLiteral id="274">

 <text>file:../rx_resources/stylesheets/errors/defaultItemError.xsl</t
ext>
 </PSXTextLiteral>
 </DataLocator>
 </PSXParam>

 85

Visibility and Read-only Rules
Visibility and Read-only rules determine whether a user has access to each field in the Content Editor.
Visibility rules control whether the Content Editor displays a field when rendering it. Read-only rules
control whether a field that is displayed is available for editing or is rendered in read-only mode.

C H A P T E R 7

86 Rhythmyx Implementing Content Editors

Visibility Rules
You may want to hide a field from users for any number of reasons. For example, Content Editors must
include a field specifying the Workflow assigned to each Content Item. If you assign the workflow
automatically, the user has no reason to see this field. Therefore, you can define Visibility rules that
prevent the field from being displayed to the user. You may have other criteria that determine whether a
user can see a specific field. For example, you may want to control visibility based on the State of the
Workflow, the user's Role, or even the user's Community.

The PSXVisibilityRules child of the FieldRules element of the field definition is an optional element used
toi define Visibility rules. If this element is not present for a field, the field is automatically included in
the output XML. If this element is present, you can define specific circumstances in which the field will
be displayed.

The PSXVisibilityRules element requires at least one PSXRule child, which defines the set of conditions
to be tested. If the conditions evaluate to true, the field will be included in the output XML. If the
conditions evaluate to false, the inclusion of the field is defined by the value of the datahiding attribute of
the PSXVisibilityRules element. If the value of this attribute is xml, the field will not be included in the
output XML. If the value of this attribute is xsl, then the field is included in the output XML, and the XSL
that controls the rendering of the field determines whether to display or hide the field.

The PSXVisibilityRules element can include multiple PSXRule children. The value of the boolean
attribute of the PSXRule element defines boolean processing among multiple rules. This attribute can
take the following values:

and

or

The and operator takes precedence over the or operator.

Example: Hiding the Workflow Field in the Content Editor
System Definition
The field sys_workflowid is a required field defined in the Content Editor System Definition
(../rxconfig/Server/Content Editors/ContentEditorSystemDef.xml). The following code shows the default
definition of this field as installed.:

<PSXField defaultSearchLabel="Workflow" forceBinary="no"
modificationType="userCreate" name="sys_workflowid" showInPreview="yes"
showInSummary="yes">
 <DataLocator>
 <PSXBackEndColumn id="282">
 <tableAlias>CONTENTSTATUS</tableAlias>
 <column>WORKFLOWAPPID</column>
 <columnAlias/>
 </PSXBackEndColumn>
 </DataLocator>
 <OccurrenceSettings delimiter=";" dimension="optional"
multiValuedType="delimited"/>
 <FieldRules>

 Chapter 7 Visibility and Read-only Rules 87

 <PSXVisibilityRules dataHiding="xsl">
 <PSXRule boolean="and">
 <PSXConditional id="0">
 <variable>
 <PSXTextLiteral id="0">
 <text>1</text>
 </PSXTextLiteral>
 </variable>
 <operator>=</operator>
 <value>
 <PSXTextLiteral id="0">
 <text>2</text>
 </PSXTextLiteral>
 </value>
 <boolean>AND</boolean>
 </PSXConditional>
 </PSXRule>
 </PSXVisibilityRules>
 </FieldRules>
</PSXField>

Note the Visibility rule for this field, which tests whether the value 1 is equal to 2. Since this rule will
always evaluate to false, the field will not be displayed in any Content Editor in the syste, (Note also that
the datahiding attribute of this PSXVisibilityRules element is xsl. The sys_workflowid field is required
for processing of the Content Item, so it must always be included in the output XML. To avoid displaying
this field, omit a template for it in the XSL.)

If you decide that you want to change the processing and show this field in all Content Editors, you can
eitehr remove the rule, or change the conditions to make 1=1. This condition evaluates to true, and
includes the field in the output XML.

Alternatively, you might want to make this field visible only in certain Content Editors. In that case,
rather than modifying the system definition, you would override the definition of the sys_workflowid field
in the individual Content Editor. The following code shows an example:

<PSXField defaultSearchLabel="Workflow" forceBinary="no"
modificationType="userCreate" name="sys_workflowid" showInPreview="yes"
showInSummary="yes">
 <OccurrenceSettings delimiter=";" dimension="optional"
multiValuedType="delimited"/>
 <FieldRules>
 <PSXVisibilityRules dataHiding="xsl">
 <PSXRule boolean="and">
 <PSXConditional id="0">
 <variable>
 <PSXTextLiteral id="0">
<text>1</text>
 </PSXTextLiteral>
 </variable>
 <operator>=</operator>
 <value>
 <PSXTextLiteral id="0">
 <text>1</text>
 </PSXTextLiteral>
 </value>

88 Rhythmyx Implementing Content Editors

 <boolean>AND</boolean>
 </PSXConditional>
 </PSXRule>
 </PSXVisibilityRules>
 </FieldRules>
</PSXField>

In the UI definition, you will also want to change the control used for this field. The default control for
the field is sys_hidden. The recommended control for this field if visible is the sys_DropDownSingle
control.

 Chapter 7 Visibility and Read-only Rules 89

Read-only Rules
You may want to make a field visible, but only allow users to read it, not edit it. For example, you may
want users at different stages in the Workflow to know the values in the specific field, but not allow them
to change those values.

Read-only rules define whether a field that is displayed is eligible for editing. If you set a field to read-
only, the text of the field is displayed inline as normal HTML text and is not eligible to be edited. Fields
not set to read-only are rendered using the control specified for the field and are eligible to be edited.

To set a field to read-only, add a ReadOnlyRules child to the PSXUISet in the DisplayMapping for the
field. The ReadOnlyRules element requires at least one PSXRule child. Use this child to specify the
conditions under which the field will be set to read-only. If the conditions evaluate to true, the field will
be rendered as read-only. If the conditions evaluate at false, the field will be rendered with the control
defined for it in the field definition.

The ReadOnlyRules element can include multiple PSXRule children. The value of the boolean attribute
of the PSXRule element defines boolean processing among multiple rules. This attribute can take the
following values:

and

or

The and operator takes precedence over the or operator.

The following code illustrates a generic read-only rule:
<PSXDisplayMapping>
 <FieldRef>fieldname</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Display Text:</PSXDisplayText>
 </Label>
 <PSXControlRef id="9999" name="sys_EditBox"/>
 <ReadOnlyRules>
 <PSXRule boolean="and">
 <PSXConditional id="1">
 <variable>
 <PSXTextLiteral id="1">
 <text>1</text>
 </PSXTextLiteral>
 </variable>
 <operator>IS NOT NULL</operator>
 <value>
 <PSXTextLiteral id="1">
 <text/>
 </PSXTextLiteral>
 </value>
 <boolean>AND</boolean>
 </PSXConditional>
 </PSXRule>
 </ReadOnlyRules>

90 Rhythmyx Implementing Content Editors

 </PSXUISet>
</PSXDisplayMapping>

Setting a Field in a Content Editor to Read-Only
In the Workbench, you cannot change an existing field in a Content Editor to read-only or add a new field
to a Content Editor and set it as read-only. You must enter the Content Editor XML and add a
<ReadOnlyRules> element.

To set a Content Editor field to read-only:

1 In <Rhythmyxroot>\ObjectStore, open the XML file for the content editor.

2 In the <PSXDisplayMapping> element, add <ReadOnlyRules> in the <PSXUISet> element.
You can copy the <ReadOnlyRules> element that follows:

<PSXDisplayMapping>
 <FieldRef>fieldname</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Display Text:</PSXDisplayText>
 </Label>
 <PSXControlRef id="9999" name="sys_EditBox"/>
 <ReadOnlyRules>
 <PSXRule boolean="and">
 <PSXConditional id="1">
 <variable>
 <PSXTextLiteral id="1">
 <text>1</text>
 </PSXTextLiteral>
 </variable>
 <operator>IS NOT NULL</operator>
 <value>
 <PSXTextLiteral id="1">
 <text/>
 </PSXTextLiteral>
 </value>
 <boolean>AND</boolean>
 </PSXConditional>
 </PSXRule>
 </ReadOnlyRules>
 </PSXUISet>
</PSXDisplayMapping>

 91

Text Extraction
Rhythmyx’s text extraction feature lets you extract text from binary files created in third-party
applications (for example, Adobe Acrobat PDFs) to create Rhythmyx Content Items. A Content Editor
extension extracts the text and metadata in these files, formats them as text or HTML markup, and inserts
the formatted data into Content Item fields. You can attach additional extensions to perform data
translations or to insert text into other Content Editor fields.

The text extraction feature uses functionality provided by the Convera RetrievalWare software included
with Rhythmyx when it is licensed to include the full text search. In order to use text extraction, you must
install the Full Text Search feature when you install Rhythmyx. For information about the Full Text
Search feature, see "Searching for Content Using the Full Text Search Engine" in the online Rhythmyx
Content Explorer Help.

C H A P T E R 8

92 Rhythmyx Implementing Content Editors

Implementing Text Extraction in Rhythmyx
The process of performing text extraction involves downloading external binary files to a Content Editor
in Rhythmyx that is configured with the text extraction exit and optionally, other input translation exits.

To implement text extraction in Rhythmyx:

1 Configure a method for uploading the external binary files to Rhythmyx (see "Uploading
External Binary Files into Rhythmyx" on page 93).

2 Create a Content Editor that extracts text (see "Creating a Content Editor that Extracts Text"
on page 94).

 Chapter 8 Text Extraction 93

Uploading External Binary Files into
Rhythmyx
To apply text extraction to external binary files, add the sys_TextExtraction exit to the Content Editor
application that will perform text extraction. The Content Editor must include a field that stores the
binary file and a field that stores the data extracted from the file.

In some cases it is most efficient to upload files individually through a file upload control in a Content
Editor. In other scenarios, it is most efficient to upload one or more binary files to Rhythmyx by inserting
or storing them in a WebDAV-enabled folder. In this case, you must edit the WebDAV configuration file
associated with the folder to convert the file into the Rhythmyx Content Type that performs text
extraction.

Note: The sys_TextExtraction exit does not limit the size of text extracted. However, a user’s browser,
Web Server, database, ODBC driver, or sys_EditLive settings may limit the size of content in the field
specified to store extracted text. An error message alerts users and prevents them from saving the Content
Item if the text extracted exceeds the field’s size limitation.

For information about adding a file-upload control to a field in a Content Editor, see the topic “sys_file (on
page 183)” in the Workbench help set.

For information about using and configuring WebDAV with Rhythmyx see the document, Implementing
WebDAV in Rhythmyx.

94 Rhythmyx Implementing Content Editors

Creating a Content Editor that Extracts Text
To create a Content Editor that extracts text:

1 Create a Content Editor in the Rhythmyx Workbench.

2 Add or choose fields to store the uploaded file, the extracted data, an extraction error message,
and optionally, the file type. Use the following guidelines:

� Create a field to upload and store a file. Use the properties:

o Control Name: sys_file (to store binary files)

o Data Type: binary

o Format: max

� Create a field to store the file type. Note: The sys_FileInfo exit extracts and stores the
file type; it requires the name of this field to be the name of the field that stores the
uploaded file concatenated with _type (for example, fileupload and fileupload_type).
Use the properties:

o Control Name: sys_EditBox

o Data Type: text

o Format: 50 (This value is large enough to store long Mime Type names).

� (Optional) Create a field to hold error text. Use the properties:

o Control Name: sys_EditBox

o Data Type: text

o Format: 255 (This value is large enough to store long error messages.)

� Create a field to hold the extracted text:

If you want the extracted text to include HTML formatting, use the properties:

o Control Name: sys_EditLive (You can also use sys_TextArea. You may
encounter size limitations if you use sys_EditBox.)

o Data Type: text

o Format: max (You can specify a numeric size if you add an exit that truncates
the data to a specific size.)

 Chapter 8 Text Extraction 95

If you want the extracted text to be formatted as text, use the properties:

o Control Name: sys_TextArea

o Data Type: text

o Format: max (You can specify a numeric size if you add an exit that truncates
the data to a specific size.)

For examples of how output formats and Content Editor controls affect the appearance of the
text in your Content Editor, see Displaying Extracted Text in a Content Editor (on page
97).

Figure 25: Content Editor Properties for an example Text Extraction Content Type

3 Click [Advanced] to open the Content Editor Settings dialog.

4 In the Item Input Translation tab:

96 Rhythmyx Implementing Content Editors

� Choose the sys_TextExtraction (on page 98) extension. Configure the extension
parameters for the specific text extraction.

Figure 26: Example configuration of the sys_TextExtraction exit

These parameter values correspond to the fields in the Content Editor shown in the graphic for Step 2.

Optionally, choose additional extensions to translate data in the uploaded file before it is inserted into the
Rhythmyx Content Item. When you add the sys_File control, Rhythmyx automatically includes the
sys_FileInfo exit. This exit inserts the filename, file size, and file extension into Content Editor fields.

 Chapter 8 Text Extraction 97

Displaying Extracted Text in a Content
Editor
The way the extracted text appears in a Content Editor depends on the type of control that stores the
extracted field and the output format specified in the sys_TextExtraction exit. The following table shows
the same extracted text displayed using three different combinations of Content Editor controls and output
formats.

Control
Name for
Extracted
Text

Output
Format for
Extracted
Text

Extracted Text in Content Editor

sys_EditLive HTML

sys_TextArea HTML

sys_TextArea TEXT

98 Rhythmyx Implementing Content Editors

sys_TextExtraction
Name: sys_TextExtraction

Context: Java/global/percussion/contenteditor/

Description: This pre-exit extracts the text and metadata in a binary file uploaded to a Rhythmyx Content
Editor and inserts the extracted data into a Content Editor field (or fields). The exit formats the extracted
text as text or HTML markup. For information about performing text extraction with this exit, see Text
Extraction (on page 91) in the document Implementing Content Editors.

Class name: com.percussion.content.PSFileConverterExit

Interface: com.percussion.extension.IPSRequestPreProcessor

Parameters

Name Data Type Description
Source java.lang.String Source file parameter. Enter the parameter that holds the source

file. Required.

Note: If a file upload control uploads the file, it inserts the file
object into the Content Editor field. If Web Services upload the
file (if you use WebDAV), they insert the base64 encoded data
contained in the file into the Content Editor field. Therefore, if
the Content Editor field does not hold a file object, the exit
assumes it is base64 encoded data and treats it as such.

OutputParam java.lang.String Name of a parameter or the Content Editor field that stores the
extracted data. Required.

FileTypeParam java.lang.String Name of a parameter or the Content Editor field that stores the
original file’s Mime type. Optional.

ErrorMessageParam java.lang.String Name of a parameter or the Content Editor field that stores error
messages. When used, the Content Item is saved. Optional, but if
not supplied, the extension throws exceptions for errors and does
not save the Content Item.

Note: If you are updating a Content Item, and you specify this
field, if an error occurs, the exit saves the changed Content Item
and the originally extracted text is lost.

OutputFormat java.lang.String Either TEXT or HTML. Case-insensitive.

TEXT– Formats the output as plain text.

HTML– Adds HTML tags to the output to attempt to duplicate
its appearance in the original file.

UseLinefeed java.lang.String Indicates how to process line endings when OutputFormat is
text. Optional.
 Y or y – Process line endings as line feeds.

 Other values/not specified – Process line endings as
carriage returns.

 Chapter 8 Text Extraction 99

Name Data Type Description
HTMLTemplate java.lang.String Optional override for path of template that converts text to

HTML. Default is: <Rhythmyx
root>/sys_search/rware/rx/resource/sys_html_rx.tpt

Note: For advanced users only. This feature is not documented.

OutputEncoding java.lang.String Encoding to use for output character set. Default is
WINDOWS-1252 for text and UTF-8 for HTML. UTF-8 works
for all HTML output character sets. If your OutputFormat is text
and you are using a multi-byte character type, you must specify
the correct output encoding. Valid values are:

WINDOWS-1252 – standard Windows encoding
Shift_JIS – encoding for Japanese characters

EUC_KR – encoding for Korean characters

GB2312 – Encoding for Simple Chinese characters

Big5 – Encoding for traditional Chinese characters

Note: Multi-byte characters are commonly used to represent
ideograms in Asian languages such as Chinese.

PDFConversion java.lang.String How to perform conversion if file type is .pdf. Optional.

SINGLE – (default) Does not process multi-byte characters;
creates output using system default character set; can process
multiple columns in the source pdf file; ignores OutputFormat
specified and uses text.

MULTI – Process multi-byte characters; creates output using
OutputEncoding, if supplied; cannot process multiple columns in
the source pdf file; uses OutputFormat specified.

Note: Multi-byte characters are commonly used to represent
ideograms in Asian languages such as Chinese.

100 Rhythmyx Implementing Content Editors

Continuous Conversion Example
In continuous conversion, Rhythmyx publishes content that a user has created in another application and
wants to continue modifying in the other application. When the file is downloaded to Rhythmyx the body
data is extracted as text and inserted into a Content Editor field. However, the file contents are not
modified in Rhythmyx; they are always modified in the third-party application. After modification,
Rhythmyx reloads the files and updates the original Content Items.

In our example, a Marketing Department maintains a library of PDF documents for customers. On the
company Web Site, the Department wants to include a list of the documents that links to their contents.
When the content of a PDF changes, the Department uploads the updated PDF to Rhythmyx again.
Rhythmyx automatically updates the content of the original Content Item.

As an implementer in the Marketing Department, you use the following procedure to implement
continuous conversion of the PDFs:

1 In the Rhythmyx Workbench, create a Content Editor for a Content Type to store the
uploaded PDF files. It includes fields for the uploaded file, the extracted text, the file type, and
an error message if file upload fails. The procedure for creating the Content Editor is as
follows:

a) Choose the sys_Default.xml template and name the new resource rx_TextExtract.

b) Double-click the template to open the Content Editor Properties dialog and add the fields:

� fileupload – The sys_TextExtraction exit will use fileupload to store the uploaded file.
Properties: Control Name=sys_file, Data Type=binary, Format=max.

� fileupload_type – The sys_TextExtraction exit and WebDAV will use fileupload_type
to store the mime type.
Properties: Control Name=sys_EditBox, Data Type=text, Format=50.

� extractionnerror - The sys_TextExtraction exit will use extractionerror to store the
text of the first error encountered during extraction.
Properties: Control Name=sys_editBox, Data Type=text, Format=255.

� filecontent - The sys_TextExtraction exit will use filecontent to store the extracted
text.
Properties: Control Name=sys_EditLive, Data Type=text, Format=max.

� owner - WebDAV will use owner to store the user that has the file locked.
Properties: Name=sys_HiddenInput, Data Type=text, Format=50.

� fileupload_size – WebDAV will use fileupload_size to hold the file size.
Properties: Control Name=sys_EditBox, Data Type – integer, Format=none.

� abstractcontent – This field can display an abstract of the Content Item; it is not
required by sys_TextExtraction or WebDAV. Use either a custom input translation
exit to fill it or allow the user to fill it through the Content Editor.
Properties: Control Name=sys_EditBox, Data Type=text, Format=255.

� fileupload_name – This field displays the uploaded file name. Include it for your own
reference. It is populated by the sys_file control.
Properties: Control Name=sys_EditBox, Data Type=text, Format=50.

 Chapter 8 Text Extraction 101

c) Click [New] and specify the Content Type TextExtractor.

Figure 27: Content Editor Properties for Text Extractor

d) Click [Advanced] to open the Content Editor Settings dialog.

e) On the Item Input Translation tab, choose the sys_textExtraction extension.

Figure 28: Choosing sys_textExtraction in the Content Editor Settings dialog

102 Rhythmyx Implementing Content Editors

Set the following values for the parameters:

Figure 29: Parameter Settings for sys_textExtraction

Name Value Description
Source PSXParam/fileupload The field in the Content Editor that

holds the uploaded file. May be
expressed as any value type.

OutputParam filecontent The field in the Content Editor that
stores the extracted data.

FileTypeParam fileupload_type The field in the Content Editor that
stores the file type.

 Chapter 8 Text Extraction 103

Name Value Description
ErrorMessageParam extractionerror The field in the Content Editor that

stores the error message if data does
not extract. By inserting the error
message into a field in the Content
Editor, you let the text extraction
process convert all files, even if some
do not convert properly.

OutputFormat HTML Specifies that converted data is
formatted as HTML. Since the
converted data is inserted into an
HTML editor control, HTML is
necessary so the control can format the
data as closely as possible to its
original appearance.

UseLineFeed --- Not used because OutputFormat is
HTML.

HTMLTemplate --- Not used because standard HTML
template is not overridden.

OutputEncoding --- Not specified because default character
encoding is used.

PDFConversion Multi multi is specified so OutputFormat can
be HTML

Add a condition to the exit specifying that the exit only runs when a file is uploaded. If you
do not include this condition, if a user edits metadata fields and saves the Content Item, the
sys_textExtraction exit attempts to run and results in an error.

104 Rhythmyx Implementing Content Editors

The condition specifies that the field that stores the uploaded file IS NOT NULL:

Figure 30: Conditional setting for sys_textExtraction

f) At this point, you can add custom input translation exits before or after the
sys_textExtraction exit to perform additional processing. For example, you may add an
exit to parse the first sentence from the extracted data and insert the parsed text into the
abstractcontent field.

g) Save the Content Editor as rx_ceTextExtractor and close it.

NOTE: The new Content Type is automatically registered in Rhythmyx when you save the
Content Editor, but you must associate it with the Communities that you want to have access
to it.

2 Define a servlet named Marketing PDFS in the WebDAV deployment descriptor, <Rhythmyx
root>/AppServer/webapps/rxwebdav/WEB-INF/web.xml:
 <servlet>
 <servlet-name>Marketing PDFs</servlet-name>
 <display-name>Rhythmyx WebDAV Router</display-name>
 <description>Rhythmyx WebDAV Router</description>
 <servlet-class>com.percussion.webdav.PSWebdavServlet</servlet-
class>
 <init-param>
 <param-name>RxWebDAVConfig</param-name>
 <param-value>/RxWebdavConfig.xml</param-value>
 <description>The webdav configuration file path, which is
relative to the current web application</description>
 </init-param>
 </servlet>

Also, add a servlet-mapping element for the new servlet in the WebDAV deployment
descriptor:
 <servlet-mapping>
 <servlet-name>Marketing PDFs</servlet-name>
 <url-pattern>/Marketing PDFs/*</url-pattern>
 </servlet-mapping>

 Chapter 8 Text Extraction 105

3 Edit the WebDAV configuration file, <Rhythmyx
root>\AppServer\webapps\rxwebdav\RxWebdavConfig.xml, as follows. Only a default
Content Type is necessary because all of the input files will be PDFs and they will all be
converted to TextExtract Content Types.
<?xml version="1.0" encoding="UTF-8"?>
<PSXWebdavConfigDef root="//Folders/Marketing PDFs"
communityname="default" communityid="10" locale="en-us">
 <PSXWebdavContentType id="301" name="TextExtractor"
contentfield="fileupload" ownerfield="owner" default="true">
 <PropertyMap>
 <PSXPropertyFieldNameMapping name="getcontenttype">
 <FieldName>fileupload_type</FieldName>
 </PSXPropertyFieldNameMapping>

 <PSXPropertyFieldNameMapping name="getcontentlength">
 <FieldName>fileupload_size</FieldName>
 </PSXPropertyFieldNameMapping>
 </PropertyMap>
 </PSXWebdavContentType>
 </PSXWebdavConfigDef>

4 Set up WebDAV-enabled folders in Rhythmyx Content Explorer and Windows Explorer for
storing the PDFs.

Figure 31: WebDAV-enabled Folder in Content Explorer

Figure 32: Web Folder in Windows Explorer

5 Copy the PDFs into the WebDAV-enabled folder on Windows Explorer.

Figure 33: PDF files in Web Folder

106 Rhythmyx Implementing Content Editors

They now exist in the WebDAV-enabled folders in Content Explorer, and Rhythmyx
automatically converts them into TextExtractor Content Items.

An opened TextExtractor Content Item appears as:

Figure 34: Opened Text Extractor Content Item

6 In this example, the body content of files is not edited in Rhythmyx (depending on your
system requirements, you may choose to edit metadata fields). The original file is updated in
its native application and re-uploaded to Rhythmyx, where it will automatically overwrite the
originally uploaded Content Item.

 Chapter 8 Text Extraction 107

If a content creator updates the file saved as Investments3.pdf in the original application, and
recopies the file into the Marketing PDFs folder under My Network Places in Windows
Explorer, the changed file overwrites the original Investments3.pdf. When you open it in
Rhythmyx, the Filecontent field displays the changed content:

Figure 35: Content updated in original application

108 Rhythmyx Implementing Content Editors

Migration Example
In migration, text extraction transforms binary files that existed prior to Rhythmyx implementation into
XML Content Items. When the files are uploaded to Rhythmyx, some of the data is extracted and inserted
into Content Editor fields. In the future, these Content Items will be edited in Rhythmyx; they will not be
returned to the original third-party application for editing.

Figure 36: Uploaded Text Extractor Content Item edit in Rhythmyx

In our example, a company has stored its employee profiles in Word doc files prior to implementing
Rhythmyx. Now that the company has implemented Rhythmyx, it wants to convert these files into
Rhythmyx Content Items and have the ability to process them in the future as Rhythmyx Content Items.

The procedure for implementing text extraction for migration of the Employee Profiles is essentially the
same as the procedure for implementing continuous conversion of Marketing PDFs:

1 Follow Step 1 of the Continuous Conversion Example (on page 100) to set up a
TextExtractor Content Editor to store the uploaded Word files. Since users may edit the
Filecontent field in Rhythmyx, errors will result if you do not include the conditional
described in this step. Note: You can use the same procedure because the TextExtractor
Content Editor does not specify a specific type of file.

 Chapter 8 Text Extraction 109

2 Follow Step 2 of the Continuous Conversion Example (on page 100) [link] to define a
Servlet in the WebDAV deployment descriptor. Give the Servlet the name Employee Profiles.

3 Follow Step 3 of the Continuous Conversion Example (on page 100) to edit the WebDAV
configuration file, but set root to:
root="//Folders/Employee Profiles"

4 Set up WebDAV-enabled folders in Rhythmyx Content Explorer and Windows Explorer for
storing the Word files.

Figure 37: WebDAV-enabled Folder in Content Explorer

Figure 38: Web Folders in Windows Explorer

5 Copy the Word docs into the Web Folder on Windows Explorer.

Figure 39: Word document in Web Folder on Windows Explorer

They now exist in the WebDAV-enabled folders in Content Explorer, and Rhythmyx
automatically converts them into TextExtractor Content Items.

Figure 40: WebDAV-enabled Folder in Rhythmyx

6 In this example, the file has become a Rhythmyx Content Item, so its body content is edited in
Rhythmyx.

110 Rhythmyx Implementing Content Editors

A Content Creator may open the file in Rhythmyx, edit it, and save it.

Figure 41: Uploaded Text Extractor Content changed

 111

Customizing the ArticleWord
Content Editor
Rhythmyx provides the Article Word Content Editor as the default Content Editor that uses the Rhythmyx
Word Connector. This topic explains how to use the Article Word Content Editor. The next topic
explains how to customize it to create your own Word-based Content Editor.

The default Article Word editor opens a Word document with the rxwordsample.dot template. This
template is stored on the Rhythmyx server in the ..\rx_ceArticleWord directory.

NOTE: The deprecated template is ..\ sys_resources\word\Rhythmyx.dot.

This template includes the following styles:

� ArticleAbstract
� ArticleAuthor
� ArticleDisplayTitle
� ArticleBody

Each of these styles is associated with a field in the Article Word content editor file
(articleword.xml) and a column in the RXARTICLEWORD backend table. The content that the
user enters in each style in the Word document becomes the value stored in the corresponding column in
the RXARTICLEWORD table.

Rhythmyx saves files uploaded using the Save to Rhythmyx option as .doc files regardless of the file
suffix indicated by the user. It saves the files to the BODYSOURCE column in the RXARTICLEWORD
table.

Rhythmyx uses an ActiveX control to download content items from the repository to MS Word, and a
Word Macro to upload the files to the Rhythmyx server.

For information about using the default template styles and configuring a system to use ActiveX, see
"Word Prerequisites" in the Rhythmyx Content Explorer online Help.

C H A P T E R 9

 113

How Word-based Content Editors Work
The Rhythmyx Word Connector uses Word-based Content Editors to let users create Content Items in
Word and upload them to Rhythmyx. Users can then access Word from Rhythmyx to edit these Content
Items.

A Word-based Content Editor opens a Word document with the rxwordsample.dot template. This
template is stored on the Rhythmyx server in the ..\sys_resources\word\ directory.

NOTE: The deprecated template is ..\ sys_resources\word\Rhythmyx.dot.

By default, this template includes the following styles:

� ArticleAbstract
� ArticleAuthor
� ArticleDisplayTitle
� ArticleBody

Each of these styles (or each of the styles you include) is associated with a field in the Word-based
Content Editor. The content that the user enters in each style in the Word document becomes the value
stored in the corresponding column in the backend table for the Content Editor.

The template causes various Rhythmyx features to appear in Word including a Save to Rhythmyx option.
Rhythmyx saves files uploaded using the Save to Rhythmyx option as .doc files regardless of the file
suffix indicated by the user. It saves the files to a column named BODYSOURCE in the backend table.

Rhythmyx uses an ActiveX control to download content items from the repository to MS Word, and a
Word Macro to upload the files to the Rhythmyx server.

For information about using the default template styles and configuring a system to use ActiveX, see
"Word Prerequisites" in the Rhythmyx Content Explorer online Help.

114 Rhythmyx Implementing Content Editors

How to Create a Word-based Content Editor
To create a Word-based Content Editor, follow the usual procedure for creating a new Content Editor in
the Rhythmyx Workbench and add the fields and files that the Word Connector requires:

1 Create a new Content Editor and add shared and system fields. See Creating a Content Editor
from Scratch (on page 21) in the Implementing Content Editors document for help adding
new fields.

2 Add fields that will be entered in Word as local fields with a data type of text. See the section
New Field Properties Dialog (on page 33) in the Implementing Content Editors document for
help.

3 Rhythmyx uses the sys_FileWord control to upload files from Microsoft Word. The
sys_FileWord control uses the fields bodysource, bodysource_encoding,
bodysource_filename, and bodycontent to upload and store information. Add these as local
fields and define them as follows:

Name Control Data Type Format
bodysource sys_FileWord binary max

bodysource_encoding sys_HiddenInput text 50

bodysource_filename sys_EditBox text 50

bodycontent sys_HiddenInput text max

4 On the Content Editor application, attach the following pre-exits with the specified parameters
in the order listed:

Exit Parameter Name Parameter Value
generic/sys_copyParameter source bodysource_filename

 destination filename

generic/sys_copyParameter source bodysource_clear

 destination body_clear

xmldom/sys_xdTextToDom sourcename bodysource

 DOMname XMLDOM

 tidyProperties rxW2Ktidy.properties

 serverPageTags rxW2KserverPageTags.xml

 encodingDefault UTF8

 Validate (leave blank)

xmldom/sys_xdTransformDOMToText SourceName XMLDOM

 StyleSheet parsebody.xsl

 DestName body

 Chapter 9 Customizing the ArticleWord Content Editor 115

Exit Parameter Name Parameter Value
xmldom/sys_xdTransformDOM SourceName XMLDOM

 StyleSheet parsemeta.xsl

 DestName XMLDOM

xmldom/sys_xdDOMToParams SourceName XMLDOM

 AppendParameter (leave blank)

5 Include the following parameters and values as links (external) with the sys_FileWord
control. Replace the application names with your Content Editor application name, the
resource names with your Content Editor resource name, and the template name with your
template name:

Parameter Value
ContentBodyURL sys_MakeAbsLink(../rxs_GenericWord_ce/genericword.html,

sys_contentid, PSXParam/sys_contentid,
sys_revision, PSXParam/sys_revision,
sys_command, binary,
sys_submitname, bodysource,
pssessionid, PSXUserContext/SessionId)

RxContentEditorURL sys_MakeAbsLink(../rxs_GenericWord_ce/genericword.xml,
sys_contentid, PSXParam/sys_contentid,
sys_revision, PSXParam/sys_revision,
sys_command, edit,
pssessionid, PSXUserContext/SessionId)

WordTemplateURL sys_MakeAbsLink(../rxs_GenericWord_ce/rxs_word.dot,
pssessionid, PSXUserContext/SessionId, , , , , ,)

6 Save the Content Editor.

7 In the folder for the Content Editor in the Rhythmyx root, copy the contentfilter.xsl,
ParseMeta.xsl and ParseBody.xsl files from <Rhythmyx
root>\sys_resources\word.

8 Create a Word template (.dot) file (see "Creating the Word Template File" on page 116).

9 Modify the ParseMeta.xsl or ParseBody.xsl files to reflect the new Word styles and fields
added in the .dot and XML files. (see "Modifying the Style Sheet for Parsing Fields" on page
116)

10 Modify formatting of the body content fields so that they display correctly on assembled
pages. (see "Modifying the Content Assembler to Display Custom Word-based Content Editor
Fields" on page 118)

116 Rhythmyx Implementing Content Editors

Creating the Word Template File
Creating a Word-based Content Editor involves specifying fields that will be filled by information entered
in Word. The Word template file must include a style for each of these fields.

Copy the current Word template file:
..\sys_resources\word\rxwordsample.dot

and store it with the name of the new content editor in the folder for the Content Editor in the Rhythmyx
root, for example:

..\rxWord_ce\rxWord.dot
Open the template file in Word and do the following:

1 Add a style to correspond with each field in your new Content Editor that you want to be
entered in Word. You may specify more than one style for your body field.

By default, rxwordsample.dot includes the styles:

� ArticleDisplayTitle

� ArticleAuthor

� ArticleBody

� ArticleAbstract

You can use or modify any of these default styles.

2 Change the custom property RxContentEditorURL in the template to point to the new
Content Editor.

For instructions on creating or modifying a Word template file, see Create a Document Template in the
Microsoft Word Help. For instructions on changing a custom property in Word, see Modify a Custom File
Property in the Microsoft Word Help.

NOTE: The deprecated Word template is ..\sys_resources\word\Rhythmyx.dot.

Modifying the Style Sheet for Parsing Fields
The ParseMeta.xsl file performs formatting on Word-based Content Editor fields containing
metadata and inserts them into the appropriate database columns in the backend table for the Content
Editor. Any fields that are not included in ParseMeta.xsl are formatted by ParseBody.xsl and inserted into
the body field for the Content Editor.

When you create a Word-based Content Editor, modify ParseMeta.xsl, ParseBody.xsl,and
contentfilter.xsl to use the filenames, fields, and styles that your Content Editor uses:

1 In ParseMeta.xsl:

� change the reference to contentfilter.xsl to point to your Content Editor directory:
 <xsl:import href="../rx_WordContent_ce/contentfilter.xsl" />

 Chapter 9 Customizing the ArticleWord Content Editor 117

� Change metadata field names and styles to those that your Content Editor and Word
template use. For example, in the following code, change the field name
<ArticleTitle> to a name of a new field in the Content Editor. Change the style
ArticleDisplayTitle to a new style in the Word template.

<ArticleTitle>
 <xsl:choose>
 <xsl:when
test="string(//html:body[1]//html:p[@class='ArticleDisplay
Title'])">
 <xsl:apply-templates
select="//html:body[1]//html:p[@class='ArticleDisplayTitle
']" />
 </xsl:when>
 <xsl:when
test="string(//html:body[1]//html:p[@class='MsoTitle'])">
 <xsl:apply-templates
select="//html:body[1]//html:p[@class='MsoTitle']" />
 </xsl:when>
 <xsl:otherwise>COULD NOT FIND A TITLE</xsl:otherwise>
 </xsl:choose>
</ArticleTitle>

2 In ParseBody.xsl:

� change the reference to contentfilter.xsl to point to your Content Editor directory:
<xsl:import href="../rx_WordContent_ce/
 contentfilter.xsl" />

3 In contentfilter.xsl:

� Change metadata style names to those that your Word template uses. For example, in
the following code, change ArticleDisplayTitle to a new style in the Word
template:

<xsl:template match="html:p[@class='ArticleDisplayTitle']"
mode="contentfilter" />

118 Rhythmyx Implementing Content Editors

Modifying the Content Assembler to Display Custom
Word-based Content Editor Fields
Content fields that you add to the custom Word-based Content Editor may require additional processing so
that they appear in the desired format on the assembled output page.

Where you add the additional formatting depends on the complexity of the style and how you want to use
the output. Use the following guidelines:

� If the style that you want to apply is simple, include the formatting in your output CSS.
Simple styles affect the appearance of text, for example, by changing the font or color.

� If the style is complex, add the formatting to ParseBody.xsl or
rx_InlineLinks.xsl. Complex styles affect the appearance of content on a page, for
example, by adding tables or line breaks.
1. If you plan to use the style in various output formats, add a generic style for the content in

ParseBody.xsl. ParseBody.xsl stores the content in the generic style prior to
output assembly. When output assembly occurs, the various output mechanisms reformat
the content as required.

2. If you plan to output the style as an HTML page, add the formatting style that you want to
appear on the final Web page to
rx_resources/stylesheets/assemblers/rx_InlineLinks.xsl.

 119

Installing New Features of
Rhythmyx Word Connector
The current build of Rhythmyx may include changes to the Rhythmyx Word Connector since your
previous installation. You can install Rhythmyx either as an upgrade or as a new installation. If you install
it as an upgrade, the deprecated Article Word Content Editor and custom Word-based Content Editors will
function as they did previously, but you can install new features. If you install Rhythmyx as a new
installation or you upgrade and install the new Rhythmyx Word Connector features, you must set the
Rhythmyx server address in the new template file.

Moving Rhythmyx Accelerator for Word Files to the Correct Directory (see "Moving Rhythmyx Word
Connector Files to the Correct Directory" on page 120)

Setting the Address in the Word Template Properties (see "Setting the Address in the Word Template
Files" on page 122)

Processing Related Links (see "Moving Rhythmyx Word Connector Files to the Correct Directory" on
page 120)

Copying the Template File to the Client's Word Application (see "Copying the Template File to the
Client Word Application" on page 126)

Updating the sys_FileWord Content Editor Control (on page 127)

C H A P T E R 1 0

120 Rhythmyx Implementing Content Editors

Moving Rhythmyx Word Connector Files to
the Correct Directory
During development, Percussion Software may modify the rxwordsample.dot file and various .cab files
used to support Rhythmyx functionality in Word. When you upgrade to a new version of Rhythmyx (and
in some cases, when you upgrade to a new build, such as to fix a bug), you may need to move the
Rhythmyx Word Connector files from the install directory (sys_resources/word) to the local directory
(rx_resources/word) to make them available to download to your users.

You may also need to develop your Rhythmyx-enabled Word templates again based on the new version of
the rxwordsample.dot template provided by Percussion Software to access new features included in the
new template. Then move the custom files corresponding to the default files in the instructions below.

NOTE: Be sure you back up or rename your existing files before copying the new files.

NOTE to users of Rhythmyx Version 4.0: If you install Rhythmyx Build 20020326 as a new installation,
the installer copies the files associated with the Rhythmyx Word Connector into the correct directories. If
you install Rhythmyx Build 20020326 as an upgrade you must move some of the Rhythmyx Word
Connector files to a new directory in order to access the new features in the Article Word Content Editor
and custom Word-based Content Editors.

NOTE: If you have created a custom Word-based Content Editor, move the custom files corresponding to
the default files in the instructions below.

To get the new Word Connector features after upgrading:

1 Copy the following files from
 ../sys_resources/word

 to

 ../<Word-based Content Editor folder>.

rxwordsample.dot

parsebody.xsl

parsemeta.xsl

contentfilter.xsl

If your system is still using the deprecated Rhythmyx.dot template, in the Content Editor
definition files for your Word-based Content Editors:

locate the <PSXParam name="WordTemplateURL"> node and change:

<PSXTextLiteral id="0">
<text>../sys_resources/word/Rhythmyx.dot</text>

</PSXTextLiteral>

 Chapter 10 Installing New Features of Rhythmyx Word Connector 121

to:
<PSXTextLiteral id="0"> <text>../<Word-based Content Editor
folder>/rxwordsample.dot</text>

</PSXTextLiteral>

2 Copy the file: rxwordocx.cab

from: ../sys_resources/word

to: ../rx_resources/word (If the directory “/word” does not exist, create it.)

3 If your system is using rxword.cab instead of rxwordocx.cab, in the file:
../sys_resources/stylesheets/sys_Templates.xsl

locate the <object id="word"> node and change:

codebase = ../sys_resources/word/rxword.cab

to:
codebase = ../rx_resources/word/rxwordocx.cab

4 Stop and restart the Rhythmyx server.

122 Rhythmyx Implementing Content Editors

Setting the Address in the Word Template
Files
If you install Rhythmyx as a new installation, or if you upgrade and follow the instructions in Installing
New Features of Rhythmyx Accelerator for Word (see "Installing New Features of Rhythmyx Word
Connector" on page 119) to access the new features, you must change the value of the address in the
template file's properties.

To change the template file address value:

1 Right click ../sys_resources/word/rxwordsample.dot and select Properties in
the drop menu. Rhythmyx opens the Template Properties dialog.

2 Click the Custom tab.

3 Click the Properties Name to make the values editable in the fields.

4 Change the Value of the host address from the default of 127.0.0.1 to the address of the
Rhythmyx server.

5 Click [OK].

 Chapter 10 Installing New Features of Rhythmyx Word Connector 123

6 If you have already moved the new version of rxwordsample.dot into any of your Word-based
Content Editor folders, repeat the procedure for those copies of the file.

124 Rhythmyx Implementing Content Editors

Processing Related Links
If you install Rhythmyx as a new installation, or if you upgrade and follow the instructions in Installing
New Features of Rhythmyx Accelerator for Word (see "Installing New Features of Rhythmyx Word
Connector" on page 119) to access the new features, add the sys_xdProcessRelatedLinks exit to the Word-
based Content Editor applications. The sys_xdProcessRelatedLinks exit creates the inline links and URLs
for inline images for the published site.

To add the sys_xdProcessRelatedLinks exit to the Word-based Content Editor application:

1 Open the Word-based Content Editor application in the Workbench.

2 Double-click the exit on the Content Editor resource.

Rhythmyx opens the Exit Properties dialog.

3 Click the Insert New Entry button .

4 In the drop list, select xmldom/sys_xdProcessRelatedLinks.

5 Enter XMLDOM as the value of the SourceObject parameter.

 Chapter 10 Installing New Features of Rhythmyx Word Connector 125

6 Use the arrow buttons to move xmldom/sys_xdProcessRelatedLinks to the position after
xmldom/sys_xdTextToDom.

Figure 42: Exit Properties dialog

7 Click [OK].

8 Save the application.

126 Rhythmyx Implementing Content Editors

Copying the Template File to the Client Word
Application
After you have configured and copied Rhythmyx files to use the new Rhythmyx Accelerator for Word
features, ensure that users attach the new rxwordsample.dot template to their Rhythmyx Word documents.
You can install the template in one of two ways:

� Require users to open their first Rhythmyx Word document after upgrade through the
[Launch Word] button in the Word-based Content Editor to automatically attach the template
to Word. If they open their first Rhythmyx Word document directly in Word, the new
template will not be attached.

� Send users the rxwordsample.dot template and instruct them to copy it into their Word
template directories.

 Chapter 10 Installing New Features of Rhythmyx Word Connector 127

Updating the sys_FileWord Content Editor
Control
During development or to fix bugs, Percussion Software may modify the sys_FileWord control, requiring
you to updated the existing copy of the control. The updated control will be in
sys_resources\stylesheets\sys_templates.xsl. Copy the <controlMeta> node (and
all of its children) of the sys_FileWord template control in this stylesheet and use it to replace the
<controlMeta> node of the sys_FileWord template control in
rx_resources\stylesheets\rx_templates.xsl.

 129

Appendices

 131

Implementing a Content Editor Manually
You should be able to complete most content editor development using the Content Editor Properties
dialog in the Rhythmyx Workbench. A few features are not yet available in this dialog, however, and to
access them, you must edit the content editor XML definition file manually.

Editing the content editor definition manually is recommended only to advanced implementers of
Rhythmyx.

Registering a New Content Type
You must register each new content type in the Rhythmyx System Administrator. Registering the content
type generates a content type ID that Rhythmyx uses to identify it. The content type registration also
defines the URLs Rhythmyx uses to locate the content editor applications. These URLs do not exist when
you initially register the content type. You must update the registration with this information after you
create the content editor application.

To register a new content type:

1 Log into the Rhythmyx Content Manager with a user in the Admin Role.

2 In the banner, click System.

Rhythmyx displays the System Administrator page.

3 In the navigation bar, under Content Types, click By Name.

Rhythmyx displays the Content Types Editor, showing the existing content types.

4 Click New Content Type.

Rhythmyx displays the New Content Type page.

5 Enter the Name and Description. Enter some dummy data in the New Request URL and Query
Request URL fields. The data for these fields is defined later in the process. You will update
them after you create the content editor application.

6 Click [Save] to save the content type registration.
Rhythmyx returns to the Content Types Editor page. The new registration appears at the end of the list.
 The number in parentheses to the right of the content type name is the content type ID. Enter this value
as the value of the contentType attribute of the PSXContentEditor element in the content editor XML
definition file.

Creating the Content Editor Definition
Creating a content editor consists of the following processes:

1 Selecting a template for the content editor definition (see "Selecting a Content Editor
Definition Template" on page 132).

A P P E N D I X I

132 Rhythmyx Implementing Content Editors

2 Creating the content editor definition file (see "Creating a Content Editor File Based on an
Existing Definition File" on page 132).

3 Defining the database connection (see "Defining the Database Definition" on page 133).

4 Defining the content editor fields (see "Defining the Content Editor Mapper" on page 134).

5 Add Related Content links, if appropriate (see "Adding Related Content Links to a Content
Editor" on page 139).

6 Add interface components (see "Adding Components to the Content Editor" on page 142).

Selecting a Content Editor Definition Template
A content editor definition file is a complex XML document. Therefore, when creating a new content type
it is usually easier to modify an existing content editor definition file rather than to create a new one from
scratch. Using an existing Content Editor Definition also provides the following benefits:

� Backend database credentials are already populated. Therefore you only need to modify the
table references for individual fields.

� Examples of field, field set, and user-interface definitions already exist as templates for your
fields.

� Required fields that the user does not need to edit are already populated.
� Custom controls, such as Related Content, are already included.

NOTE: You must have already created a Content Editor or imported a Content Editor into your system in
order to have a Content Editor Definition file available.

Creating a Content Editor File Based on an Existing Definition File
To create a content editor based on an existing definition file:

1 Open the content editor definition for an existing content type in the XML editor application
of your choice. Use an XML specific editor with DTD validation built in.

2 Save the file with a new name.

3 In the XML, change the contentType attribute of the root element
(PSXContentEditor) to the content type id generated when you registered the content
type.

4 If the content type will use a different workflow, change the workflowId attribute to the of
workflow ID the workflow you want this content type to use.

For example, your system could include a Content Editor named Article associated with a
Content Type ID of 1 and a Workflow ID of 1. If you used the Article Content Editor as your
template, and the Content Type ID you generated was 302, and the Workflow ID of the
Workflow you wanted the Content Editor to use was 156, you would change
<PSXContentEditor contentType="1" workflowId="1"> to
<PSXContentEditor contentType="302" workflowId="156">.

5 You can change the information in the <name> and <description> elements of the
PSXContentEditor element to describe the new content editor. This information is
optional and does not affect the appearance or operation of the content editor.

 Appendix I Appendices 133

Defining the Database Definition
The PSXContainerLocator element stores the information Rhythmyx uses to connect the content
editor to the back-end database tables where the data for the content editor is stored. This element
requires one PSXTableSet child element, which defines the connection to the database.

The PSXTableSet element takes two children. The first is PSXTableLocator, which occurs only
once in each PSXTableSet. The children of PSXTableLocator define the connection to the
database. If you copied the content editor definition file from a working system, the data for these
children will already be defined. Otherwise, you will have to define them.

� The driver element specifies the database driver; for example, odbc or oracle:thin.
� The server element defines the address of the database server. The value of the server

element is the connection string; for example: @127.0.0.1:1521:ORCL.
� The userID element stores the user ID the system uses to access the database.
� The password element stores the password the system uses to access the database.
� The Database element stores the name of the database.
� The Origin element specifies the owner of the database or schema.

The second child of the PSXTableSet element is PSXTableRef. This element defines the tables for
the content editor. The PSXTableRef element occurs once for the parent table of the content editor and
once for each child table.

Example database definition:
<PSXContainerLocator>
 <PSXTableSet>
 <PSXTableLocator alias="">
 <PSXBackEndCredential id="0">
 <alias>Cred1</alias>
 <comment/>
 <driver>odbc</driver>
 <server>rxmaster</server>
 <userId>rxuser</userId>
 <password encrypted="yes"/>
 </PSXBackEndCredential>
 <Database>rxmaster</Database>
 <Origin>dbo</Origin>
 </PSXTableLocator>
 <PSXTableRef name="RXSECTION" alias="RXSECTION"/>
 </PSXTableSet>
</PSXContainerLocator>

134 Rhythmyx Implementing Content Editors

Defining the Content Editor Mapper
The PSXContentEditorMapper element is the parent of the elements that define the fields in the
content editor and the user-interface for those fields. This element has four children:

� The PSXFieldSet element defines the set of fields unique to the content editor.
� The SharedFieldIncludes element specifies fields included in the content editor that

are shared with other content editors.
� The SystemFieldExcludes specifies which system fields should be excluded from the

content editor. (When you create a content editor, all of the system fields are automatically
included.)

� The PSXUIDefinintion element links each field to the interface control used to display it.

Field Sets
Local fields are defined in one or more PSXFieldSet elements.

A content editor includes one field set for each table that stores data for the content type. One of these
field sets must be the parent field set and it must be associated with the parent table. This field set includes
one field definition for each column in the parent table. Any other field sets are child field sets, each of
which must be associated with a child table. Usually, each child field set includes one field definition for
each column in the associated child table.

The order in which the field sets (and the field definitions within them) are defined does not affect their
display on the content editor interface. The user-interface definition controls the display order.

The PSXFieldSet element has the following attributes:

Attribute Meaning
 Name Identifies the field set for display mapping. This attribute is

required if the Type attribute has any value other than parent.
The value of the Name attribute must be unique among all field
set and field names in the content editor definition file. While
this attribute is optional for parent field sets, they typically take
the default value main.

 Appendix I Appendices 135

Attribute Meaning
Type Defines whether the field set is a parent or child field set, and if

a child, the type of child field set. This attribute can take one of
the following values:

� Parent

Defines the field set as the parent field set for the content
editor. This field set must be associated with the parent
table. Only one field set in the content editor defining
can have this value.

� simpleChild

Child field set that is edited within the parent field set's
row editor. Field sets of this type can only include one
field, whose possible values are defined in the user-
interface control for the field.

� complexChild

Child field set that is displayed in summary view within
the parent row editor. Field sets of this type can contain
one or more columns and an arbitrary number of rows.
 In a summary view, data is summarized and read-only.

� MultiPropertySimpleChild

Child field set is edited within the parent field set's row
editor. Field sets of this type can contain one or more
columns, but only one row.

repeatability Defines how many times the rows of the field set can appear in
the content editor. This attribute can take one of the following
values:

� zeroOrMore

The field set may appear once, more than once, or not at
all. The parent field set should always have this value
for the repeatability attribute.

� oneOrMore

The field set must appear once, but may appear more
than once.

� count

The field set must appear a specified number of times.
 If the value of the repeatability attribute is
count, the optional count attribute must be included
to define the number of rows required.

count Required only if the value of the repeatability attribute is
count. Defines the number of rows that must appear for the
field set.

supportsSequencing Only applicable if type is not parent. Indicates whether the
end user can put the rows associated with the parent in a specific
order.

136 Rhythmyx Implementing Content Editors

 Example Parent:
<PSXFieldSet name="main" type="parent" repeatability="zeroOrMore"
supportsSequencing="yes">

Example Child:
<PSXFieldSet name="product" type="simpleChild" repeatability="oneOrMore"
supportsSequencing="no">

Defining Fields
Each individual field in the content editor interacts with a single column in the database. Use the
PSXField element to define each field. The behavior of the field is defined by both its attributes and its
child elements.

Attributes

Attribute Meaning
name Defines the name of the field. Must be unique among all fields in

the content editor, including shared and system field names.

showInSummary Applies only to fields in complexChild fieldsets. This attribute
determines whether to display the field in summary view. If the
value of this attribute is yes, Rhythmyx displays the field in
summary areas on the content editor. For fields with lengthy text
that may be unclear in a summary view, set this attribute to no. It is
automatically set to no for fields whose datatype is binary.
Rhythmyx ignores this attribute except when generating summary
table data. The default value of this attribute is yes.

showInPreview Defines whether the content editor displays the field in preview
mode. This attribute allows you to hide fields with lengthy text that
may be unclear in Preview mode. By default, all fields except those
containing binary data are displayed. The default value of this
attribute is yes.

forceBinary This attribute allows you to override the default behavior of the
server. Normally, the server only considers binary fields such as
Image or LONG RAW as binary. Set this flag to yes if you want
the server to treat another data type (such as CLOB in Oracle or Text
in SQLServer) as binary. Defaults to no. Set to yes for all binary
fields.

Child Elements

Name Appearance Description
DataLocator Once Specifies the location of the data for this field.

DataType Zero or one Defines the type of data (character data versus
binary). For future use.

DefaultValue

Zero or one Defines the default value of the field. If a value is
specified for this element, that value will be
included in the output document when the content
editor is displayed for a new item.

 Appendix I Appendices 137

Name Appearance Description
OccurrenceSettings Zero or one Specifies how many times the field should occur

(in other words the business rules).

FieldRules Zero or one Defines set of rules regarding validation,
translation, and visibility for field.

 Example
<PSXField name="displayname" showInSummary="yes" showInPreview="yes"
forceBinary="no">
 <DataLocator>
 <PSXBackEndColumn id="0">
 <tableAlias>RXHEADLINE</tableAlias>
 <column>DISPLAYNAME</column>
 <columnAlias/>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType/>
 <OccurrenceSettings dimension="optional" multiValuedType="delimited"
delimiter=";"/>
</PSXField>

Including Shared Fields
Several content editors may share a number of fields. For example, if you want to associate every content
item with a division and product line, all of your content editors can share those fields. Rather than
repeating the definition of the fields in each content editor, you can define sets of shared fields in one or
more XML files that are separate from the content editor file. These shared field definition files use the
same database definition and the same XML field and field set elements as other content editor files.

Use the SharedFieldGroupName child element to define the shared field groups you want to include
in the content editor definition.

This is the XML for including the shared field group relatedcontent:
<SharedFieldIncludes>
 <SharedFieldGroupName>relatedcontent</SharedFieldGroupName>
</SharedFieldIncludes>

Excluding System Fields
Rhythmyx includes all system fields in each content editor by default. Rhythmyx includes the following
system fields at installation:

System Field Description
sys_contentstartdate Date the content item is eligible to be published.

sys_contentexpirydate Date the content item is no longer eligible to be published.

sys_title Title of the content item in the CMS.

sys_pubdate Date the content item was last published.

sys_pathname Path, relative to the root of the web server, where the file will
be published.

138 Rhythmyx Implementing Content Editors

System Field Description
sys_suffix The extension of the file to be published. For example: htm,

html, or asp.

 Use the SystemFieldExcludes element to specify any system fields you do not want used in the
content editor. Specify the individual fields in FieldRef child elements. The example below shows the
XML code for excluding the sys_pubdate field:

<SystemFieldExcludes>
 <FieldRef>sys_pubdate</FieldRef>
</SystemFieldExcludes>

Defining the Interface
The PSXUIDefinition element contains the definitions of the user-interface controls for the fields in
the content editor. Each control defines the user interface for entering or editing the contents of a single
field on the browser form. For example, drop-down lists and checkboxes are types of controls. The
PSXUIDefinition includes one PSXDisplayMapper element for each PSXFieldSet element,
and one PSXDisplayMapping element for each PSXField element.

The FieldRef child of the PSXDisplayMapping element specifies the field for which you are
defining the user interface, while the PSXUISet defines the interface label and control for the field. The
PSXUISet element includes the following children:

Name Appearance Description
Label Zero or one Defines the label for the field in the user

interface. This text is visible the user of the
editor.

PSXControlRefE Zero or one Refers to a control used when displaying the data
in this field. Controls are defined in an XSL field,
so no validation is performed on this name until a
request is processed.

Default controls include:

sys_EditBox

sys_File

sys_HiddenInput

sys_TextArea

sys_CalendarSimple

sys_HtmlEditor

sys_Table

sys_DropDownSingle

sys_CheckBoxGroup

 Appendix I Appendices 139

Name Appearance Description
ErrorLabel Zero or one Defines the label displayed when the field fails a

validation test. Replaces the standard label in the
output document in this case.

PSXChoices Zero or one Defines a choice list for the field. Only used for
SDMP field sets.

ReadOnlyRules Zero or one Defines the rules that determine whether a field
should be displayed as read-only.

PSXCustomActionGroup Zero or one Defines overrides to the default editor behavior,
removing existing buttons and adding new
buttons.

Eample PSXIUDefinition

<PSXUIDefinition>
 <PSXDisplayMapper id="0" fieldSetRef="main">
 <PSXDisplayMapping>
 <FieldRef>DISPLAYTITLE</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Display Title:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_EditBox"/>
 </PSXUISet>
 </PSXDisplayMapping>
 </PSXDisplayMapper>
</PSXUIDefinition

Adding Related Content Links to a Content Editor
Related content is other content items that are associated with the content item being edited. For example,
when editing a content item that stores a news article, you might want to include an image, links to other
articles of related interest, and recent news developments. Each of these would be associated with the
article as related content.

To add the ability to link to related content to an editor:

1 In the XML document for the content editor, include the shared field group
relatedcontent. For example:
<SharedFieldIncludes>
 <SharedFieldGroupName>relatedcontent</SharedFieldGroupName>
</SharedFieldIncludes>

2 Include a reference to the Related Content control in a <PSXDisplayMapping> element
the refers to the related content shared field group. Do not include a label. For example:
<PSXDisplayMapping>

140 Rhythmyx Implementing Content Editors

 <FieldRef>relatedcontent</FieldRef>
 <PSXUISet>
 <PSXControlRef name = "sys_RelatedContentTable"/>
 </PSXUISet>
</PSXDisplayMapping >

3 In the <SectionLinkList>, add a section link to the related content lookup in a
<PSXUrlRequest> child element.
<PSXUrlRequest name = "RelatedLookupURL">
 <PSXExtensionCall id = "0">
<name>Java/global/percussion/generic/sys_MakeIntLink</name>
 <PSXExtensionParamValue id = "0">
 <value>
 <PSXTextLiteral id = "0">
 <text>../sys_rcSupport/relatedcontent.xml</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXTextLiteral id="0">
 <text>sys_contentid</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXHtmlParameter id="0">
 <name>sys_contentid</name>
 </PSXHtmlParameter>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXTextLiteral id="0">
 <text>sys_revision</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXHtmlParameter id="0">
 <name>sys_revision</name>
 </PSXHtmlParameter>
 </value>
 </PSXExtensionParamValue>
 </PSXExtensionCall>
<PSXUrlRequest>

4 In the <SectionLinkList>, add a section link to the variant list in a
<PSXUrlRequest> element.
<PSXUrlRequest name = "VariantListURL">
 <PSXExtensionCall id = "0">
<name>Java/global/percussion/generic/sys_MakeIntLink</name>
 <PSXExtensionParamValue id = "0">
 <value>

 Appendix I Appendices 141

 <PSXTextLiteral id = "0">
 <text>../sys_rcSupport/
 variantlistwithslots.xml</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXTextLiteral id="0">
 <text>sys_contentid</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXHtmlParameter id="0">
 <name>sys_contentid</name>
 </PSXHtmlParameter>
 </value>
 </PSXExtensionParamValue>
 </PSXExtensionCall>
<PSXUrlRequest>

5 In the <SectionLinkList>, add a section link to the content slot lookup in a
<PSXUrlRequest> element.
<PSXUrlRequest name="ContentSlotLookupURL">
 <PSXExtensionCall id="0">
<name>Java/global/percussion/generic/sys_MakeIntLink</name>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXTextLiteral id="0">

 <text>../sys_rcSupport/contentslotvariantlist.xml</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXTextLiteral id="0">
 <text>sys_contentid</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXHtmlParameter id="0">
 <name>sys_contentid</name>
 </PSXHtmlParameter>
 </value>
 </PSXExtensionParamValue>
 </PSXExtensionCall>
</PSXUrlRequest>

142 Rhythmyx Implementing Content Editors

Adding Components to the Content Editor
The Rhythmyx user interface is composed of several components independent of the content editor
application itself, such as the banner, user-status display and [Help] button. To include these components:

1 Go to the <SectionLinkList> element.

2 If the <PSXUrlRequest> element for "bannerincludeurl" exists, replace it with the
following XML fragment. If it does not exist, add the following XML fragment.
<PSXUrlRequest name="bannerincludeurl">
 <PSXExtensionCall id="0">
 <name>Java/global/percussion/generic/sys_MakeIntLink</name>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXTextLiteral id="0">
 <text>../sys_ComponentSupport/component.xml</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXTextLiteral id="0">
 <text>sys_componentname</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXTextLiteral id="0">
 <text>cmp_banner</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 </PSXExtensionCall>
</PSXUrlRequest>

3 If the <PSXUrlRequest> element for "userstatusincludeurl" exists, replace it with the
following XML fragment. If it does not exist, add the following XML fragment.
<PSXUrlRequest name="userstatusincludeurl">
 <PSXExtensionCall id="0">
<name>Java/global/percussion/generic/sys_MakeIntLink</name>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXTextLiteral id="0">
 <text>../sys_ComponentSupport/component.xml</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXTextLiteral id="0">
 <text>sys_componentname</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>

 Appendix I Appendices 143

 <PSXExtensionParamValue id="0">
 <value>
 <PSXTextLiteral id="0">
 <text>cmp_userstatus</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 </PSXExtensionCall>
</PSXUrlRequest>

4 If the <PSXUrlRequest> element for "helpincludeurl" exists, replace it with the following
XML fragment. If it does not exist, add the following XML fragment.
<PSXUrlRequest name="helpincludeurl">
 <PSXExtensionCall id="0">
<name>Java/global/percussion/generic/sys_MakeIntLink</name>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXTextLiteral id="0">
 <text>../sys_ComponentSupport/component.xml</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXTextLiteral id="0">
 <text>sys_componentname</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="0">
 <value>
 <PSXTextLiteral id="0">
 <text>ca_help</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 </PSXExtensionCall>
</PSXUrlRequest>

Updating the Content Type Registration
Once you have a working content editor application, you can update the New Request and Query Request
URL fields.

To update a content type registration:

1 In the content editor Resource Properties dialog, copy the content editor URL to the clipboard.

2 Log into the Rhythmyx Content Management System with a user in the Admin Role.

3 In the banner, click System.

Rhythmyx displays the System Administrator page.

4 In the left menu, click Content Types.

144 Rhythmyx Implementing Content Editors

Rhythmyx displays the Content Types Editor, showing the existing content types.

5 Click on the content type you want to update.

Rhythmyx displays the Edit Content Type page.

6 Paste the URL from the content editor into the New Request URL and Query Request URL
fields.

7 Click [Save] to save the content type registration. Rhythmyx will display a confirmation
dialog. Click [Yes] to confirm the save action or [No] to abort it.

Creating the Content Editor Application
Once you have validated your content editor definition, you are ready to create the content editor
application in the Rhythmyx workbench.

To create a content editor application:

1 Start the Rhythmyx workbench and create a new application.

2 Click the Files tab and navigate to the directory where you saved your content editor
definition.

3 Drag the content editor definition file and drop it into the application window.

4 Rhythmyx will display a popup menu. Select Content Editor. If your content editor
definition is valid, Rhythmyx will display the content editor resource:

5 Map the XML to the database.

6 Create a purge resource named "purge." Set the "pipe properties" of the purge resource to
"purge." The purge resource deletes all rows of all tables (other than system tables) that hold
content for the specific content id.

7 Save your application.

8 Click the Start button in the button bar to start the application.

9 Right click on the content editor and choose Request Properties.

Rhythmyx displays the Resource Request Properties dialog.

10 Click the [Copy to Clipboard] button to copy the sample URL.

11 Open a web browser, paste the contents of the clipboard to the address field and open the
page.

If you have defined the content editor correctly, the browser will display a login dialog. If you enter a
valid user name and password into this dialog, Rhythmyx should display the content editor.

 Appendix I Appendices 145

Validating the Content Editor Definition
When you finish creating the content editor definition, you will need to validate it against the content
editor DTD (sys_ContentEditorLocalDef.dtd) to ensure that it conforms to the requirements of
the DTD. If the content editor definition does not conform to this DTD, it will generate errors when you
drop it into the Rhythmyx workbench. The DTD is located in the /Rhythmyx/DTD/ directory. Note:
Solaris users (and others) should not change directory name or case.

Most XML editor applications include DTD validation functions. Several XML editors for the Windows
platform are available to be downloaded from the Internet, either as freeware or as limited-time trials.
 Search the Web to find the tools available.

 147

Content Editor Control Reference
The content editor stylesheets refer to a set of controls that are defined in two XSL stylesheets:
 rx_Templates.xsl and sys_Templates.xsl. The sys_templates file stores the standard
controls that are installed with Rhythmyx and is stored in the /<rxroot>/ sys_resources
/Stylesheets directory. The user_templates file stores controls defined for the specific installation
and is stored in the /<rxroot>/ rx_resources /Stylesheets directory. Users should not
modify controls defined in sys_Templates.xsl.

The control stylesheets are imported into the content editor using the following code:
<xsl:import href="sys_resources/Stylesheets/sys_templates.xsl/>
<xsl:import href="rx_resources/Stylehsheets/rx_templates.xsl/>

All controls provided by Percussion Software begin sys_; for example, sys_DatePicker. User-
developed controls should not begin with this prefix.

Using <xsl:import> defines the precedence between the templates such that any template that exists
in user_templates,xsl overrides a template of the same name that exists in sys_templates.xsl. When
developing local control templates, do not use control names that begin "sys_" unless intentionally
overriding an existing control.

Control Header
The control header stores the metadata that defines the control, including the name and description of the
control, any parameters, associated files, or exits required for the control to function and process data
correctly. The formal definition of the controls is defined in the sys_LibraryControlDef.dtd.

The header must be added to the sys_template.xsl or user_template.xsl immediately before
the first <xsl:template> block related to the control. Rhythmyx uses this header when selecting
controls. If the control header is missing or invalid, Rhythmyx cannot select the control. The control will
continue to work unless it requires external script files, however.

All control definitions exist in the "psxctl" namespace. The full declaration of this namespace is:
xmlns:psxctl="URM:percussion.com/control"

Any files required for the control to function must be listed in the AssociatedFiles element of the header.
 The children of this element describes the file and specifies its location.

Any exits required by the control must be specified in the Dependencies element. The attributes of this
element specify whether the extension requires additional setup and whether you must add additional
iterations of the exit for each appearance of the control. The child elements specify the exit to call and any
parameters you must specify for it. You must add these exits to the content editor resource in the content
editor application.

A P P E N D I X I I

148 Rhythmyx Implementing Content Editors

Control Template Standards
A control template must meet the following standards:

� The template must match on a <Control> element with a specific name. The main
templates must use the "psxcontrol" mode. For example:

 <xsl:template match="Control[@name='sys_DatePicker']"
mode="psxcontrol"

� Controls should be written to conform to the shape of the table, and should not contain fixed-
width formats.

� All controls use the same cascading stylesheet styles that are used in the editors.
� The datadisplay style will be used unless some special effects are required.
� The datacell1 and datacell2 styles can be used for alternating rows in complex

controls.
� The columnhead2 style will be used for labels.
� All controls must be capable of rendering both "read-only" and "writable" forms. The forms

do not have to resemble each other. The read-only form of the control must also a HTML
form element that returns the current field value; for example, <input type="hidden"
name="sample" value="blank" />.

Control Events
Individual form elements do not have "load" and "submit" events, and therefore certain controls will need
JavaScript event code on the Form and Document level. To add JavaScript code to a control, build
another <xsl:template> with a mode that matches the event name.

The output of any event template should:

� be a single string;
� be well-formed;
� end with a semi-colon.

Multiple template events are concatenated together into a single onLoad or onSubmit attribute.

Control templates that do not implement these events can either provide an empty template (for example:
<xsl:template match = "Control[@name='sys_picker']" mode="psxcontrol –
body-onload"/>)

or no template at all. Providing an empty template can be faster because is shortcuts the search for a
template match.

To prevent events from being rendered as text items if the event is empty, the system control library
includes a default empty template for each defined event. For example:

<xsl:template match="Control" mode="psxcontrol –docload"/>
Currently, the following events are defined within Rhythmyx:

HTML Event Mode Name
document.load psxcontrol-body-onload

 Appendix II Appendices 149

HTML Event Mode Name
form.submit psxcontrol-form-onsubmit

Use the AssociatedFileList element to add the JavaScript file. The following example is from the
sys_CalendarSimple control

<psxctl:AssociatedFileList>
 <psxctl:FileDescriptor name="calPopup.js" type="script"
mimetype="text/javascript">

 <psxctl:FileLocation>../rx_resources/js/calPopup.js</psxctl:FileLocat
ion>
 <psxctl:Timestamp></psxctl:Timestamp>
 </psxctl:FileDescriptor>
</psxctl:AssociatedFileList>

Standard Rhythmyx Controls
Eleven standard controls are provided with Rhythmyx.

Each control has a name and a dimension. The dimension describes the form of the data expected by the
control. Options are

Value Description
single Data is zero or one value.

array Data is a sequence of 0 or more values.

table Data is a table of values.
Each control can take a series of parameters. Each parameter included has a name, a data type and a
parameter type. The data type defines the type of data expected for the parameter. Options include String,
Date, Datetime, and Number.

The parameter type can take one of three values: generic, img, and jscript. The parameter type is used
with the parametersToAttributes template. This template copies parameters into the HTML. The defaults
specified in the control metadata are used except where the content editor XML definition file overrides
the defaults. Only parameters that are listed in the control meta are copied. Multiple parameter types are
available because a control may need to configure more than one HTML tag.

The description of the parameter describes what the parameter is for. A parameter may or may not include
a default value.

150 Rhythmyx Implementing Content Editors

sys_CalendarSimple

Figure 43: Example sys_CalendarSimple

The sys_CalendarSimple control is a combination of an editbox and a button (calendar icon). When a
user clicks the calendar icon, Rhythmyx displays a popup calendar control they can use to select a date.
 Each field has its own control. The dimension is single.

The text field allows for manual entry of a date. Data entered into this field must conform to standard date
patterns.

� "yyyy-MMMM-dd 'at' hh:mm:ss aaa",
� "yyyy-MMMM-dd HH:mm:ss",
� "yyyy.MMMM.dd 'at' hh:mm:ss aaa",
� "yyyy.MMMM.dd HH:mm:ss",
� "yyyyMMdd HH:mm:ss",
� "yyyy.MMMM.dd 'at' hh:mm aaa",
� "yyyy-MM-dd G 'at' HH:mm:ss",
� "yyyy-MM-dd HH:mm:ss.SSS",
� "yyyy-MM-dd HH:mm:ss",
� "yyyy.MM.dd G 'at' HH:mm:ss",
� "yyyy.MM.dd HH:mm:ss.SSS",
� "yyyy.MM.dd HH:mm:ss",
� "yyyy/MM/dd G 'at' HH:mm:ss",
� "yyyy/MM/dd HH:mm:ss.SSS",
� "yyyy/MM/dd HH:mm:ss",
� "yyyy/MM/dd HH:mm",
� "yyyy-MM-dd",
� "yyyy.MM.dd",
� "yyyy/MM/dd",
� "yyyy-MMMM-dd",
� "yyyy.MMMM.dd",
� "EEE, d MMM yyyy HH:mm:ss",
� "EEEE, MMM d, yyyy",
� "MMM d, yyyy",
� "MMM yyyy",
� "yyyy",
� "HH:mm:ss",
� "HH:mm"

 Appendix II Appendices 151

If these patterns are not matched, we try Java's default for the locale of the server to match the date.
Patterns not matched result in a error. Rhythmyx uses the SimpleDateFormat
(http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html) class to format and parse dates.

Parameter Data Type Parameter
Type

Description Default

id String Generic XHTML 1.0 attribute
applied input tag

None

class String Generic XHTML 1.0 attribute
applied input tag

None

style String Generic XHTML 1.0 attribute
applied input tag

None

tabindex Number Generic XHTML 1.0 attribute
applied input tag

None

alt String Image Alt for the calendar
selector icon.

Calendar Pop-up

src String Image href for the calendar
selector icon

../rx_resources/images/cal.gif

height String Image Height of the calendar
selector icon

20

width String Image Width of the calendar
picker icon

20

formname String JavaScript Name of the form that
contains this control

EditForm

time String Generic Defines whether the
Calendar display
includes the time. If
the value is yes, the
time calendar displays
the time. If the value
is no, the calendar does
not display the time. If
the parameter has any
other value, it is treated
as though the value is
yes.

no

Example Field Definition
The sys_CalendarSimple control almost always is assigned to a system field.

Example UI Definition
<PSXDisplayMapping>
 <FieldRef>sys_contentstartdate</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Start Date:</PSXDisplayText>

152 Rhythmyx Implementing Content Editors

 </Label>
 <PSXControlRef name="sys_CalendarSimple"/>
 </PSXUISet>
</PSXDisplayMapping>

sys_CheckBoxGroup
The sys_CheckBoxGroup displays a group of check boxes that give the end user the ability to select
multiple values at the same time. A checkbox group must be multidimensional, so the values for the
group should always be stored in a child table. The child table should consist of at least three columns:
one for contentid, one for revisionid and one for the value to be stored. You should only define the value
column in the field definition. The server will populate the contentid and revisionid fields automatically.
 The dimension is array.

Figure 44: Example sys_CheckBoxGroup

When implementing this control, add the child table to the list of tables for the content editor:
<PSXTableSet>
 <PSXTableLocator>

 </PSXTableLocator>
 <PSXTableRef name="RXBRIEF" alias="RXBRIEF"/>
 <PSXTableRef name="CHECKTABLE" alias="CHECKTABLE" />
</PSXTableSet>

Parameters

Parameter Data Type Parameter
Type

Description Default

id String Generic XHTML 1.0 attribute None

class String Generic XHTML 1.0 attribute None

style String Generic XHTML 1.0 attribute None

columncount String Generic Defines the number of columns
in which the browser will
display the check boxes. If the
value of this parameter is 0 or 1,
the browser renders the
checkboxes in one column. If
the value of the parameter is
anything other than 0 or 1, the
browser renders the checkboxes
in the specified number of
columns.

1

 Appendix II Appendices 153

Parameter Data Type Parameter
Type

Description Default

columnwidth String Generic Specifies the width of the
column in pixels or percentage.

100%

 Example Field Definition
<PSXFieldSet name="productused" type="simpleChild"
repeatability="oneOrMore" supportsSequencing="no">
 <PSXField name="productusedvalue" showInSummary="yes"
showInPreview="yes" forceBinary="no">
 <DataLocator>
 <PSXBackEndColumn id="0">
 <tableAlias> ProductsUsed</tableAlias>
 <column>PRODUCTID</column>
 <columnAlias>PRODUCTIDUSED</columnAlias>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType/>
 <OccurrenceSettings dimension="optional"
multiValuedType="delimited" delimiter=";"/>
 </PSXField>
</PSXFieldSet>

Example UI Definitions
Use the type attribute of the PSXChoices element in the UI definition to specify how you are storing the
checkbox values so that Rhythmyx can retrieve them.

To store checkbox values in the lookup table (RXLOOKUP), use the value global for the type attribute.
Rhythmyx gets the values when it builds the document by using the value in the Key element to determine
the lookup key for the table. Use the Rhythmyx System Administrator to maintain the Keywords in this
table. The key is a system-generated value, so manual addition of values to this table is not recommended.

Example UI Definition for global:
<PSXDisplayMapping>
 <FieldRef>productused</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Product Used:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_CheckBoxGroup"/>
 <PSXChoices type="global" sortOrder="ascending">
 <Key>3</Key>
 </PSXChoices>
 </PSXUISet>
 <PSXDisplayMapper id="8" fieldSetRef="productused">
 <PSXDisplayMapping>
 <FieldRef>productusedvalue</FieldRef>
 <PSXUISet/>
 </PSXDisplayMapping>
 </PSXDisplayMapper>
</PSXDisplayMapping>

154 Rhythmyx Implementing Content Editors

To store checkbox values in the content editor definition as a list of PSXEntry elements, use the value
local for the type attribute.

Example UI Definition for local:
<PSXDisplayMapping>
 <FieldRef>local</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Local choices:</PSXDisplayText>
 </Label>
 <PSXControlRef name=" sys_CheckBoxGroup "/>
 <PSXChoices type="local" sortOrder="user">
 <PSXEntry sequence="0" default="no">
 <PSXDisplayText>Computing Machinery</PSXDisplayText>
 <Value>acm</Value>
 </PSXEntry>
 <PSXEntry sequence="1" default="no">
 <PSXDisplayText> Society of Electrical
Engineers</PSXDisplayText>
 <Value>ieee</Value>
 </PSXEntry>
 <PSXEntry sequence="3" default="no">
 <PSXDisplayText>Society for Prevention</PSXDisplayText>
 <Value>spca</Value>
 </PSXEntry>
 </PSXChoices>
 </PSXUISet>

</PSXDisplayMapping>sys_CheckBoxGroup To store checkbox values in the content editor definition as
a list of PSXEntry elements, use the value local for the type attribute.

Example UI Definition for local:
<PSXDisplayMapping>
 <FieldRef>local</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Local choices:</PSXDisplayText>
 </Label>
 <PSXControlRef name=" sys_CheckBoxGroup "/>
 <PSXChoices type="local" sortOrder="user">
 <PSXEntry sequence="0" default="no">
 <PSXDisplayText>Computing Machinery</PSXDisplayText>
 <Value>acm</Value>
 </PSXEntry>
 <PSXEntry sequence="1" default="no">
 <PSXDisplayText> Society of Electrical
Engineers</PSXDisplayText>
 <Value>ieee</Value>
 </PSXEntry>
 <PSXEntry sequence="3" default="no">
 <PSXDisplayText>Society for Prevention</PSXDisplayText>
 <Value>spca</Value>
 </PSXEntry>
 </PSXChoices>
 </PSXUISet>
</PSXDisplayMapping>

 Appendix II Appendices 155

To store or generate checkbox values in another control or stylesheet, use the value lookup for the type
attribute. Define a URL with the control or stylesheet’s address in a PSXUrlRequest child element.

Example UI Definition for lookup:
<PSXDisplayMapping>
 <FieldRef>productused</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Product Used:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_CheckBoxGroup"/>
 <PSXChoices type="lookup" sortOrder="ascending">
 <PSXUrlRequest>
 <PSXExtensionCall id="10">
 <name>Java/global/percussion/generic/
 sys_MakeIntLink</name>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXTextLiteral id="1">
 <text>../rx_ceSupport/ ProductUsed.xml</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXTextLiteral id="1">
 <text>contentid</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXHtmlParameter id="1">
 <name>sys_contentid</name>
 </PSXHtmlParameter>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXTextLiteral id="1">
 <text>sys_revision</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXHtmlParameter id="1">
 <name>sys_revision</name>
 </PSXHtmlParameter>
 </value>
 </PSXExtensionParamValue>
 </PSXExtensionCall>
 </PSXUrlRequest>
 </PSXChoices>

156 Rhythmyx Implementing Content Editors

 </PSXUISet>
 <PSXDisplayMapper id="8" fieldSetRef="productused">
 <PSXDisplayMapping>
 <FieldRef>productusedvalue</FieldRef>
 </PSXDisplayMapping>
 </PSXDisplayMapper>

</PSXDisplayMapping>sys_CheckBoxGroup To store or generate checkbox values in another control or
stylesheet, use the value lookup for the type attribute. Define a URL with the control or stylesheet’s
address in a PSXUrlRequest child element.

Example UI Definition for lookup:
<PSXDisplayMapping>
 <FieldRef>productused</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Product Used:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_CheckBoxGroup"/>
 <PSXChoices type="lookup" sortOrder="ascending">
 <PSXUrlRequest>
 <PSXExtensionCall id="10">
 <name>Java/global/percussion/generic/
 sys_MakeIntLink</name>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXTextLiteral id="1">
 <text>../rx_ceSupport/ ProductUsed.xml</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXTextLiteral id="1">
 <text>contentid</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXHtmlParameter id="1">
 <name>sys_contentid</name>
 </PSXHtmlParameter>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXTextLiteral id="1">
 <text>sys_revision</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXHtmlParameter id="1">
 <name>sys_revision</name>

 Appendix II Appendices 157

 </PSXHtmlParameter>
 </value>
 </PSXExtensionParamValue>
 </PSXExtensionCall>
 </PSXUrlRequest>
 </PSXChoices>
 </PSXUISet>
 <PSXDisplayMapper id="8" fieldSetRef="productused">
 <PSXDisplayMapping>
 <FieldRef>productusedvalue</FieldRef>
 </PSXDisplayMapping>
 </PSXDisplayMapper>
</PSXDisplayMapping>

To store checkbox values in a Rhythmyx table other than the RXLOOKUP table, use the value
internalLookup for the type attribute. Define a URL in a PSXUrlRequest child element so that
Rhythmyx can get the entries through an internal request to the specified URL. The lookup query must
conform to the sys_Lookup.dtd. You can add it to the content editor application or place it in a separate
application. See Creating an Internal Lookup Query (on page 195) for a procedure for adding the lookup
query.

Example UI Definition for internal lookup:
<PSXDisplayMapping>
 <FieldRef>productused</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Product Used:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_CheckBoxGroup"/>
 <PSXChoices type="internallookup" sortOrder="ascending">
 <PSXUrlRequest> <PSXExtensionCall id="10">
 <name>Java/global/percussion/generic/
 sys_MakeIntLink</name>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXTextLiteral id="1">
 <text>../rx_ceSupport/ ProductUsed.xml</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXTextLiteral id="1">
 <text>contentid</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXHtmlParameter id="1">
 <name>sys_contentid</name>
 </PSXHtmlParameter>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">

158 Rhythmyx Implementing Content Editors

 <value>
 <PSXTextLiteral id="1">
 <text>sys_revision</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXHtmlParameter id="1">
 <name>sys_revision</name>
 </PSXHtmlParameter>
 </value>
 </PSXExtensionParamValue>
 </PSXExtensionCall>
 </PSXUrlRequest>
 </PSXChoices>
 </PSXUISet>
 <PSXDisplayMapper id="8" fieldSetRef="productused">
 <PSXDisplayMapping>
 <FieldRef>productusedvalue</FieldRef>
 <PSXUISet/>
 </PSXDisplayMapping>
 </PSXDisplayMapper>

</PSXDisplayMapping>sys_CheckBoxGroup To store checkbox values in a Rhythmyx table other than
the RXLOOKUP table, use the value internalLookup for the type attribute. Define a URL in a
PSXUrlRequest child element so that Rhythmyx can get the entries through an internal request to the
specified URL. The lookup query must conform to the sys_Lookup.dtd. You can add it to the content
editor application or place it in a separate application. See Creating an Internal Lookup Query (on page
195) for a procedure for adding the lookup query.

Example UI Definition for internal lookup:
<PSXDisplayMapping>
 <FieldRef>productused</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Product Used:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_CheckBoxGroup"/>
 <PSXChoices type="internallookup" sortOrder="ascending">
 <PSXUrlRequest> <PSXExtensionCall id="10">
 <name>Java/global/percussion/generic/
 sys_MakeIntLink</name>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXTextLiteral id="1">
 <text>../rx_ceSupport/ ProductUsed.xml</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXTextLiteral id="1">
 <text>contentid</text>
 </PSXTextLiteral>
 </value>

 Appendix II Appendices 159

 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXHtmlParameter id="1">
 <name>sys_contentid</name>
 </PSXHtmlParameter>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXTextLiteral id="1">
 <text>sys_revision</text>
 </PSXTextLiteral>
 </value>
 </PSXExtensionParamValue>
 <PSXExtensionParamValue id="1">
 <value>
 <PSXHtmlParameter id="1">
 <name>sys_revision</name>
 </PSXHtmlParameter>
 </value>
 </PSXExtensionParamValue>
 </PSXExtensionCall>
 </PSXUrlRequest>
 </PSXChoices>
 </PSXUISet>
 <PSXDisplayMapper id="8" fieldSetRef="productused">
 <PSXDisplayMapping>
 <FieldRef>productusedvalue</FieldRef>
 <PSXUISet/>
 </PSXDisplayMapping>
 </PSXDisplayMapper>

</PSXDisplayMapping>'

sys_DropDownSingle
The sys_DropDownSingle is a basic DropDown Html control. When a user clicks on the control,
Rhythmyx displays a list of potential values for the field. The user can select one of these values to
populate the field. Use the PSXNullEntry element to define the behavior of the field when no value
has been selected. The dimension is single.

Figure 45: Example sys_DropDownSingle

160 Rhythmyx Implementing Content Editors

Parameters

Parameter Data Type Parameter Type Description Default
id String Generic XHTML 1.0 attribute None

class String Generic XHTML 1.0 attribute None

style String Generic XHTML 1.0 attribute None

size Number Generic XHTML 1.0 attribute None

multiple String Generic XHTML 1.0 attribute None

tabindex Number Generic XHTML 1.0 attribute None

disabled String Generic XHTML 1.0 attribute None

Example Field Definition
<PSXField name="editor" showInSummary="yes" showInPreview="yes"
forceBinary="no">
 <DataLocator>
 <PSXBackEndColumn id="0">
 <tableAlias>BOOKS</tableAlias>
 <column>EDITOR</column>
 <columnAlias/>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType/>
 <OccurrenceSettings dimension="optional" multiValuedType="delimited"
delimiter=";"/>
</PSXField>

Example UI Definition
Use the type attribute of the PSXChoices element in the UI definition to specify how you are storing the
drop down values so that Rhythmyx can retrieve them.

To store drop down values in the lookup table (RXLOOKUP), use the value global for the type attribute.
Rhythmyx gets the values when it builds the document by using the value in the Key element to determine
the lookup key for the table. Use the Rhythmyx System Administrator to maintain the Keywords in this
table. The key is a system-generated value, so manual addition of values to this table is not recommended.

Example UI Definition for global:
<PSXDisplayMapping>
 <FieldRef>global</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Global choices:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_DropDownSingle"/>
 <PSXChoices type="global" sortOrder="ascending">
 <Key>3</Key>
 <PSXNullEntry sortOrder="first"
includeWhen="onlyIfNull">
 <PSXEntry sequence="0" default="no">

 Appendix II Appendices 161

 <PSXDisplayText> -- choose -- </PSXDisplayText>
 <Value>0</Value>
 </PSXEntry>
 </PSXNullEntry>
 </PSXChoices>
 </PSXUISet>
</PSXDisplayMapping>

To store drop down values in the content editor definition as a list of PSXEntry elements, use the value
local for the type attribute.

Example UI Definition for local:

<PSXDisplayMapping>
 <FieldRef>local</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Local choices:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_DropDownSingle"/>
 <PSXChoices type="local" sortOrder="user">
 <PSXEntry sequence="0" default="no">
 <PSXDisplayText>Computing Machinery</PSXDisplayText>
 <Value>acm</Value>
 </PSXEntry>
 <PSXEntry sequence="1" default="no">
 <PSXDisplayText> Society of Electrical
Engineers</PSXDisplayText>
 <Value>ieee</Value>
 </PSXEntry>
 <PSXEntry sequence="3" default="no">
 <PSXDisplayText>Society for Prevention</PSXDisplayText>
 <Value>spca</Value>
 </PSXEntry>
 <PSXNullEntry sortOrder="last" includeWhen="always">
 <PSXEntry sequence="0" default="no">
 <PSXDisplayText> -- choose -- </PSXDisplayText>
 <Value>0</Value>
 </PSXEntry>
 </PSXNullEntry>
 <DefaultSelected>
 <PSXDefaultSelected type="nullEntry"/>
 </DefaultSelected>
 </PSXChoices>
 </PSXUISet>
</PSXDisplayMapping>

To store drop down values in a Rhythmyx table other than the RXLOOKUP table, use the value
internalLookup for the type attribute. Define a URL in a PSXUrlRequest child element so that
Rhythmyx can get the entries through an internal request to the specified URL. The lookup query must
conform to the sys_Lookup.dtd. You can add it to the content editor application or place it in a separate
application. See Creating an Internal Lookup Query (on page 195) for a procedure for adding the lookup
query.

Example UI Definition for internal lookup:
<PSXDisplayMapping>

162 Rhythmyx Implementing Content Editors

 <FieldRef>lookup</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Lookup choices:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_DropDownSingle"/>
 <PSXChoices type=" internalLookup " sortOrder="user">
 <PSXUrlRequest>
 <Href>http://38.164.160.56:9992/Rhythmyx/sys_wfLookups/
 extroles.html</Href>
 <PSXParam name="workflowid">
 <DataLocator>
 <PSXTextLiteral id="0">
 <text>1</text>
 </PSXTextLiteral>
 </DataLocator>
 </PSXParam>
 </PSXUrlRequest>
 </PSXChoices>
 </PSXUISet>
</PSXDisplayMapping>

To store or generate drop down values in another control or stylesheet, use the value lookup for the type
attribute. Define a URL with the control or stylesheet’s address in a PSXUrlRequest child element.

Example UI Definition for lookup:
<PSXDisplayMapping>
 <FieldRef>lookup</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Lookup choices:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_DropDownSingle"/>
 <PSXChoices type="lookup " sortOrder="user">
 <PSXUrlRequest>
 <Href>http://38.164.160.56:9992/Rhythmyx/sys_wfLookups/
 extroles.html</Href>
 <PSXParam name="workflowid">
 <DataLocator>
 <PSXTextLiteral id="0">
 <text>1</text>
 </PSXTextLiteral>
 </DataLocator>
 </PSXParam>
 </PSXUrlRequest>
 </PSXChoices>
 </PSXUISet>
</PSXDisplayMapping>

 Appendix II Appendices 163

sys_EditBox
The sys_EditBox control is used to input data in a standard one-line edit box. This control corresponds to
a single, one-dimensional field. The dimension is single.

Figure 46: Example sys_EditBox

Parameters

Parameter Data Type Parameter Type Description Default
id String Generic XHTML 1.0

attribute
None

class String Generic XHTML 1.0
attribute

None

style String Generic XHTML 1.0
attribute

None

size String Generic XHTML 1.0
attribute

50

maxlength Number Generic XHTML 1.0
attribute

None

tabindex Number Generic XHTML 1.0
attribute

None

 Example Field Definition
<PSXField name="displaytitle"showInSummary="yes"showInPreview="yes"
 forceBinary="no">
 <DataLocator>
 <PSXBackEndColumn id="0">
 <tableAlias>RXARTICLE</tableAlias>
 <column>DISPLAYTITLE</column>
 <columnAlias/>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType/>
 <OccurrenceSettings dimension="optional" multiValuedType="delimited"
 delimiter=";"/>
</PSXField>

Example UISet
<PSXDisplayMapping>
 <FieldRef>displaytitle</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Display Title:</PSXDisplayText>
 </Label>

164 Rhythmyx Implementing Content Editors

 <PSXControlRef name="sys_EditBox">
 <PSXParam name="maxlength">
 <DataLocator>
 <PSXTextLiteral id="1">
 <text>30</text>
 </PSXTextLiteral>
 </DataLocator>

EditLive for Java Editor
Ephox’s EditLive for Java (ELJ) HTML editor is now the default HTML editor for Rhythmyx content
editors.

Figure 47: sys_EditLive Cotnrol

Customers who are upgrading and have previously used the sys_eWebEditPro control may continue to use
it as a deprecated feature.

ELJ is provided by special license; check your Rhythmyx licensing agreement to confirm that you are
licensed to use ELJ. Note that you must be running JRE Version 1.4.207 or higher to run the sys_EditLive
control (JRE Version 1.4.207 or higher is required for Rhythmyx Version 5.7).

An XML configuration file (elj_config.xml) drives the functionality of
the<Rhythmyxroot>/rx_resources/ephox and <Rhythmyxroot>/sys_resources/ephox. Only customize the
file in <Rhythmyxroot>/rx_resources/ephox. On upgrade, Rhythmyx overwrites the file in
<Rhythmyxroot>/sys_resources/ephox. To take advantage of any upgrades, you must copy the
elj_config.xml file in sys_resources/ephox to rx_resources/ephox (or copy the changed portions of the file
to your file in the rx_resources/ephox folder). You may create multiple custom files, but when your
control runs, it can only reference one of them.

 ELJ editor, defining the controls and styles available to the end user. You can customize this
configuration file to add new functionality or to remove existing functionality.

Rhythmyx installs to the default configuration file to both Percussion Software will provide instructions
for modifying the installation in sys_resources/ephox to take advantage of upgrades to the ELJ editor.

NOTE: The deprecated sys_eWebEditPro documentation is now located on the Rhythmyx extranet at
http://www.percussion.com/support/rhythmyx-extranet/

 Appendix II Appendices 165

sys_EditLive Control
Sys_EditLive is a multiple-line text entry control in which the user can type and edit text. It displays a
DHTML editor that allows a user to enter text and apply standard formatting, such as changing the font or
the alignment.

Sys_EditLive also includes a feature that allows users to copy content from a Microsoft Word file and
paste it into sys_EditLive. The appearance of the content remains the same and sys_EditLive generates the
corresponding HTML markup.

The default Rhythmyx installation of this editor includes built-in support for inserting inline links and
images in addition to the standard features of the ELJ editor. (For details about the standard features and

Rhythmyx features of ELJ, click the help button in the control). This control works with all browsers
that Rhythmyx supports.

Parameters

Each sys_EditLive control includes the following parameters. The default values are set in the file
<Rhythmyx root>/sys_resources/stylesheets/sys_templates.xsl.

Parameter Data
Type

Parameter
Type

Description Default

Width String Generic This parameter specifies
the width of the inline
frame. This parameter
may be either a pixel or
a percentage of the
available horizontal .

760

Height String Generic This parameter specifies
the height of the inline
frame. This parameter
may be either a pixel or
a percentage of the
available vertical.

250

config_src_url String Generic This parameter specifies
the location of the
config.xml that the
control will use for
configuration.

../rx_resources/ephox/elj_config.xml

config_download String Generic This parameter specifies
the location of the
download directory.

../rx_resources/ephox/editlivejava

InlineLinkSlot String Generic This parameter specifies
the id of inline link slot.
The search dialog for the
inline link slot shows the
content types that have a
variant associated with
the slot.

103

166 Rhythmyx Implementing Content Editors

Parameter Data
Type

Parameter
Type

Description Default

InlineImageSlot String Generic This parameter specifies
the id of inline image
slot. The search dialog
for the inline image slot
shows the content types
that have a variant
associated with the slot.

104

InlineVariantSlot String Generic This parameter specifies
the id of inline variant
slot. The search dialog
for the inline variant slot
shows the content types
that have a variant
associated with the
inline variant slot.

105

DebugLevel String Generic This parameter specifies
the debug level for the
EditLive Applet. The
allowed levels are (fatal,
error, warn, info, debug,
http)

info

You can change the values of sys_EditLive parameters for any individual Content Editor field.

To change the value of a sys_EditLive parameter for a Content Editor field:

1 In the Rhythmyx Workbench, access the Content Editor Properties dialog for the Content
Editor for which you want to change the field parameter value.

2 In the field using the sys_EditLive control, double-click on sys_EditLive to display the
browse button (…) next to it.

3 Click the browse button (…).

 Appendix II Appendices 167

 Rhythmyx displays the Display Control Properties for Associations dialog.

Figure 48: Display Control Properties for Associations dialog

Parameters that take the default values from the sys_templates.xsl file are not shown in the
Param name/Value table.

168 Rhythmyx Implementing Content Editors

1 Click in the Param name column and choose the parameter whose value you want to change
from the drop list.

Figure 49: sys_EditLive Parameters

2 Click in the Value column of the same row and enter the value you want to use for this
instance of the control.

Figure 50: Change to Ephox parameter

3 On the Display Control Properties for Associations dialog, click [OK].

4 On the Field Properties dialog, click [OK].

 Appendix II Appendices 169

5 On the Content Editor Properties dialog, click [OK].

6 When you open the Content Editor in Content Explorer, the field should reflect the change
made to the parameter. Note: You may have to choose View > Refresh in Content Explorer
before seeing the change.

Adding the sys_EditLive Control to a Content Editor
To add the sys_EditLive editor to a content editor, select sys_EditLive as the Control Name for the field
for which you want to use the ELJ editor. No additional implementation is required when implementing a
content editor through the Content Editor Properties dialog. Rhythmyx automatically adds the
sys_xdTextCleanup exit to the Content Editor, and automatically configures its required parameter.

Content Assemblers and the ELJ HTML Editor
All Content Assemblers that assemble content edited using the sys_EditLive control must include the
sys_xdTextToTree exit.

Customizing the ELJ Editor
You can customize both the parameters of the sys_EditLive control and the configuration files of the ELJ
editor itself.

Customizing the sys_EditLive control
The parameters of the sys_EditLive control define the height and width of the display of the editor and the
path to configuration file (elj_config.xml). You can customize these parameters in the control
definition (in the Display Control Properties for <field> dialog). If you customize the configuration file
for the ELJ editor, update the config_src_url parameter of each instance of the sys_EditLive
control to point to the correct configuration file.

170 Rhythmyx Implementing Content Editors

Customizing ELJ Configuration
The ELJ editor is a robust and highly customizable HTML editor.

Most customizations of the ELJ editor involve modifications to the configuration file (elj_config.xml in
the Rhythmyx implementation). Do not modify the default configuration file, which is located in the
<Rhythmyxroot>/sys_resources/ephox directory. Instead, modify the copy in
<Rhythmyxroot>/rx_resources/ephox. You may create multiple custom configuration files
and give them different names or store them in different directories.

To customize the control, you may want to add javascript functions that extend its capabilities. See
Adding Custom Menu and Toolbar Actions (on page 171) for instructions on adding custom javascript
functions. Several instances of the control can use the same configuration XML file (shared configuration
file), or you can use a local configuration file for each instance of the editor; you can also use a shared
configuration file for some instances and a local configuration file for other instances. As a best practice,
store the files in the following manner:

� The default configuration file is stored in the directory sys_resources/ephox. This
configuration file should not be modified.

� Shared configuration files should be stored in a directory with the path
rx_resources/[path]/ephox, where [path] is the path to a subdirectory that
logically categorizes the file. For example, you might want to use the name of your project as
part of the path; for a project with the name sample, the path would be
rx_resources/sample/ephox.

� Local configuration files should be stored in a subdirectory of the Content Editor application.
For example, if you have a local configuration file for a Press Release content editor, the
configuration file would be stored in the subdirectory
Rhythmyxroot/pressrelease/ephox.

To define an instance of the sys_EditLive control to use a customized configuration file:

1 In the Rhythmyx Workbench, access the Content Editor Properties dialog for the Content
Editor in which you want to use the ELJ editor.

2 Select the field in which you want to use the ELJ editor and click [Edit].

Rhythmyx displays the Field Properties dialog. (If you are defining a new field, Rhythmyx
displays the New Field Properties dialog.)

3 In the Control field, choose sys_EditLive.

4 Click the browse button (…) next to the Control field.

Rhythmyx displays the Display Control Properties for <field> dialog.

5 Click in the Param name column and choose config_src_url.

6 Click in the Value column of the same row and enter the relative URL of the configuration file
you want to use for this instance of the control as a literal value.

7 On the Display Control Properties for <field> dialog, click [OK].

8 On the Field Properties dialog, click [OK].

9 On the Content Editor Properties dialog, click [OK].

The changes will take effect the next time you start your application. To see your changes,
save the application, log in to Rhythmyx, and activate the editor.

 Appendix II Appendices 171

For guidance on customizing (and localizing) the sys_EditLive editor, consult the Ephox EditLive! for
Java Developer's Guide in the developer section of the Ephox Web Site (www.ephox.com
(http://www.ephox.com)).

Adding Custom Menu and Toolbar Actions
Rhythmyx provides you with xml code that you can use to create custom actions for your sys_EditLive
editor. The xml code is located in <Rhythmyx root>/rx_resources/ephox/rx_ephox_custom.xml.

To add the toolbar button and/or menu choice associated with the custom action, you must modify your
config file (elj_config.xml by default). To add the custom action, you must add a javascript function that
uses the EditLive Java API to the rx_ephox_custom.xml file.

Rhythmyx adds your modified code to the sys_EditLive template in sys_Templates.xsl, which
incorporates it into the control.

To create a custom sys_EditLive function:

This procedure uses the example of an action that opens a window showing the source code between the
body tags in the sys_EditLive control.

1 Modify your config file (elj_config.xml by default) to show the new menu item and/or toolbar
button. The EditLive JavaScript API defines the elements <customMenuItem> and
<customToolbarButton> which you configure as shown in this step to add the new Menu item
and/or Toolbar button.

a) Find the <menu> sub-element for the menu that you want to add the action to in the
<menubar> element in the configuration file and add a <customMenuItem> element for
the action. Below, the <customMenuItem> element is shown in bold. Copy the format of
this sample element.

 <menu name="ephox_editmenu">
 <menuItem name="Undo"/>
 <menuItem name="Redo"/>
 <menuSeparator/>
 <menuItem name="Cut"/>
 <menuItem name="Copy"/>
 <menuItem name="Paste"/>
 <menuItem name="PasteSpecial"/>
 <menuSeparator/>
 <menuItem name="Select"/>
 <menuItem name="SelectAll"/>
 <menuSeparator/>
 <menuItem name="Find"/>
 <menuSeparator/>
 <customMenuItem action="showbodysource"
imageURL="../rx_resources/ephox/images/bSource.gif" name="ShowBodySource" rxconfig="yes"
text="Shows Body Source" value="RxEphoxShowBodySource"/>
 </menu>

b) Find the <toolbar name="Command"> sub-element in the <tools> element in the
configuration file and add a <customToolbarButton> element for the action. Below, the
<customToolbarButton> element is in bold. Copy the format of this sample element.

<toolbar name="Command">
 <toolbarButton name="Cut"/>

http://www.ephox.com

172 Rhythmyx Implementing Content Editors

 <toolbarButton name="Copy"/>
 <toolbarButton name="Paste"/>
 <toolbarSeparator/>
….
<customToolbarButton action="showbodysource" imageURL="../rx_resources/ephox/images/bSource.gif"
name=" ShowBodySource " rxconfig="yes" text=" Shows Body Source " value=" RxEphoxShowBodySource
"/>
 </toolbar>

2 Add the JavaScript function to rx_ephox_custom.xml. Replace RxEphoxDummyFunction
with your own. In our example, the custom JavaScriptFunction is:

<![CDATA[
 function RxEphoxShowBodySource_]]><xsl:value-of select="$name"/><![CDATA[()
 {
 // Get EditLive editor instance
 var EditorName = "]]><xsl:value-of select="@paramName" /><![CDATA[";
 var editor = getEditor(EditorName);
 //Get a reference to the EditLive applet
 var ephox = editor.objectref;

 var body = ephox.GetBody(‘rxShowBody_]]><xsl:value-of select="$name"/><![CDATA’, false); // call back
function
 }

 function rxShowBody_]]><xsl:value-of select="$name"/><![CDATA[(body)
 {
 alert(body);
 }

]]>

For additional information about adding custom functions, see the Ephox EditLive! for Java Developer's
Guide on the developer section of the Ephox Web Site (www.ephox.com (http://www.ephox.com)).

Best Practices: sys_EditLive
To simplify maintenance and promote effective technical support, observe the following Best Practices
when working with the ELJ editor and the sys_EditLive control:

� Keep shared configuration files (configuration files used by more than one instance of the
control) in directories with the name Rhythmyxroot/rx_resources/[path]/ephox,
where [path] defines a category (such as a the name of a project or customer). For example, if
you are working on a project named sample, the directory should be
Rhythmyxroot/rx_resources/sample/ephox.

� If only one editor is going to use a configuration file, store the file in a subdirectory of the
editor application directory. If you decide to use this configuration file for other editors, move
it to a shared directory and update the config_src_url parameters of the instances of the
control that use that configuration file.

� When disabling a command or parameters of a command (such as lists of fonts or font sizes),
hide the disabled elements first by commenting them out (<!-- text --!>), then test and
refine your development. Remove the disabled commands and parameters when testing is
complete to minimize clutter in the files and simplify future modification.

http://www.ephox.com

 Appendix II Appendices 173

Upgrading from sys_eWebEditPro to sys_EditLive
If you upgrade to Rhythmyx 5.7, you receive the sys_EditLive control in addition to the sys_eWebEditPro
control. Both options appear in the Control Name drop list in the Content Editor Properties dialog.

Figure 51: sys_EditLive and sys_eWebEditPro in the same editor

Content Editors fields that already use the sys_eWebEditPro control will continue to use it unless you
change them manually. When you change the control from sys_eWebEditPro to sys_EditLive,
sys_EditLive automatically adopts the field’s sys_eWebEditPro values for the following parameters (by
default, these parameters have the same values in sys_EditLive and sys_eWebEditPro):

� width
� height
� inlineLinkSlot
� inlineImageSlot
� inlineWidthSlot

For more information about the parameters, see sys_EditLive Control (on page 165) Control.

To manually replace eWebEditPro with ELJ in a Content Editor:

1 In the Rhythmyx Workbench, open the Content Editor application whose editor you want to
change and double-click on the Content Editor resource.

Rhythmyx displays the Content Editor Properties dialog with the current configuration data
for the Content Editor.

2 Select the Content Editor field whose control you want to change and click the [Edit] button.

Rhythmyx displays the Field Properties dialog.

3 In the Control field, click the drop list and choose sys_EditLive.

174 Rhythmyx Implementing Content Editors

Rhythmyx automatically sets common parameters to the same values used for the
sys_eWebEditPro control that was used for the field.

4 If you want to use a customized configuration file, or modify other parameters:

a) Click the browse button next to the Control field.

Rhythmyx displays the Display Control Properties for <field> dialog.

b) Enter the parameters and associated values you want to assign to the control.

c) Click [OK] to save your edits.

5 On the Field Properties dialog, click [OK] to save the modifications you made to the field.

6 On the Content Editor Properties dialog click [OK] to save the modification you made to the
Content Editor.

The changes will take effect the next time you start your application. To see your changes, stop and
restart the application, log into Rhythmyx, and activate the editor.

NOTE:

You cannot mix use of the sys_eWebEditPro and sys_EditLive controls in a single Content Editor. If you
mix use them, when you attempt to save the Content Editor, the following error dialog appears:

Figure 52: Error when mixing controls

Click [OK], and change the fields to use the same controls.

 Appendix II Appendices 175

sys_WebImageFX and the WebImageFX Editor
Your Rhythmyx license may include Ektron's WebImageFX graphics editor which includes a variety of
tools for creating and editing graphics files. With the WebImageFX editor, Rhythmyx includes the
WebImageFX control. The control uploads a graphics file and displays it in a Content Editor using the
WebImageFX editor.

An XML configuration file (ImageEditConfig.xml) defines the WebImageFX controls and styles available
to the end user. You can customize this configuration file to add new functionality or to remove existing
functionality. By default, the WebImageFX editor lets you upload, create, or paste (from Windows
clipboard) images to edit in its window.

During installation, Rhythmyx installs a copy of WebImageFX to
Rhythmyxroot/sys_resources/webimagefx and checks the version of WebImageFx in
Rhythmyxroot/rx_resources/webimagefx. If the version in rx_resources is earlier than the
current version (or there is no version file), Rhythmyx backs up the copy of WebImageFX in rx_resources
(by adding a time stamp to the directory name, for example, webimagefx__0301_1538, and installs the
current version into it.

176 Rhythmyx Implementing Content Editors

The following Content Editor uses the sys_WebImageFX control to upload and display images.

Figure 53: Content Editor with sys_WebImageFX control

sys_WebImageFX Control
The sys_WebImageFX control functions almost identically to the sys_File control (see "sys_File" on page
183). It includes most of the same properties as the sys_File control, and like the sys_file control, it is a
file upload element that allows the user to supply a file as the input, and it corresponds to a single, one-
dimensional field. The main difference between the sys_WebImageFX control and the sys_File control is
that the sys_WebImageFX control appears in a Content Editor with the WebImageFX image editor.

When hand-coding a Content Editor that includes a sys_WebImageFX control, include sys_FileInfo as a
pre-exit. When you create a Content Editor using the Content Editor Properties dialog, Rhythmyx adds
this exit for you automatically. The sys_FileInfo exit searches for attached files in a content item’s HTML
and returns values for file name, MIME type, character length and file encoding. The exit returns the
values to field names formed by combining the filename (the <FieldRef> value) with descriptive suffixes.
If you want to return information about a file, such as the filename or size, refer to the sys_FileInfo exit
documentation in the Workbench Online Help for the correct syntax.

 Appendix II Appendices 177

The sys_WebImageFX control displays a WebImageFX editor that allows a user to modify an image. For
details about the standard features of WebImageFX, see the developer’s guide at
http://www.ektron.com/webimagefx.aspx (http://www.ektron.com/webimagefx.aspx). Note: This control
has been tested with Internet Explorer.

Parameters:

Parameter Data
Type

Parameter
Type

Description Default

id String Generic This parameter assigns a name
to an element. This name must
be unique in a document.

None

class String Generic This parameter assigns a class
name or set of class names to
an element. Any number of
elements may be assigned the
same class name or names.
Multiple class names must be
separated by white space
characters.

datadisplay

style String Generic This parameter specifies style
information for the current
element. The syntax of the
value of the style attribute is
determined by the default style
sheet language.

None

width Number Generic This parameter tells the user
agent the initial width of the
control. The width is given in
pixels.

800

height Number Generic This parameter tells the user
agent the initial width of the
control. The width is given in
pixels.

400

config_src_url String Generic This parameter specifies the
location of the config.xml that
will the control will use for
configuration.

../sys_resources/
webimagefx/
ImageEditConfig.xml

cleartext String custom This parameter determines the
text that will be displayed
along with a checkbox when
the field supports being
cleared.

Clear

Example Field Definition
<PSXField clearBinaryParam="yes" forceBinary="yes"
modificationType="user" name="uploadfilephoto" showInPreview="yes"

http://www.ektron.com/webimagefx.aspx

178 Rhythmyx Implementing Content Editors

showInSummary="no" type="local" userCustomizable="yes"
userSearchable="yes">
 <DataLocator>
 <PSXBackEndColumn id="0">
 <tableAlias>RXWEBIMAGEFX</tableAlias>
 <column>IMGDATA</column>
 <columnAlias/>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType>binary</DataType>
 <DataFormat>max</DataFormat>
 <OccurrenceSettings delimiter=";"
dimension="optional" multiValuedType="delimited"/>
 <PSXPropertySet>
 <PSXProperty locked="no"
name="mayHaveInlineLinks">
 <Value type="Boolean">no</Value>
 </PSXProperty>
 <PSXProperty locked="no"
name="cleanupBrokenInlineLinks">
 <Value type="Boolean">no</Value>
 </PSXProperty>
 </PSXPropertySet>
 </PSXField>

Example UI Definition
<PSXDisplayMapping>
 <FieldRef>uploadfilephoto</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Image:</PSXDisplayText>
 </Label>
 <PSXControlRef id="1477" name="sys_webImageFx"/>
 <ErrorLabel>
 <PSXDisplayText>Uploadfilephoto:</PSXDisplayText>
 </ErrorLabel>
 </PSXUISet>
</PSXDisplayMapping>

Adding the sys_WebImageFX Control to a Content Editor
To create a Content Editor that uses WebImageFX:

1 Follow the procedure in the document Implementing Content Editors for creating a new
Content Editor.

2 Include a field with the Field Name uploadfilephoto and the Control Name sys_WebImageFX.

3 When you choose sys_WebImageFX as the Control Name, Rhythmyx automatically includes
the sys_FileInfo exit, which fills in the uploaded file’s name, mime type, extension, and size
into the proper Content Editor fields if you provide them. Add any of these fields to the
Content Editor. See sys_FileInfo for required naming conventions for these fields.

4 Complete the standard procedure for creating the Content Editor.

 Appendix II Appendices 179

To add the WebImageFX editor to a content editor:

1 In the Rhythmyx Workbench, access the Content Editor Properties dialog for the Content
Editor.

2 Select the field that you want to associate with WebImageFX and click [Edit].

Rhythmyx displays the Field Properties dialog. (If you are defining a new field, Rhythmyx
displays the New Field Properties dialog.)

3 Change the Field Name to uploadfilephoto. If you do not use this name, the WebImageFX
control cannot upload the file.

4 Check Treat Data as Binary.

5 Select sys_WebImageFX as the Control.

Figure 54: Field Properties Dialog for a field that uses sys_WebImageFX control

6 On the Field Properties dialog, click [OK].

7 When you choose sys_WebImageFX as the Control Name, Rhythmyx automatically includes
the sys_FileInfo exit, which fills in the uploaded file’s name, mime type, extension, and size
into the proper Content Editor fields if you provide them. Add any of these fields to the
Content Editor. See sys_FileInfo for required naming conventions for these fields.

180 Rhythmyx Implementing Content Editors

8 On the Content Editor Properties dialog, click [OK].

The changes will take effect the next time you start your application. To see your changes,
stop and restart the application, log in to Rhythmyx, and activate the editor.

Figure 55: Content Editor with sys_WebImageFX control

 Appendix II Appendices 181

The following limitations apply to all Content Editors that use this control:

� The name of the field containing the sys_WebImageFX control must be
uploadfilephoto.

� Because the name of a field containing the sys_WebImageFX control must be
uploadfilephoto, a Content Editor cannot have more than one sys_WebImageFX
control. If it does, the additional controls will not be able to upload images.

� The names of fields in the Content Editor that sys_FileInfo updates (filename, type,
size, and extension) must be prefixed with uploadfilephoto. For example,
uploadfilephoto_filename, uploadfilephoto_type, uploadfilephoto_size,
uploadfilephoto_ext. A Content Editor that contains a sys_WebImageFX control
cannot also contain a sys_File control; if it does the sys_File control will not be able
to upload a file.

NOTE: The first time you open a Content Editor that uses the sys_WebImageFX control in your Web
browser, a dialog will prompt you to install WebImageFX. Follow the installation instructions in the
dialog. After you initially install WebImageFX, you will not have to install it again.

Implementing the sys_WebImageFX Control Manually
When editing a content editor XML file by hand, specify sys_WebImageFX in the <PSXControlRef>
element, specifying the control parameters normally. See the example in the sys_WebImageFX
control documentation.

You can customize both the parameters of the sys_WebImageFX control and the configuration files of the
WebImageFX editor itself.

Customizing the sys_WebImageFX Control
The parameters of the sys_WebImageFX control define the height and width of the display of the editor,
the path to configuration file (ImageEditConfig.xml) and other characteristics. You can customize
these parameters in the control definition (either the Display Control Properties for <field> dialog or in the
PSXParam child nodes of the PSXControlRef node). If you customize the configuration file for the
WebImageFX editor, update the SRC parameter of each instance of the sys_WebImageFX control to
point to the correct configuration file.

For guidance on customizing (and localizing) the WebImageFX editor, consult the WebImageFX
Developer's Reference Guide, at http://www.ektron.com/webimagefx.aspx
(http://www.ektron.com/webimagefx.aspx).

Most customizations of the WebImagFX editor involve modifications to the configuration file
(ImageEditConfig.xml). Do not modify the default configuration file, which is located in the
Rhythmyxroot/rx_resources/WebImageFX directory. Instead, customize shared or local definition files. If
you only use one customized configuration file, best practice is to use a shared configuration file.

In the default ImageEditConfig.xml used in Rhythmyx, the upload and exit options are disabled because
these actions cannot function in Rhythmyx; do not enable these options when you edit copies of the
ImageEditConfig.xml file.

http://www.ektron.com/webimagefx.aspx

182 Rhythmyx Implementing Content Editors

Several instances of the control can use the same configuration XML file (shared configuration file), or
you can use a local configuration file for each instance of the editor; you can also use a shared
configuration file for some instances and a local configuration file for other instances. The files must be
stored in the following manner:

� The default configuration file is stored in the directory rx_resources/WebImageFX.
This configuration file should not be modified.

� Shared configuration files should be stored in a directory with the path
rx_resources/[path]/WebImageFX, where [path] is the path to a subdirectory that
logically categorizes the file. For example, you might want to use the name of your project as
part of the path; for a project with the name sample, the path would be
rx_resources/sample/WebImageFX.

� Local configuration files should be stored in a subdirectory of the Content Editor application.
For example, if you have a local configuration file for a Press Release content editor, the
configuration file would be stored in the subdirectory
Rhythmyxroot/pressrelease/WebImageFX.

To define an instance of the sys_WebImageFX control to use a customized configuration file:

1 Open the Content Editor in the Rhythmyx Workbench and access the Content Editor
Properties dialog.

2 Select the field that uses the WebImagFX editor and click [Edit] to open the Field Properties
dialog.

3 Click the browse button (…) next to the Control field.

Rhythmyx displays the Display Control Properties for <field> dialog.

4 Click in the Param name column and choose config_src_url.

5 Click in the Value column of the same row and enter the relative URL of the configuration file
you want to use for this instance of the control as a literal value.

6 On the Display Control Properties for <field> dialog, click [OK].

7 On the Field Properties dialog, click [OK].

8 On the Content Editor Properties dialog, click [OK].
The changes will take effect the next time you start your application. To see your changes, stop and
restart the application, log in to Rhythmyx, and activate the editor.

 Appendix II Appendices 183

Best Practices: sys_WebImageFX
To simplify maintenance and promote effective technical support, observe the following Best Practices
when working with the WebImageFX editor and the sys_WebImageFX control:

� Keep shared configuration files (configuration files used by more than one instance of the
control) in directories with the name Rhythmyxroot/rx_resources/[path]/webimagefx, where
[path] defines a category (such as a the name of a project or customer). For example, if you
are working on a project named sample, the directory should be
Rhythmyxroot/rx_resources/sample/webimagefx.

� If only one editor is going to use a configuration file, store the file in a subdirectory of the
editor application directory. If you decide to use this configuration file for other editors, move
it to a shared directory and update the SRC parameters of the instances of the control that use
that configuration file.

� When disabling a command or parameters of a command (such as lists of fonts or font sizes),
hide the disabled elements first by commenting them out (<!-- text --!>), then test and refine
your development. Remove the disabled commands and parameters when testing is complete
to minimize clutter in the files and simplify future modification.

sys_File
The sys_File control is a file upload element that allows the user to supply a file as the input. This control
corresponds to a single, one-dimensional field.

When hand-coding a Content Editor that includes one or more sys_File controls, include sys_FileInfo as a
pre-exit. When you create a Content Editor using the Content Editor Properties dialog, Rhythmyx adds
this exit for you automatically. The sys_FileInfo exit searches for attached files in a content item’s HTML
and returns values for file name, MIME type, character length and file encoding. The exit returns the
values to field names formed by combining the filename (the <FieldRef> value) with descriptive suffixes.
If you want to return information about a file, such as the filename or size, refer to the sys_FileInfo exit
documentation for the correct syntax.

sys_File control Parameters

Parameter Data Type Parameter
Type

Description Default

id String Generic XHTML 1.0
attribute

None

class String Generic XHTML 1.0
attribute

None

style String Generic XHTML 1.0
attribute

None

size String Generic XHTML 1.0
attribute

50

maxlength Number Generic XHTML 1.0
attribute

None

 tabindex Number Generic XHTML 1.0
attribute

None

184 Rhythmyx Implementing Content Editors

Example Field Definition
<PSXField name="imagebody" showInSummary="no" showInPreview="no"
forceBinary="yes">
 <DataLocator>
 <PSXBackEndColumn id="0">
 <tableAlias>TESTIMAGE</tableAlias>
 <column>IMAGEDATA</column>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType/>
 <OccurrenceSettings dimension="optional" multiValuedType="delimited"
delimiter=";"/>
</PSXField>

Example UI Definition
<PSXDisplayMapping>
 <FieldRef>imagebody</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Image Upload:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_File"/>
 </PSXUISet>
</PSXDisplayMapping>

Controlling Processing of XML files
When uploading XML files, you have the option of specifying that the server process them normally
(checking that the document is well-formed and that it conforms to a DTD), that it performs no validation
(only checking that the document is well-formed), or that it treats the file as text. The psxmldoc HTML
parameter controls this processing.

To use the psxmldoc parameter, include a hidden field to store the psxmldoc parameter (typically the
field is named "psxmldoc"), which is stored in a backend column (also typically called "PSXMLDOC").
 This field must occur before the field where the file is stored.

The psxmldoc parameter is typically mapped to a literal value. Acceptable values are:

Value Processing
useValidating (default) Server validates the document according to the DTD

specified in the document.

useNonValidating Sever confirms that the document is well-formed, but
does not validate it against a DTD.

treatAsText Server does not parse the document. Document can
be mapped as a single parameter to a CLOB or text
column.

If the MIME type of the request is text/xml or application/xml, the body content must be an
XML document. In this case, if the parameter value is treatAsText, the server ignores it and uses the
default value. If the request MIME type is multipart/form-data, the parameter can store multiple
values, each separated by a semicolon (";"). Only one of these values can specify parsing; the remaining
values must be treatAsText. If multiple parser values are specified, only the last is used.

 Appendix II Appendices 185

sys_HiddenInput
Rhythmyx does not display a field that uses the sys_HiddenInput control to the user, but it does include
the content of the field with the data submitted to the database. The value in the field can be set to a literal
value defined by the control itself, or a UDF or exit might populate it. Use this control to store
information that the system needs, but is unnecessary for the user to see, such as a file extension. The
dimension is single.

Parameters

Parameter Data Type Parameter
Type

Description Default

id String Generic XHTML 1.0
attribute

None

class String Generic XHTML 1.0
attribute

None

style String Generic XHTML 1.0
attribute

None

Example Field Definition
<PSXField name="sys_pathname" showInSummary="yes" showInPreview="yes"
forceBinary="no">
 <DataType/>
 <DefaultValue>
 <DataLocator>
 <PSXTextLiteral id="0">
 <text>article/art</text>
 </PSXTextLiteral>
 </DataLocator>
 </DefaultValue>
 <OccurrenceSettings dimension="optional"
multiValuedType="delimited" delimiter=";"/>
 <FieldRules>
 <PSXVisibilityRules dataHiding="xsl">
 <PSXRule boolean="and">
 <PSXConditional id="8">
 <variable>
 <PSXTextLiteral id="9">
 <text>1</text>
 </PSXTextLiteral>
 </variable>
 <operator>=</operator>
 <value>
 <PSXTextLiteral id="10">
 <text>2</text>
 </PSXTextLiteral>
 </value>
 <boolean>AND</boolean>
 </PSXConditional>
 </PSXRule>

186 Rhythmyx Implementing Content Editors

 </PSXVisibilityRules>
 </FieldRules>
</PSXField>

 Example UI Definition
<PSXDisplayMapping>
 <FieldRef>sys_pathname</FieldRef>
 <PSXUISet>
 <PSXControlRef name="sys_HiddenInput"/>
 </PSXUISet>
</PSXDisplayMapping>

Note: In this example default value is used to set up value for sys_hidden control. In addition, a visibility
rule is implemented to make data invisible for preview mode.

sys_RadioButtons
The sys_RadioButtons control displays a set of radio buttons that allow the user to select one a set of
values. A set of radio buttons must be multidimensional, so the values for the group should always be
stored in a child table. The child table should consist of at least three columns: one for contentid, one for
revisionid and one for the value to be stored. You should only define the value column in the field
definition. The server will populate the contentid and revisionid fields automatically. The dimension is
array.

Parameters

Parameter Data Type Parameter Type Description Default
Class String Generic This parameter assigns a class name

or set of class names to an element.
Any number of elements may be
assigned the same class name or
names. Multiple class names must be
separated by white space characters.

datadisplay

Style String Generic This parameter specifies style
information for the current element.
The syntax of the value of the style
attribute is determined by the default
style sheet language.

None

Tabindex Number Generic This parameter specifies the position
of the current element in the tabbing
order for the current document. This
value must be a number between 0
and 32767.

None

Disabled String Generic If set, this boolean attribute disables
the control for user input.

None

Example Field Definition
<PSXField name="options" showInSummary="yes" showInPreview="yes"
forceBinary="no" type="local">
 <DataLocator>

 Appendix II Appendices 187

 <PSXBackEndColumn id="0">
 <tableAlias>ARTICLE</tableAlias>
 <column>OPTIONS</column>
 <columnAlias></columnAlias>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType>text</DataType>
 <OccurrenceSettings dimension="optional" multiValuedType="delimited"
delimiter=";"/>
</PSXField>

Example UI Definitions
Use the type attribute of the PSXChoices element in the UI definition to specify how you are storing the
radio button values so that Rhythmyx can retrieve them.

To store radio button values in the lookup table (RXLOOKUP), use the value global for the type
attribute. Rhythmyx gets the values when it builds the document by using the value in the Key element to
determine the lookup key for the table. Use the Rhythmyx System Administrator to maintain the
Keywords in this table. The key is a system-generated value, so manual addition of values to this table is
not recommended.

Example UI Definition for global:
<PSXDisplayMapping>
 <FieldRef>global</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Global choices:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_RadioButtons"/>
 <PSXChoices type="global" sortOrder="ascending">
 <Key>3</Key>
 <PSXNullEntry sortOrder="first" includeWhen="onlyIfNull">
 <PSXEntry sequence="0" default="no">
 <PSXDisplayText> -- choose -- </PSXDisplayText>
 <Value>0</Value>
 </PSXEntry>
 </PSXNullEntry>
 </PSXChoices>
 </PSXUISet>
</PSXDisplayMapping>

To store radio button values in the content editor definition as a list of PSXEntry elements, use the value
local for the type attribute.

Example UI Definition for local:
<PSXDisplayMapping>
 <FieldRef>local</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Local choices:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_RadioButtons"/>
 <PSXChoices type="local" sortOrder="user">
 <PSXEntry sequence="0" default="no">

188 Rhythmyx Implementing Content Editors

 <PSXDisplayText>Computing Machinery</PSXDisplayText>
 <Value>acm</Value>
 </PSXEntry>
 <PSXEntry sequence="1" default="no">
 <PSXDisplayText> Society of Electrical
Engineers</PSXDisplayText>
 <Value>ieee</Value>
 </PSXEntry>
 <PSXEntry sequence="3" default="no">
 <PSXDisplayText>Society for Prevention</PSXDisplayText>
 <Value>spca</Value>
 </PSXEntry>
 <PSXNullEntry sortOrder="last" includeWhen="always">
 <PSXEntry sequence="0" default="no">
 <PSXDisplayText> -- choose -- </PSXDisplayText>
 <Value>0</Value>
 </PSXEntry>
 </PSXNullEntry>
 <DefaultSelected>
 <PSXDefaultSelected type="nullEntry"/>
 </DefaultSelected>
 </PSXChoices>
 </PSXUISet>

</PSXDisplayMapping>'

To store or generate radio button values in another control or stylesheet, use the value lookup for the type
attribute. Define a URL with the control or stylesheet’s address in a PSXUrlRequest child element.

Example UI Definition for lookup:
<PSXDisplayMapping>
 <FieldRef>lookup</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Lookup choices:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_RadioButton"/>
 <PSXChoices type="lookup " sortOrder="user">
 <PSXUrlRequest>
<Href>http://38.164.160.56:9992/Rhythmyx/sys_wfLookups/extroles.html</Hr
ef>
 <PSXParam name="workflowid">
 <DataLocator>
 <PSXTextLiteral id="0">
 <text>1</text>
 </PSXTextLiteral>
 </DataLocator>
 </PSXParam>
 </PSXUrlRequest>
 </PSXChoices>
 </PSXUISet>
</PSXDisplayMapping>

 Appendix II Appendices 189

To store radio button values in a Rhythmyx table other than the RXLOOKUP table, use the value
internalLookup for the type attribute. Define a URL in a PSXUrlRequest child element so that Rhythmyx
can get the entries through an internal request to the specified URL. The lookup query must conform to
the sys_Lookup.dtd. You can add it to the content editor application or place it in a separate application.
See Creating an Internal Lookup Query (on page 195) for a procedure for adding the lookup query.

Example UI Definition for internal lookup:
<PSXDisplayMapping>
 <FieldRef>lookup</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Lookup choices:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_RadioButtons"/>
 <PSXChoices type=" internalLookup " sortOrder="user">
 <PSXUrlRequest>
 <Href>http://38.164.160.56:9992/Rhythmyx/
 sys_wfLookups/extroles.html</Href>
 <PSXParam name="workflowid">
 <DataLocator>
 <PSXTextLiteral id="0">
 <text>1</text>
 </PSXTextLiteral>
 </DataLocator>
 </PSXParam>
 </PSXUrlRequest>
 </PSXChoices>
 </PSXUISet>
</PSXDisplayMapping>

190 Rhythmyx Implementing Content Editors

sys_Table

Figure 56: Example sys_Table

The sys_Table control creates a table to display multiple fields from a related database table. It is
multidimensional and may contain multiple fields. The graphic shows a table with three text fields and one
file upload control. Because this is a complex child, the user edits data on a different page, which they
access by clicking a button labeled 'Edit table' on the page. The content editor displays a summary view of
all rows in the table. The showInSummary attribute of each child element within the table controls the
visibility of these values. Note that the PSXFieldSet has a name, and each PSXField has its own name.
 The dimension is table.

Parameters

Parameter Data Type Parameter Type Description Default
id String Generic XHTML 1.0 attribute None

class String Generic XHTML 1.0 attribute None

style String Generic XHTML 1.0 attribute None

summary String Generic XHTML 1.0 attribute None

width String Generic XHTML 1.0 attribute width 100%

cellspacing String Generic XHTML 1.0 attribute
cellspacing

0

cellpadding String Generic XHTML 1.0 attribute
cellpadding

5

border Number Generic XHTML 1.0 attribute tabindex 1

Example Fieldset Definition
<PSXFieldSet type="complexChild" name="image"
repeatability="zeroOrMore">
 <PSXField name="imgname" showInSummary="yes" showInPreview="yes"
forceBinary="no">
 <DataLocator>
 <PSXBackEndColumn id="1">
 <tableAlias>TESTIMAGE</tableAlias>
 <column>FILENAME</column>
 <columnAlias/>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType/>
 <OccurrenceSettings dimension="optional"
multiValuedType="delimited" delimiter=";"/>

 Appendix II Appendices 191

</PSXField>
<PSXField name="imgtitle" showInSummary="yes" showInPreview="yes"
forceBinary="no">
 <DataLocator>
 <PSXBackEndColumn id="2">
 <tableAlias>TESTIMAGE</tableAlias>
 <column>DISPLAYTITLE</column>
 <columnAlias/>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType/>
 <OccurrenceSettings dimension="optional" multiValuedType="delimited"
delimiter=";"/>
</PSXField>
<PSXField name="imgext" showInSummary="yes" showInPreview="yes"
forceBinary="no">
 <DataLocator>
 <PSXBackEndColumn id="3">
 <tableAlias>TESTIMAGE</tableAlias>
 <column>EXTENSION</column>
 <columnAlias/>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType/>
 <OccurrenceSettings dimension="optional" multiValuedType="delimited"
delimiter=";"/>
</PSXField>
<PSXField name="imagebody" showInSummary="no" showInPreview="no"
forceBinary="yes">
 <DataLocator>
 <PSXBackEndColumn id="0">
 <tableAlias>TESTIMAGE</tableAlias>
 <column>IMAGEDATA</column>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType/>
 <OccurrenceSettings dimension="optional" multiValuedType="delimited"
delimiter=";"/>
</PSXField>
</PSXFieldSet>

Example UI Definition
<PSXDisplayMapping>
 <FieldRef>image</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Image:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_Table"/>
 </PSXUISet>
 <PSXDisplayMapper id="2" fieldSetRef="image">
 <PSXDisplayMapping>
 <FieldRef>imgname</FieldRef>
 <PSXUISet name="" defaultSet="">

192 Rhythmyx Implementing Content Editors

 <Label>
 <PSXDisplayText>Image Name:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_EditBox"/>
 </PSXUISet>
 </PSXDisplayMapping>
 <PSXDisplayMapping>
 <FieldRef>imgtitle</FieldRef>
 <PSXUISet name="" defaultSet="">
 <Label>
 <PSXDisplayText>Image Title:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_EditBox"/>
 </PSXUISet>
 </PSXDisplayMapping>
 <PSXDisplayMapping>
 <FieldRef>imgext</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Image Ext:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_EditBox"/>
 </PSXUISet>
 </PSXDisplayMapping>
 <PSXDisplayMapping>
 <FieldRef>imagebody</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Image Upload:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_File"/>
 </PSXUISet>
 </PSXDisplayMapping>
 </PSXDisplayMapper>
</PSXDisplayMapping>

sys_TextArea
The sys_TextArea control is used to give the user that ability to enter multiple lines of plain text. The
dimension of this control is single.

Figure 57: Example sys_TextArea

Parameters

Parameter Data Type Parameter
Type

Description Default

id String Generic XHTML 1.0
Attribute

None

 Appendix II Appendices 193

class String Generic XHTML 1.0
Attribute

None

style String Generic XHTML 1.0
Attribute

None

rows Number Generic XHTML 1.0
Attribute

4

cols Number Generic XHTML 1.0
Attribute

80

tabindex Number Generic XHTML 1.0
Attribute

None

Example Field Definintion
<PSXField name=" abstract " showInSummary="yes" showInPreview="yes"
forceBinary="no">
 <DataLocator>
 <PSXBackEndColumn id="0">
 <tableAlias>RXARTICLE</tableAlias>
 <column> ABSTRACT </column>
 <columnAlias/>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType/>
 <OccurrenceSettings dimension="optional" multiValuedType="delimited"
delimiter=";"/>
</PSXField>

Example UI Definition
<PSXDisplayMapping>
 <FieldRef>abstract </FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText> Abstract:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_TextArea"/>
 </PSXUISet>
</PSXDisplayMapping>

194 Rhythmyx Implementing Content Editors

sys_HTMLEditor
NOTE: The sys_HTMLEditor control is now deprecated. Use the sys_eWebEditPro control to provide
dynamic HTML editing in content editors.

Figure 58: Sample sys_HTMLEditor

The sys_HtmlEditor is a multiple-line text entry control in which the user can type and edit text. It
displays a DHTML editor that allows a user to enter text and apply standard formatting, such as changing
the font or the alignment. The editor has a built in support for inserting inline links and images and an
optional spell check feature. The editor only works in IE 5x and 6 browsers. In Netscape browsers, a
standard textarea box will be displayed. The dimension is single.

Parameters

Parameter Data
Type

Parameter
Type

Description Default

 id String Generic XHTML 1.0
attribute cols

dynamsg

class String Generic XHTML 1.0
attribute

None

width String Generic XHTML 1.0
attribute cols

100%

style String Generic XHTML 1.0
attribute cols

position:relative

height Number Generic XHTML 1.0
attribute cols

250

type String Generic XHTML 1.0
attribute cols

text/x-scriptlet

data String Generic XHTML 1.0
attribute cols

../sys_resources/texteditor/
deditor.html

viewastext String Generic XHTML 1.0
attribute cols

viewastext

Formname String JavaScript name of the form
that contains this
control

EditForm

 Appendix II Appendices 195

 Example Field Definition
<PSXField name="bodycontent" showInSummary="yes" showInPreview="no"
forceBinary="no">
 <DataLocator>
 <PSXBackEndColumn id="0">
 <tableAlias>RXARTICLE</tableAlias>
 <column>BODYCONTENT</column>
 <columnAlias/>
 </PSXBackEndColumn>
 </DataLocator>
 <DataType/>
 <OccurrenceSettings dimension="optional" multiValuedType="delimited"
delimiter=";"/>
</PSXField>

Example UI Definition
<PSXDisplayMapping>
 <FieldRef>bodycontent</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>Body:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_HtmlEditor">
 <PSXParam name="NAME">
 <DataLocator>
 <PSXTextLiteral id="0">
 <text>bodycontent</text>
 </PSXTextLiteral>
 </DataLocator>
 </PSXParam>
 </PSXControlRef>
 </PSXUISet>
</PSXDisplayMapping>

Creating an Internal Lookup Query
When you use sys_DropDownSingle (on page 159), sys_CheckBoxGroup (on page 152), and
sys_RadioButtons (on page 186) or any custom controls that require a list of entries, you may choose to
set the <PSXChoices> type to internalLookup and retrieve the entries from an existing Rhythmyx
table using a query. You can add the query to the content editor application or to a separate application.

To create an internal lookup query:

1 Open the content editor application or a new application.

2 Drag the Rhythmyx/DTD/sys_Lookup.dtd file onto the application.

3 Select Query.

4 Right-click on the sys_Lookup XML and select Properties to open the Resource Editor.

5 Add the table(s) containing the content that you want as list values.

196 Rhythmyx Implementing Content Editors

6 Open the mapper and map table values to the sys_Lookup Value and PSXDisplayText
elements.

7 Optionally, add a Result Pager to sort the list results.

8 Right-click the sys_Lookup XML and choose Request Properties.

9 Change the name of the sys_Lookup.XML and click [OK].

10 Save and close the application.

11 Open the content editor application in an XML editor.

12 In the UI definition of the content editor, set the PSXChoices type to “internalLookup”
and add a <PSXUrlRequest> element that references the sys_Lookup XML. In the following
example UI definition, the developer named the lookup query articlechoice.xml and
stored it in the articlelookup folder within the article content editor folder.

<PSXDisplayMapping>
 <FieldRef>category</FieldRef>
 <PSXUISet>
 <Label>
 <PSXDisplayText>*Category:</PSXDisplayText>
 </Label>
 <PSXControlRef name="sys_CheckBoxGroup"/>
 <PSXChoices type="internalLookup" sortOrder="ascending">
 <PSXUrlRequest>
 <Href>../articlelookup/articlechoice.xml</Href>
 </PSXUrlRequest>
 </PSXChoices>
 </PSXUISet>
 <PSXDisplayMapper id="9" fieldSetRef="category">
 <PSXDisplayMapping>
 <FieldRef>categoryvalue</FieldRef>
 <PSXUISet/>
 </PSXDisplayMapping>
 </PSXDisplayMapper>
</PSXDisplayMapping>

NOTE: If you retrieve entries from the RXLOOKUP table, the <PSXChoices> type is global. See the
individual controls for information about using global and the RXLOOKUP table. See the online help for
a description of the RXLOOKUP table.

 197

Content Editor XML Reference

Basic Objects
A collection of named data items that compose an editor or portion of an editor. Corresponds roughly to a
row in a table.

Used in : Local, Shared

Contained by: PSXContentEditorMapper (on page 253), PSXSharedFieldGroup (on page 255)

Attributes:

Name Required? Value Effect Default
name Yes CDATA Defines the name

of the fieldset.
Must be unique
among all fields in
this object,
including shared
and system fields.

None

type No parent

simpleChild

complexChild

multiPropertySimpleChild

Root fieldset

Pre-defined
options; edited
within parent editor

1 or more columns,
arbitrary number of
rows; shown in
summary view with
parent; edited in
separate editor

1 or more columns,
but only one row;
edited in parent
editor

parent

Repeatability

(not applicable if
type = parent)

No zeroOrMore

oneOrMore

Field set may
appear zero or
more times

Field must appear
at least once

zeroOrMore

A P P E N D I X I I I

198 Rhythmyx Implementing Content Editors

supportsSequenci
ng

(Only applicable
if type =
complexChild)

No true

false

Order can be
specified; child
table must include
SORTRANK
column

Order cannot be
specified

true

Elements:

Name Appearance Description
PSXField Zero or more (At lest one is

required to start an
application.)

Defines specific fields in the
field set

PSXFieldSet (on page 197) Zero or more Defines (child) field sets

PSXContainerLocator
Collective container for multiple table sets. (Currently we only support one database and schema, but in
the future we may expand to allow multiple databases and schemas.)

Used in : Local, Shared

Contained by: PSXContentEditorPipe (on page 252), PSXSharedFieldGroup (on page 255)

Attributes : None

Elements:

Name Appearance Description
PSXTableSet (on
page 199)

One or more Defines the location of the tables where data for the
content items are stored.

 Appendix III Appendices 199

PSXTableSet
Collective container for tables that define an editor or portion of an editor. (Currently we only support one
database and schema, but in the future we may expand to allow multiple databases and schemas.)

Used in : Local, Shared

Contained by: PSXContainerLocator (on page 198)

Attributes:

Name Required? Value Effect
href (not currently
supported)

No URI Specifies the location of a document
containing table definitions.

Elements:

Name Appearance Description
PSXTableLocator
(on page 199)

Once Defines the specific location of the tables
where the data for the content items are
stored.

PSXTableRef (on
page 201)

One or more Used with PSX Table Locator

PSXTableLocator
Specifies the location of the database where data for the content item is stored. If an Alias is used
anywhere in the file, at least one PSXTableLocator must be defined to specify the location of the database.

Used in : Local, Shared

Contained by: PSXTableSet (on page 199)

Attributes:

Name Required? Value Effect
alias No CDATA Allows other definitions to

share this locator. If this
attribute is not used, the table
locator cannot be shared with
other definitions. Must be
unique among the
PSXTableLocators in the
system, shared, and local
definitions.

Elements:

200 Rhythmyx Implementing Content Editors

Specifies the owner or
the schema.

Appearance Description

PSXBackendCredential
(on page 233)

Once Defines backend database credential.

Database (on page 200) Once Defines the name of the backend database where
the data for this editor or portion of this editor is
stored.

Origin (on page 201) Once Specifies the owner or the schema.

Database
Defines the name of the database where the data for the editor or portion of the editor is stored.

Used in: Local, Shared

Contained by: PSXTableLocator (on page 199)

Attributes: None

Elements: None

TableLocatorAlias
Used to refer to an existing database table alias. Not currently supported.

Used in: Local, Shared

Contained by: PSXTableLocator (on page 199)

Attributes: None

Elements: None

Alias (uppercase)
The name of an existing object. Where it must exist (for example, within this object, or somewhere on the
server) depends on the context in which it is used.

Used in: Local, Shared

Contained by: PSXTableLocator (on page 199), PSXBackendCredential (on page 233)

Attributes: None

Elements: None

 Appendix III Appendices 201

Origin
Owner of the database or schema.

Used in: Local, Shared

Contained by: PSXTableLocator (on page 199)

Attributes: None

Elements: None

PSXTableRef
Used with the PSXTableLocator tag to fully specify the location of a table.

Used in: Local, Shared

Contained by: PSXTableLocator (on page 199)

Attributes:

Name Required? Value Effect
name Yes CDATA Defines the base name of the table.

alias No CDATA Used to identify the table if the
same table exists in multiple Table
Sets. Must be unique among the
aliases of all tables in all Table Set
definitions in all system, shared,
and local definition files. If not
supplied, Rhythmyx uses the name
attribute. Must be unique among
all the PSXTableRef in the system,
shared, and local definitions.

Elements: None

202 Rhythmyx Implementing Content Editors

PSXField
A PSXField element contains all of the non-UI data required to define a field, including business rules.
All DataLocator types except FieldRef are supported. If the DataLocator of a field specifies anything other
than PSXBackEndColumn, this field is for query only; it cannot be updated.

Used in: Local, Shared

Contained by: PSXFieldSet (on page 197)

Attributes:

Name Required? Value Effect Default
name Yes CDATA Defines the name of the specific

field. Must be unique among all
fields in this object, including
shared and system fields.

None

showInSummary

(Applies only to fields not in
the "parent" fieldset. Does not
apply if forceBinary = yes.)

No no

yes

Field will not be displayed in
summary views in parent editor.
Typically only used for large
text fields that would not make
sense in summary view.

Field will be displayed in
summary view in parent editor.

no

 showInPreview

(Does not apply if forceBinary
= yes. Preview occurs only
when the "Preview" command
is supplied to the content
editor

No no

yes

Field will not be displayed in
previews

Field will be displayed in
previews.

yes

forceBinary

Binary fields have an
asymmetrical life. They are
saved (and uploaded if a file)
using the standard editor, but
to retrieve them, you must use
the binary command of the
command handler. The data is
not returned when editing the
data in a row editor.

No no

yes

Fields is not treated as binary

Field is treated as binary.

no

 Appendix III Appendices 203

Name Required? Value Effect Default
 modificationType Yes system

systemCr
eate

userCreat
e

user

Only the server can modify this
field. If a user submits a value,
the system ignores it.

The server sets the field when
the Content Item is created. It
does not allow subsequent
modification of the field.

The server sets the field when
the Content Item is created. It
does not allow subsequent
modification of the field.

The user can update the field at
any time

user

userSearchable

No Yes

No

Field is can be included in user
searches. Whether it is available
to Business Users or only to
implementers is controlled by
the userCustomizable attribute.

Field cannot be included in user
searches.

NOTE: This attribute is
deprecated. It is included for
backward compatibility with
servers prior with servers prior
to version 5.5. This attribute is
superceded by the
PSXSearchProperties element.

yes

userCustomizable No Yes

No

Field is available to Business
Users for use in Searches.

Field is only available in
implementer-defined searches

NOTE: This attribute is
deprecated. It is included for
backward compatibility with
servers prior with servers prior
to version 5.5. This attribute is
superceded by the
PSXSearchProperties element..

yes

204 Rhythmyx Implementing Content Editors

Name Required? Value Effect Default
defaultSearchLabel No CDATA If a field does not have a UIDef,

or if the UIDef has been
overridden, Rhythmyx uses the
value of this attribute as the field
label in any search dialog it
presents to the user. If both the
UIDef and this attribute are
missing, Rhythmyx uses the
field name a the field label in
search dialogs.

NOTE: This attribute is
deprecated. It is included for
backward compatibility with
servers prior with servers prior
to version 5.5. This attribute is
superceded by the
PSXSearchProperties element.

None

clearBinaryParam

Name of the HTML parameter
to check to determine whether
or not to clear this field.

No Yes

No

If this attribute is included

and has a value of "yes", then
the backend database column
corresponding to this field will
be cleared when the content item
is updated. The attribute only
applies if the column specified
contains binary data, or if the
value of forceBinary equals
"yes".

The parameter specified must be
defined in a PSXParam child
element of the PSXControlRef
for the field in the format
<fieldname>_clear and
given a value of "yes."

None

type No local

shared

system

Indicates which Content Editor
definition file the field belongs
to.

None

mimetype No CDATA Defines the MIME type of the
field

None

fieldvaluetype No content

meta

The field stores content data.

The field stores metadata.

None

 Appendix III Appendices 205

Elements:

Name Appearance Description
DataLocator (on page 207) Once Specifies the location of the data for this field.

DataType (on page 206) Zero or one Defines the type of data (character data versus
binary). For future use.

DefaultValue (on page 209)

Zero or one Defines the default value of the field. If a
value is specified for this element, that value
will be included in the output document when
the content editor is displayed for a new item.

OccurrenceSettings (on page
205)

Zero or one Specifies how many times the field should
occur (in other words the business rules).

FieldRules (on page 222) Zero or one Defines set of rules regarding validation,
translation, and visibility for field.

PSXSearchProperties (on
page 248)

Zero or one Contains the attributes that define the look and
feel of the search engine and its field-level
configuration.

OccurrenceSettings
Defines how many times the field should occur.

Used in: Local, Shared

Contained by: PSXField

Attributes:

Name Required
?

Value Effect Default

dimension No optional

required

oneOrMore

zeroOrMore

count

Field may not appear

Field appears once.

Field appears at least once.
Requires child table.

Field may not appear, or may
appear one or more times.
Typically requires child table
but this is not mandatory if all
of the data is stored in one
column.

Field appears the specific
number of times specified.
Requires a numeric value for
the content.

Optional

206 Rhythmyx Implementing Content Editors

Name Required
?

Value Effect Default

multiValuedType No

delimited

separate

How to display and send to
server fields with multiple
values.

delimited: Concatenate all
values into a single field and
separate by the character
indicated in delimiter.

separate: Add multiple values
to display field when result
document is generated.

delimited

delimiter No CDATA Delimiter to use between
multiple values when stored in
database.

Must be a single character. If
this character appears in a
value, use delimiter twice to
escape.

;

transitionId No CDATA If specified, only use these
occurrence settings when the
transition being performed
matches this transitionId. No
two OccurrenceSettings can
have the same transitionId.
Only one OccurrenceSetting
can have no transitionId. The
default OccurrenceSetting has
no transitionId.

None

Elements: None

Datatype
Defines the type of data in the field.

Used in: Local, Shared

Contained by: PSXField

Attributes: None

Elements: None

 Appendix III Appendices 207

DataLocator
This tag specifies how to find data. Not all children are supported in all contexts. The context must
specify which children are allowed.

Used in: Local, Shared

Contained by: PSXField, DefaultValue (on page 209), PSXParam (on page 221)

Attributes: None

Elements:

Name Appearance Description
FieldRef (on page 208) Choice Uses the definition in

another field to find the
data.

PSXBackendColumn (on page 236) Choice Specifies the column in
the backend database
table where the data is
located.

PSXCookie (on page 243) Choice Uses the cookie
specified to find the
data.

PSXNumericLiteral (on page 241) Choice Uses the defined
numeric literal value.

PSXDateLiteral (on page 241) Choice Uses the defined date
value.

PSXLiteralSet (on page 240) Choice Specifies a set of literal
options.

PSXHtmlParameter (on page 243) Choice Uses the value of the
HTML parameter
specified.

PSXHtmlSingleParameter Choice Like
PSXHtmlParameter
except that if the
parameter is multi-
valued, it returns only
the first value.

PSXXmlField (on page 244) Choice Uses the value of the
XML field specified.

PSXCgiVariable (on page 245) Choice Uses the value of the
CGI variable specified.

208 Rhythmyx Implementing Content Editors

Name Appearance Description
PSXUserContext (on page 245) Choice Uses the value of the

user-context variable
specified.

PSXExtensionCall (on page 246) Choice Defines a UDF that
will calculate the data.

PSXUserContext (on page 245) Choice Uses the value of the
user context variable
specified.

PSXExtensionCallSet (on page 246) Choice Defines a set of UDFs
that will calculate the
data. Not supported
until nested UDFs are
implemented.

PSXTextLiteral (on page 240) Choice Uses the literal text
specified.

FieldRef
Names an existing field in the definition. In the local XML definition, this element could refer to a field
defined in the local, shared, or system definition XML files.

Used in: Local, Shared

Contained by: DataLocator (on page 207), PSXDisplayMapping (on page 209)

Attributes: None

Elements: None

PSXDisplayMapper
Contains all of the mappings of fields to their display control.

Used in: Local, Shared

Contained by: PSXDisplayMapping (on page 209), PSXUIDefinition (on page 210)

Attributes:

 Name Required? Value Effect
id Yes CDATA A unique numeric identifier for the

mapper. This value is used as the
sys_childid during updates.

fieldSetRef Yes CDATA Names the field set for which the
mappings are defined.

 Appendix III Appendices 209

Elements:

Name Appearance Description
PSXDisplayMapping (on page
209)

Zero or more (Must be at least one before
starting the application.)

Defines the individual
display mappings.

PSXDisplayMapping
Contains the display mapping for a specific field. A mapping defines a row in the output document and
links a PSXField to it. Nearly all operations are based on the mappings, not the field sets. Extra fields in
a field set are ignored.

Used in: Local, Shared

Contained by: PSXDisplayMapper (on page 208)

Attributes: None

Elements:

Name Appearance Description
FieldRef (on page 208) Once Specifies the field for which the

display mapping is being defined.
Must refer to an existing field.

PSXUISet (on page 210) Once Defines the user interface
specification for this field.

PSXDisplayMapper (on page
208)

Zero or one Defines display mappings for
child fields. Only present if the
FieldRef element refers to a field
set.

DefaultValue
Specifies the default value of a field.

The FieldRef, PSXBackendColumn, and PSXXmlField child elements of the DataLocator element are not
allowed, but any other child element can be used.

Used in: Local, Shared

Contained by: PSXField

Attributes: None

Elements:

Name Appearance Description
DataLocator (on page
207)

Zero or more Specifies a location where the default
value can be found or generated.

210 Rhythmyx Implementing Content Editors

PSXUIDefinition
Contains the user interface definition for the editor.

Used in: Local, Shared

Contained by: PSXContentEditorMapper (on page 253), PSXSharedFieldGroup (on page 255)

Attributes: None

Elements:

Name Appearance Description
PSXDefaultUI (on page
210)

Zero or one Defines the default user interface for the
editor or portion of the editor.

PSXDisplayMapper (on
page 208)

Once Contains all mappings of fields to their
display controls.

PSXDefaultUI
Contains the user interface definition for a portion of the editor. If a PSXUISet refers to an existing
default UI, then every property in the default set that is not set in the UI set is merged into the UI set.
These can be used to make creating a consistent user interface easier.

Used in: Local, Shared

Contained by: PSXUIDefinition (on page 210)

Attributes: None

Elements:

Name Appearance Description
PSXUISet (on page 210) One or more Defines default properties for a particular

kind of presentation.

PSXUISet
Used in: Local, Shared

Contained by: PSXDefaultUI (on page 210)

Attributes:

Name Required? Value Effect
name

(Either name or defaultSet
can be present, but not
both.)

No CDATA Defines a name for this user
interface set. Other objects can
use this name to refer to the user
interface set. Only used if this
object is being defined as a default
UI set.

 Appendix III Appendices 211

defaultSet

(Either name or defaultSet
can be present, but not
both.)

No CDATA Uses the properties of the specified
user interface set as the properties
of the user interface set for this
field, unless overridden for this
field.

Elements:

Name Appearance Description
Label (on page 212) Zero or one Defines the label for the field in the user

interface. This text is visible the user of the
editor.

PSXControlRef (on page 217) Zero or one Refers to a control used when displaying the
data in this field. Controls are defined in an
XSL field, so no validation is performed on
this name until a request is processed.

ErrorLabel (on page 212) Zero or one Defines the label displayed when the field
fails a validation test. Replaces the standard
label in the output document in this case.

PSXChoices (on page 213) Zero or one Defines a choice list for the field. Only used
for SDMP field sets.

ReadOnlyRules (on page 218) Zero or one Defines the rules that determine whether a
field should be displayed as read-only.

PSXCustomActionGroup (on
page 231)

Zero or one Defines overrides to the default editor
behavior, removing existing buttons and
adding new buttons.

PSXDisplayText
Specifies text to be displayed to the end user.

Used in: Local, Shared

Contained by: Label (on page 212), ErrorLabel (on page 212), PSXEntry (on page 216), ErrorInfo (on
page 218), PSXActionLink (on page 230)

Attributes: None

Elements: None

212 Rhythmyx Implementing Content Editors

Label
Used In: Local, Shared

Contained By: PSXUISet (on page 210)

Attributes: None

Elements:

Name Appearance Description
PSXDisplayText (on page 211) Once Specifies the text to be

displayed for the label
of the field.

ErrorLabel
Used in: Local, Shared

Contained by: PSXUISet (on page 210), PSXFieldTranslation (on page 223), PSXFieldValidationRules
(on page 224), PSXRule (on page 225)

Attributes: None

Elements: None

 Appendix III Appendices 213

PSXChoices
Used to define a choice list of options for the field. Options can come from a table (type = global;
requires the child element Key) or from another URL (type = lookup or type =
internalLookup; requires the child element PSXUrlRequest), or they can be defined locally
(type = local; requires one or more PSXEntry children).

Used in: Local, Shared

Contained by: PSXUISet (on page 210)

Attributes:

Name Required? Value Effect Default
type No global

local

lookup

 internalLookup

Entries are stored in a lookup
table; requires the child element
Key.

Entries are defined locally.
Requires one or more PSXEntry
child elements.

Entries are stored in a remote
URL. Requires the child element
PSXUrlRequest. The associated
control is responsible for making
the request and retrieving all
entries from the result document.

Entries are stored in a remote URL
that is internal to Rhythmyx.
 Requires the child element
PSXUrlRequest. The document
returned from this request must
conform to the sys_Lookup.dtd.
 The request is made internally and
the entries are provided to the
control as if it had been a local
lookup request.

global

sortOrder No ascending

descending

user

Entries are sorted in ascending
dictionary order (case insensitive).

Entries are sorted in descending
dictionary order (case insensitive).

If type = local, uses the sequence
attribute of the PSXEntry children
to determine the order. If type =
global, uses the sequence defined
in the lookup table to determine
the order. Otherwise is ignored.

ascending

214 Rhythmyx Implementing Content Editors

Elements:

Name Appearance Description
Key (on page 243) Choice Specifies the lookup key in the RXLOOKUP

table under which the options are stored.

PSXEntry (on page
216)

Choice; One or more Defines options locally, for this editor only.

PSXUrlRequest (on
page 219)

Choice Specifies a URL where the options can be found.
The URL is passed to the control.

PSXNullEntry (on page
215)

Zero or one Specifies the entry in the field if the value of the
field is null.

DefaultSelected (on
page 214)

Zero or one Defines the option(s) selected when creating a
new document.

DefaultSelected
Defines the option(s) in a choice list selected by default.

Used in: Local, Shared

Contained by: PSXChoices (on page 213)

Attributes: None

Elements:

Name Appearance Description
PSXDefaultSelected Zero or more. The

number allowed is
determined by the type
of attribute.

Defines the default
option selected.

 Appendix III Appendices 215

PSXDefaultSelected
Defines the specific method of determining the default selection. The selected entry is indicated in the
XML document generated by setting the selected attribute of the DisplayEntry element to yes in the
output XML document generated by the sys_ContentEditor.dtd.

Used in: Local, Shared

Contained by: DefaultSelected (on page 214)

Attributes:

Name Required? Value Effect Default
type No nullEntry

sequence

text

Uses the option specified in
the PSXNullEntry as the
default entry.

Uses the option at the
specified sequence number
(for example, sequence
= 2 would use the second
entry) as the default option.

Uses the first entry found
containing a string that
matches the text string
specified.

nullEntry

Elements: None

PSXNullentry
Defines the entry if the current value of the field is null or the field is empty.

Used in: Local, Shared

Contained by: PSXChoices (on page 213)

Attributes:

Name Required? Value Effect Default
includeWhen No always

onlyIfNull

Always include the null entry in
the list of available choices

Only include the null entry
when the current value of the
field is null.

onlyIfNull

216 Rhythmyx Implementing Content Editors

sortOrder No first

last

sorted

The null entry will always be
the first entry in the list.

The null entry will always be
the last option in the list.

The null entry will be sorted in
the list like all other entries.

first

Elements:

Name Appearance Description
PSXEntry (on page
216)

Once Specifies the entry to
use as the null entry.

PSXEntry
Used in: Local, Shared

Contained by: PSXChoices (on page 213), PSXNullEntry (on page 215)

Attributes:

Name Required
?

Value Effect Default

sequence No CDATA Determines the place of this entry
relative to other entries in the
choice list.

None

default No no

yes

Option is not the default option for
the field.

Option is the default option for the
field.

no

Elements:

Name Appearance Description
PSXDisplayText (on page
211)

Once Specifies the text to display in the user
interface.

Value (see "Value
(uppercase)" on page 217)

Once Specifies the value of the option for
processing. When the user selects this
option, the content of this element must be
returned as the value of the submitted
HTML parameter.

 Appendix III Appendices 217

Value (uppercase)
A generic tag used to avoid a mixed content model. Use this tag to define the value of an element that
contains other child elements.

Used in: Local, Shared

Contained by: PSXEntry (on page 216)

Attributes: None

Elements: None

PSXControlRef
Defines a link to a control used when displaying field data.

Used in: Local, Shared

Contained by: PSXUISet (on page 210), ReadOnlyRules (on page 218)

Attributes:

Name Required? Value Effect
name Yes CDATA Specifies the name of the control.

Typically it is the name of a
template (XSL stylesheet).

Elements:

Name Appearance Description
PSXParam (on
page 221)

Zero or more Defines the parameters used in the control.
These parameters are passed through to the
output document without interpretation.

218 Rhythmyx Implementing Content Editors

ReadOnlyRules
Defines a set of rules that determine whether the field should be displayed as read-only. If a
PSXControlRef child is specified, and the rules evaluate to true, Rhythmyx will use the control
defined in the PSXControlRef tag to display the field rather than the control specified in the
PSXUISet. If the read-only rules evaluate to true, Rhythmyx will set the readOnly attribute of the
DisplayField tag in the output XML document generated by the sys_ContentEditor.dtd to yes.

Used in: Local, Shared

Contained by: PSXUISet (on page 210)

Attributes: None

Elements:

Name Appearance Description
PSXRule (on page 225) Zero or more Defines a rule.

PSXControlRef (on page
217)

Zero or one Specifies a control to use when displaying
the field if the rules evaluate as true.

ErrorInfo
Defines the text to display when a validation error occurs. The text specified in the PSXDisplayText
tag is combined with the text from all other field or item validation errors, and is added as the first child
node of the results document.

Used in: Shared

Contained by: PSXContentEditor (on page 250)

Attributes: None

Elements:

Name Appearance Description
PSXDisplayText (on
page 211)

Once Defines the text to display.

PSXStylesheet
Defines an XSL stylesheet reference.

Used in: Local, Shared

Contained by: PSXConditionalStylesheet (on page 219), CommandHandler (on page 227)

Attributes: None

Elements:

Name Appearance Description
PSXUrlRequest (on page 219) Once Defines the URL to the stylesheet.

 Appendix III Appendices 219

PSXConditionalStyleSheet
Defines a set of conditions and the stylesheet to use if the conditions evaluate as true.

Used in: Local, Shared

Contained by: CommandHandler (on page 227)

Attributes: None

Elements:

Name Appearance Description
PSXStyleSheet (on
page 218)

Once Specifies the stylesheet to use.

Conditions (on
page 221)

Once Defines the set of conditions to evaluate.

PSXURLRequest
Defines the pieces required to build a URL, either directly or by calling a UDF. If the components are
supplied directly, the server generates a URL in the following form (with missing components handled
properly):
href?param1=value1¶m2=value2#anchor
Used in: Local, Shared

Contained by: PSXChoices (on page 213), PSXStylesheet (on page 218), PSXConditionalRequest (on
page 220), CommandHandler (on page 227)

Attributes:

Name Required? Value Effect
name No CDATA Identifier for the request. Should

be unique within the level
definition.

Elements:

Name Appearance Description
href (on page 220) Once (if building URL locally) Defines the base of

the URL, including
the query string.

PSXParam (on page
221)

Zero or more times (if building URL locally) Specifies the
parameters for the
URL.

Anchor (on page 220) Zero or one time (if building URL locally) Defines the anchor of
the URL.

 OR

220 Rhythmyx Implementing Content Editors

Name Appearance Description
PSXExtensionCall
(on page 246)

Choice Calls the a UDF that
builds the URL.

Href
The location portion of a URL.

Used in: Local, Shared

Contained by: PSXUrlRequest (on page 219)

Attributes: None

Elements: None

Anchor
The anchor portion of a URL.

Used in: Local, Shared

Contained by: PSXUrlRequest (on page 219)

Attributes: None

Elements: None

PSXConditionalRequest
Defines a set of conditions and the URL to use if those conditions evaluate as true.

Used in: Local, Shared

Contained by: CommandHandler (on page 227)

Attributes: None

Elements:

Name Appearance Description
PSXUrlRequest (on
page 219)

Once Defines the URL request.

Conditions (on page
221)

Once Defines the set of conditions to evaluate.

 Appendix III Appendices 221

Conditions
Defines the set of rules to evaluate for a conditional stylesheet or conditional URL request.

Used in: Local, Shared

Contained by: PSXConditionalStylesheet (on page 219), PSXConditionalRequest (on page 220)

Attributes: None

Elements:

Name Appearance Description
PSXRule (on page 225) One or more Defines the rule to

evaluate.

PSXParam
Defines a name-value pairing to pass parameters to a URL request.

Used in: Local, Shared

Contained by: PSXControlRef (on page 217), PSXUrlRequest (on page 219), PSXActionLink (on page
230)

Attributes:

Name Required? Value Effect
type No CDATA Allowed values are defined by the

context in which the PSXParam
tag is used.

name Yes CDATA Name of the parameter.

Elements:

Name Appearance Description
DataLocator (on page 207) Once Specifies where to find the data

for the tag.

222 Rhythmyx Implementing Content Editors

FieldRules
Defines the set of rules for validating, translating, or determining the visibility of a field.

Used in: Local, Shared

Contained by: PSXField

Attributes: None

Elements:

Name Appearance Description
PSXVisibilityRules (see
"PSXVisibility Rules" on
page 222)

Zero or one Defines rules that determine whether the field will
be visible.

PSXFieldValidationRules
(on page 224)

Zero or one Defines the rules for validating the data in the
field.

FieldInputTranslation (on
page 223)

Zero or one Converts data from one form to another when
updating the database

FieldOutputTranslation (on
page 223)

Zero or one Converts data from one form to another when
requesting data from the database.

PSXVisibility Rules
Determines the setting of the visibility flag when a data is requested.

Used in: Local, Shared

Contained by: FieldRules (on page 222)

Attributes:

Name Required? Value Effect Default
dataHiding No xsl

xml

Hidden data is included in the output
document.

Hidden data is not included in the results
document.

xsl

Elements:

Name Appearance Description
PSXRule (on page 225) One or more Defines the rules.

 Appendix III Appendices 223

FieldInputTranslation
Specifies the UDF used to convert data from one form to another when it is updated to the database.
Typically, this process "undoes" the transformation by the FieldOutputTranslation.

Used in: Local, Shared

Contained by: FieldRules (on page 222)

Attributes: None

Elements:

Name Appearance Description
PSXFieldTranslation (on
page 223)

Once Defines the UDF that performs
the data conversion.

FieldOutputTranslation
Specifies the UDF used to convert data from one form to another when it is requested from the database.

Used in: Local, Shared

Contained by: FieldRules (on page 222)

Attributes: None

Elements:

Name Appearance Description
PSXFieldTranslation (on
page 223)

Once Defines the UDF that performs the data conversion.

PSXFieldTranslation
Specifies the call to the UDF that perform the data translation for the field.

Used in: Local, Shared

Contained by: FieldInputTranslation (on page 223), FieldOutputTranslation (on page 223)

Attributes: None

Elements:

Name Appearance Description
PSXExtensionCallSet
(on page 246)

Once Specifies the call to the UDF that performs the
data translation.

ErrorLabel (on page
212)

Zero or once Defines a label to use if the data translation
fails.

224 Rhythmyx Implementing Content Editors

PSXFieldValidationRules
Defines the set of rules to validate the data in the field after it is transformed.

Used in: Local, Shared

Contained by: FieldRules (on page 222)

Attributes:

Name Required? Value Effect Default
name No CDATA Defines a name that

other fields in the
editor can use to
share this validation
set.

None

maxErrorsToStop No CDATA Defines the
maximum number of
errors generated
before validation is
terminated and errors
are reported to the
user.

10

Elements:

Name Appearance Description
PSXRule (on page 225) Choice (Zero or more) Defines validation rule.

FieldValidationRuleRef (on
page 224)

Choice(Zero or more) Defines existing validation set to
use when validating this field.

PSXApplyWhen (on page 225) Zero or one Defines a set of rules that
determine whether or not to
perform validation on the field.

ErrorMessage Zero or one Defines text to use for the field if
the data fails validation. This
text will be returned to the user in
the error document.

FieldValidationRuleRef
Specifies an existing set of field validation rules to use when validating the data for this field.

Used in: Local, Shared

Contained by: PSXFieldValidationRules (on page 224)

Attributes: None

Elements: None

 Appendix III Appendices 225

PSXApplyWhen
Defines rules that determine whether validation will be performed.

Used in: Local, Shared

Contained by: PSXFieldValidationRules (on page 224)

Attributes:

Name Required? Value Effect Default
ifFieldEmpty No yes

no

yes: Data in field will be validated, even
if field is empty.

no: Data in field will not be validated if
the field is empty.

no

Elements:

Name Appearance Description
PSXRule (on page 225) Zero or more Defines rules that determine whether or not to

apply field validation rules. If the rules
evaluate to true, the validations are performed.

PSXRule
A set of conditions or a UDF that returns a Boolean value. When processing more than one rule joined
using the boolean attribute, and takes precedence over or. Rules use short-circuit programming,
meaning that once the answer is determined, no further rules are evaluated. For example, if two rules are
combined by OR, and the first rule evaluates to true, the second rule is not evaluated.

Used in: Local, Shared

Contained by: ReadOnlyRules (on page 218), Conditions (on page 221), PSXVisibilityRules (see
"PSXVisibility Rules" on page 222), PSXFieldValidationRules (on page 224), PSXApplyWhen (on page
225)

Attributes:

Name Required
?

Value Effect Default

boolean No and

or

If multiple rules are
present, both rules must
evaluate as true for the
pair to evaluate as true.

If either rule evaluates as
true, the rule evaluates as
true.

and

226 Rhythmyx Implementing Content Editors

Elements:

 Name Appearance Description
PSXConditional (on
page 237)

Choice (Zero or more) Defines rules locally as a set of conditions.

PSXExtensionCallSet
(on page 246)

Choice Calls a Java extension that defines and
processes the rules. Not supported until
nested UDFs are implemented.

ErrorLabel (on page
212)

Zero or one Defines a label for the field if the rule
evaluates to a negative value. The
meaning of negative is interpreted by the
user.

PSXApplicationFlow
Determines where the server should go after a non-query request. The default application flow is
specified in the system definition. It can be overridden in the shared definition or the local definition.

Used in: Local, Shared

Contained by: PSXContentEditor (on page 250), PSXContentEditorSharedDef (on page 255)

Attributes: None

Elements:

Name Appearance Description
CommandHandler (on
page 227)

One or more Contains a set of conditional URL requests
one of which indicates where the server will
redirect after the non-query operation has
completed.

PSXCommandHandlerStylesheet
Defines the set of stylesheets used in the set of content editors. A stylesheet is required for each query
handler. The stylesheet will be used to process an output document that conforms to the
sys_ContentEditor.dtd. The default stylesheets are specified in the system definition. They can be
overridden in the shared definition or the local definition.

Used in: Local, Shared

Contained by: PSXContentEditor (on page 250), PSXContentEditorSharedDef (on page 255)

Attributes: None

Elements:

Name Appearance Description
CommandHandler (on
page 227)

One or more Defines a set of stylesheets used by the editor
to render the output document.

 Appendix III Appendices 227

CommandHandler
Defines the set of stylesheets or requests used within a specific content editor. Which children are
allowed is determined by the parent of this element.

Used in: Local, Shared

Contained by: PSXApplicationFlow (on page 226), PSXCommandHandlerStylesheets (see
"PSXCommandHandlerStylesheet" on page 226)

Attributes:

Name Required? Value Effect

Name Yes CDATA The internal name of the
command handler that
uses this stylesheet. Must
use the associated object.

Elements:

Name Appearance Description
PSXConditionalStylesheet (on page
219)

Zero or more Defines a set of conditions and the
stylesheet to use if the conditions evaluate
as true.

PSXStylesheet (on page 218) Once Defines the stylesheet to use for the
command handler. If any
PSXConditionalStylesheet elements
appear, this stylesheet is used if all
PSXConditionalStylesheets evaluate as
false.

OR

PSXConditionalRequest (on page 220) Zero or more Defines a set of conditions and the URL
request to use if the conditions evaluate as
true.

PSXUrlRequest (on page 219) Once Defines the URL request to use for the
command handler. If any
PSXConditionalRequest elements appear,
this URL request is used if all
PSXConditionalRequests evaluate as
false.

228 Rhythmyx Implementing Content Editors

PSXInputTranslations
Converts data from one form to another when data is updated to the database from two or more fields.
Can only use IPSRequestPreProcessor exits.

Used in: Shared

Contained by: PSXSharedFieldGroup (on page 255), ContentEditorSystemDef

Attributes: None

Elements:

Name Appearance Description
PSXConditionalExit (on
page 229)

Zero or one Defines the exit to use to perform the
translation.

PSXOutputTranslations
Converts data from one form to another when data is requested from two or more fields. Can only use
IPSResultDocumentProcessor exits. Typically, when an output translation is created, an corresponding
PSXInputTranslation is required to "undo" the translation before the data is stored.

Used in : Shared

Contained by: PSXSharedFieldGroup (on page 255), ContentEditorSystemDef

Attributes: None

Elements:

Name Appearance Description
PSXConditionalExit (on
page 229)

Zero or one Defines the exit to use to perform the
translation.

 Appendix III Appendices 229

PSXValidationRules
Defines the rules used to validate data from two or more fields before it is transformed. Can only use
exits. If failures occur, the DisplayLabel of the field is replaced by the ErrorLabel, and text defined in the
ErrorInfo element is also displayed.

Used in : Shared

Contained by: PSXSharedFieldGroup (on page 255), ContentEditorSystemDef

Attributes:

Name Required? Value Effect
MaxErrorsToStop No CDATA Defines the maximum number

of errors generated before
validation is terminated and
errors are reported to the user.
Must be a numeric value
greater than 1.

Elements:

Name Appearance Description
PSXConditionalExit (on page 229) Zero or one Defines the exit to use to

perform the validation.

PSXConditionalExit
Used in : Local, Shared

Contained by: PSXInputTranslations (on page 228), PSXOutputTranslations (on page 228),
PSXValidationRules (on page 229)

Attributes:

Name Required? Value Effect
MaxErrorsToStop No CDATA Defines the maximum number

of errors generated before
validation is terminated and
errors are reported to the user.
Must be a numeric value
greater than 1.

Elements:

Name Appearance Description
PSXExtensionCallSet (on page 246) Once Defines the call to the

exit(s) that performs
the translation or
validation.

230 Rhythmyx Implementing Content Editors

Name Appearance Description
PSXApplyWhen (on page 225) Zero or one Defines rules that

determine whether the
exit will be called. If
not present, the exits
are always called.

PSXActionLink
Defines an action that the end user can take. Meant to support objects such as buttons on HTML forms.
The object must have an action that appends the name/value pairs defined in the PSXParam children of
this element onto the resulting action

If the first parameter of this element is named submitHref, then the value of that parameter will be used as
the target of the action. The rest of the parameters will be appended to this action as described in the
previous paragraph.

Addressing actions in this manner separates the text on the object from the value submitted when that
object is activated. It also allows a single object to support multiple actions that require different values
for more than one parameter.

If the object is disabled, the stylesheet determines whether it is hidden or "grayed out". The stylesheet can
use any user-interface control available as long as it conforms to the semantics of the type of object to
which this element is assigned.

Used in : Local, Shared

Contained by: PSXActionLinkList (on page 231)

Attributes:

 Name Required? Value Effect Default
name No CDATA Defines a name for the link. None

isDisabled No no

yes

Link is not disabled; is the default,
which conforms to HTML
semantics.

Link is disabled.

no

isTransition No no

yes

Link is not a workflow Transition; is
the default, which conforms to
HTML semantics.

Link is a Transition.

no

Elements:

Name Appearance Description
PSXDisplayText (on
page 211)

Once Defines the text
displayed on the object.

PSXParam (on page
221)

Zero or more Defines a name/value
pair for the object.

 Appendix III Appendices 231

PSXActionLinkList
Defines a set of PSXActionLinks for use in a single content editor.

Used in : Local

Contained by: PSXCustomActionGroup (on page 231)

Attributes: None

Elements:

Name Appearance Description
PSXActionLink (on
page 230)

One or more Defines an action available in the content
editor.

PSXCustomActionGroup
A custom action group lets the user overwrite the default form action, remove default buttons and add new
buttons.

Used in : Local, Shared

Contained by: DefaultUI

Attributes: None

Elements:

Name Appearance Description
PSXLocation (on page 232) Once Defines the location of the custom

action group.

RemoveAction (on page 231) Zero or one Specifies actions to be removed from
the user interface.

PSXActionLinkList (on page 231) Once Defines the group of actions to
overwrite.

RemoveAction
Defines a list of ActionLink objects to remove from the user interface.

Used in : Local, Shared

Contained by: PSXCustomActionGroup

Attributes: None

Elements:

Name Appearance Description
ActionLinkRef One or more Specifies an ActionLink object to remove from the user interface.

232 Rhythmyx Implementing Content Editors

ActionLinkRef
Reference to an ActionLink element through its name attribute.

Used in: Local, Shared

Contained by: RemoveAction (on page 231)

Attributes: None

Elements: None

PSXLocation
Defines the location of a custom action group on the page. The interpretation depends on the values
assigned to the attributes.

Rhythmyx ignores the content of this element except in the following circumstances:

� The value of the page attribute is summaryView.

� The value of the page attribute is rowEdit and the value of the type attribute is field or
form.

To specify additional parameters needed by the target, use the PSXParam child element of the
PSXActionLink. For example, to replace the [Add New] in the summary editor, include a parameter
(PSXParam child) in the PSXActionLink element called targeturl, and use the
sys_MakeAbsoluteLink UDF to create a link to the modifyhandler. The customized page can use this
URL to submit the new children into the modify handler.

Used in : Local, Shared

Contained by: PSXCustomActionGroup (on page 231)

Attributes:

Name Required? Value Effect Default
page No summaryView

rowEdit

The objects will appear on one
or more summary editors.

The objects will appear on all
row editors.

summaryView

 Appendix III Appendices 233

type No form

row

field

wfAction

wfTransition

Objects appear for submission
of main form.

Only applicable to summary
view; objects will appear on
each row of the summary table.

Only applicable to row editors;
objects appear with the
specified child summary views.

Objects appear in the Workflow
Action box. The page attribute
is ignored; this object will
appear on all pages in the
content editor.

Objects appear in the Workflow
Transition box. The page
attribute is ignored; this object
will appear on all pages in the
content editor.

form

sequence No CDATA Defines the position of the
object relative to the other
objects. In other words, if the
value is 1, this object will
appear first. If this attribute has
no value, the object is added to
the end of the list.

None

Elements:

Name Appearance Description
FieldRef (on page 208) Zero or more Defines the (complex child) fields where

the objects will appear.

PSXBackEndCredential
Specifies the credential information needed to connect to a backend database.

Used in : Local, Shared

Contained by: PSXTableLocator (on page 199)

Attributes:

Name Required? Value Effect
id Yes CDATA Unique numeric identifier

234 Rhythmyx Implementing Content Editors

Elements:

Name Appearance Description
alias (see "alias (lowercase)" on page
234)

Once Identifies the backend
credential so it can be reused.

comment (on page 234) Zero or one Free-form comment on the
back end credential

driver (on page 235) Once Defines the JDBC driver.
Must be one of the driver
names specified when the
driver was configured.

server (on page 235) Zero or one Specifies the server where
the backend database resides.

 userid (on page 235) Zero or one Specifies the user ID to use
to access the backend
database.

password (on page 235) Zero or one Specifies the password to use
to access the backend
database.

alias (lowercase)
Defines an alias to identify the backend database credential. Note that this element is different from the
Alias element (defined using title case) that appears elsewhere.

Used in : Local, Shared

Contained by: PSXBackEndCredential (on page 233)

Attributes: None

Elements: None

comment
Allows the addition of free-form comments to the PSXBackEndCredential.

Used in : Local, Shared

Contained by: PSXBackEndCredential (on page 233)

Attributes: None

Elements: None

 Appendix III Appendices 235

driver
Defines the connectivity to the backend database.

Used in : Local, Shared

Contained by: PSXBackEndCredential (on page 233)

Attributes: None

Elements: None

server
Defines the name of the machine where the backend database resides.

Used in : Local, Shared

Contained by: PSXBackEndCredential (on page 233)

Attributes: None

Elements: None

userID
Specifies the user ID to access the backend database.

Used in : Local, Shared

Contained by: PSXBackEndCredential (on page 233)

Attributes: None

Elements: None

password
Specifies the password to use to access the backend database.

Used in : Local, Shared

Contained by: PSXBackEndCredential (on page 233)

Attributes:

Name Required? Value Effect Default
encrypted No yes

no

Password is
encrypted

Password is not
encrypted.

no

Elements: None

236 Rhythmyx Implementing Content Editors

PSXBackEndColumn
Defines a column in the backend database table.

Used in : Local, Shared

Contained by: DataLocator (on page 207), variable (on page 238), value (see "value (lowercase)" on page
239)

Attributes:

Name Required? Value Effect
id Yes CDATA Unique numeric identifier

Elements:

Name Appearance Description
tableAlias (on page 236) Once Specifies the backend

database table.

column (on page 236) Once Specifies the name of the
column.

columnAlias (on page 237) Zero or one Optional alias for this
column. Useful if more
that one column of the
same name exists in a set of
joined tables.

tableAlias
Specifies an existing database table definition.

Used in : Local, Shared

Contained by: PSXBackEndColumn (on page 236)

Attributes: None

Elements: None

column
Specifies a column in the backend database.

Used in : Local, Shared

Contained by: PSXBackEndColumn (on page 236)

Attributes: None

Elements: None

 Appendix III Appendices 237

columnAlias
Specifies an existing column definition.

Used in : Local, Shared

Contained by: PSXBackEndColumn (on page 236)

Attributes: None

Elements: None

PSXConditional
Used to define conditional statements. The format is {variable} {operator} {value} [{boolean}
{cond}]….

Used in : Local, Shared

Contained by: PSXRule (on page 225)

Attributes:

Name Required? Value Effect
id Yes CDATA Defines an identifier for the

conditional statement.

Elements:

Name Appearance Description
variable (on page
238)

Once Defines the variable to be tested.

operator (on page
238)

Once Defines the operation to use to test the variable.

value (see "value
(lowercase)" on page
239)

Once Defines the value against which to test the variable.

boolean (on page
239)

Zero or one Defines Boolean operator between multiple conditional
statements.

238 Rhythmyx Implementing Content Editors

variable
The name of the variable to test in a PSXConditional statement.

Used in: Local, Shared

Contained by: PSXConditional (on page 237)

Attributes: None

Elements:

Name Appearance Description
PSXBackendColumn (on page
236)

Choice Defines a backend database column where the
data to be tested can be found.

PSXTextLiteral (on page 240) Choice Defines literal text to test.

PSXCgiVariable (on page 245) Choice Defines the CGI variable whose value to test.

PSXHtmlParameter (on page
243)

Choice Defines the HTML parameter whose value to
test.

PSXCookie (on page 243) Choice Defines the cookie whose value to test.

PSXUserContext (on page 245) Choice Defines the user-context variable whose value
to test.

PSXXmlField (on page 244) Choice Defines the XML field whose value to test.

operator
Defines the relational operator to use in the comparison in a PSXConditional statement. Acceptable
values are <>, <, <=, >, >=, IS NULL, IS NOT NULL, BETWEEN, NOT BETWEEN, IN, NOT IN,
LIKE, NOT LIKE. (NOTE: Remember that some of the characters used above are reserved characters in
XML, such as "<"; you must use the escape characters for these characters in the XML content.)

Used in : Local, Shared

Contained by: PSXConditional (on page 237)

Attributes: None

Elements: None

 Appendix III Appendices 239

value (lowercase)
Defines the value for a PSXConditional or PSXExtensionParam.

Used in: Local, Shared

Contained by: PSXConditional (on page 237)

Attributes: None

Elements:

Name Appearance Description
PSXBackEndColumn (on
page 236)

Choice Defines the backend database column whose
value the tested variable must match.

PSXDateLiteral (on page
241)

Choice Defines a literal text date whose value the
tested variable must match.

PSXNumericLiteral (on
page 241)

Choice Defines a literal numeric value that the tested
variable must match.

PSXTextLiteral (on page
240)

Choice Defines a literal text string that the tested
variable must match.

PSXCgiVariable (on page
245)

Choice Defines the CGI variable whose value the
tested variable must match.

PSXHtmlParameter (on
page 243)

Choice Defines the HTML parameter whose value the
tested variable must match.

PSXCookie (on page 243) Choice Defines the cookie whose value the tested
variable must match.

PSXUserContext (on page
245)

Choice Defines the user-context variable whose value
the tested variable must match.

PSXXmlField (on page 244) Choice Defines the XML field whose value the tested
variable must match.

boolean
The Boolean operator to use when joining multiple conditionals. Value can be either AND (default) or OR.
Statements joined by AND take precedence over statements joined by OR in processing.

Used in : Local, Shared

Contained by: PSXConditional (on page 237)

Attributes: None

Elements: None

240 Rhythmyx Implementing Content Editors

PSXLiteralSet
Defines a set of literal objects.

Used in : Local, Shared

Contained by: DataLocator (on page 207)

Attributes: None

Elements:

Name Appearance Description
PSXDateLiteral (on
page 241)

Choice; Zero or more Defines a specific date.

PSXNumericLiteral
(on page 241)

Choice; Zero or more Defines a specific numeric value.

PSXTextLiteral (on
page 240)

Choice; Zero or more Defines a specific text string.

PSXTextLiteral
Defines a literal text string.

Used in: Local, Shared

Contained by: DataLocator (on page 207), variable (on page 238), value (see "value (lowercase)" on page
239), PSXLiteralSet (on page 240)

Attributes:

Name Required? Value Effect
id Yes CDATA Defines an identifier for the

string.

Elements:

Name Appearance Description
text (on page 242) Once Defines the text string.

 Appendix III Appendices 241

PSXDateLiteral
Defines a literal date string.

Used in : Local, Shared

Contained by: value (see "value (lowercase)" on page 239), PSXLiteralSet (on page 240)

Attributes:

Name Required? Value Effect
id Yes CDATA Defines an identifier for the

string.

Elements:

Name Appearance Description
date (on
page 242)

Once Specifies the date string

format (on
page 242)

Once Defines the format for the data. Must conform to the
requirements of java.text.SimpleDateFormat. For
more information, see the following URL:

http://java.sun.com/j2se/1.3/docs/api/java/text/Simple
DateFormat.html
(http://java.sun.com/j2se/1.3/docs/api/java/text/Simple
DateFormat.html).

PSXNumericLiteral
Defines a literal numeric value.

Used in: Local, Shared

Contained by: value (see "value (lowercase)" on page 239), PSXLiteralSet (on page 240)

Attributes:

Name Required? Value Effect
id Yes CDATA Defines an identifier for this

numeric literal.
Elements:

Name Appearance Description
number (on page
242)

Once Specifies the numeric value.

http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html

242 Rhythmyx Implementing Content Editors

Name Appearance Description
format (on page 242) Once Defines the format for the value. Must conform to the

requirements of java.text.DecimalFormat. For more
information, see the following URL:

http://java.sun.com/j2se/1.3/docs/api/java/text/DecimalF
ormat.html
(http://java.sun.com/j2se/1.3/docs/api/java/text/DecimalF
ormat.html)

date
Defines the date string.

Used in : Local, Shared

Contained by: PSXDateLiteral (on page 241)

Attributes: None

Elements: None

number
Defines the number value.

Used in : Local, Shared

Contained by: PSXNumericLiteral (on page 241)

Attributes: None

Elements: None

text
Defines the text string.

Used in : Local, Shared

Contained by: PSXTextLiteral (on page 240)

Attributes: None

Elements: None

format
Defines the format for a the date in a PSXDateLiteral or the number in a PSXNumericLiteral.

Used in: Local, Shared

Contained by: PSXDateLiteral (on page 241), PSXNumericLiteral (on page 241)

Attributes: None

Elements: None

http://java.sun.com/j2se/1.3/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.3/docs/api/java/text/DecimalFormat.html

 Appendix III Appendices 243

Key
Specifies the lookup key in the RXLOOKUP table under which the options are stored for a PSXChoices
element.

Used in: Local, Shared

Contained by: PSXChoices (on page 213)

Attributes: None

Elements: None

PSXCookie
Specifies a cookie.

Used in : Local, Shared

Contained by: DataLocator (on page 207), variable (on page 238), value (see "value (lowercase)" on page
239)

Attributes:

Name Required? Value Effect
id Yes CDATA Defines an identifier for the cookie

element.
Elements:

Name Appearance Description
name Once Specifies the name of the cookie.

PSXHTMLParameter
Specifies an HTML parameter.

Used in : Local, Shared

Contained by: DataLocator (on page 207), variable (on page 238), value (see "value (lowercase)" on page
239)

Attributes:

Name Required? Value Effect
id Yes CDATA Defines an identifier for the HTML

parameter element.
Elements:

Name Appearance Description
name (on page 247) Once Specifies the name of the

HTML parameter.

244 Rhythmyx Implementing Content Editors

PSXHTMLSingleParameter
Specifies an HTML parameter. If the parameter has more than one value, only the first value will be
returned.

Used in: Local, Shared

Contained by: DataLocator (on page 207), variable (on page 238), value (see "value (lowercase)" on page
239)

Attributes:

Name Required? Value Effect
id Yes CDATA Defines an identifier for the HTML

parameter element.
Elements:

Name Appearance Description
name (on
page 247)

Once Specifies the name of the HTML parameter.

PSXXmlField
Specifies an XML field.

Used in: Local, Shared,

Contained by: DataLocator (on page 207), variable (on page 238), value (see "value (lowercase)" on page
239)

Attributes:

Name Required? Value Effect
id Yes CDATA Defines an identifier for the XML

field element.
Elements:

Name Appearance Description
name (on page 247) Once Specifies the name of

the XML field.

 Appendix III Appendices 245

PSXCGIVariable
Specifies a CGI variable.

Used in : Local, Shared.

Contained by: DataLocator (on page 207), variable (on page 238), value (see "value (lowercase)" on page
239)

Attributes:

Name Required? Value Effect
id Yes CDATA Defines an identifier for the CGI

variable element.
Elements:

Name Appearance Description
name (on page 247) Once Specifies the name of the CGI

variable.

PSXUserContext
Specifies a user-context variable.

Used in : Local, Shared

Contained by: DataLocator (on page 207), variable (on page 238), value (see "value (lowercase)" on page
239)

Elements:

Name Required? Value Effect
id Yes CDATA Defines an identifier for the user-

context variable.
Elements:

Name Appearance Description
name (on page 247) Once Specifies the name of the user-

context variable.

246 Rhythmyx Implementing Content Editors

PSXExtensionCallSet
Defines a set of calls to a group of Java extensions.

Used in : Local, Shared

Contained by: DataLocator (on page 207), PSXFieldTranslation (on page 223), PSXRule (on page 225),
PSXConditionalExit (on page 229)

Attributes:

Name Required? Value Effect
id Yes CDATA Defines an identifier for the set of

calls to the Java extensions.
Elements:

Name Appearance Description
PSXExtensionCall (on page
246)

Zero or more Specifies the Java extension to call.

PSXExtensionCall
Defines the call to a Java extension.

Used in: Local, Shared

Contained by: DataLocator (on page 207), PSXUrlRequest (on page 219)

Attributes:

Name Required? Value Effect
id Yes CDATA Defines an identifier for the call

to the Java extension.
Elements:

Name Appearance Description
name (on page 247) Once Specifies the fully qualified name of the Java extension

to call in the format <handler>/<context>/<name>.

PSXExtensionParamValue (on
page 247)

Zero or more Specifies the parameters to provide to the Java
extension.

 Appendix III Appendices 247

PSXExtensionParamValue
Specifies a parameter of the Java extension called and defines a value for the parameter.

Used in : Local, Shared

Contained by: PSXExtensionCall (on page 246)

Attributes:

Name Required? Value Effect
id Yes CDATA Defines an identifier for the

PSXExtensionParamValue element.

Elements:

Name Appearance Description
value (see "value (lowercase)" on
page 239)

Once Specifies the value to pass to
the Java extension.

name
Specifies the name of an object called.

Used in: Local, Shared

Contained by: PSXCookie (on page 243), PSXHtmlParameter (on page 243), PSXXmlField (on page
244), PSXCgiVariable (on page 245), PSXUserContext (on page 245), PSXExtensionCall (on page 246)

Attributes: None

Elements: None

InputDataExits
Specifies a set of Java exits to apply as each request is made to the content editor, before the server begins
its main processing steps.

Used in: Local

Contained by: PSXContentEditorPipe (on page 252)

Attributes: None

Elements:

 Name Appearance Description
PSXExtensionCallSet (on
page 246)

Zero or one Defines the set of exits to call to
process the data.

248 Rhythmyx Implementing Content Editors

ResultDataExits
Specifies a set of Java exits to apply after the server has finished processing but before the document is
returned to the requester. Each exit gets an opportunity to modify the results document.

Used in : Local

Contained by: PSXContentEditorPipe (on page 252)

Attributes: None

Elements:

Name Appearance Description
PSXExtensionCallSet (on
page 246)

Zero or one Defines the set of exits to call to process the
data.

PSXSearchProperties
The PSXSearchProperties element serves as a container for all of the attributes that define the look and
feel of the search interface and that define its field-level configuration.

NOTE: For backwards-compatibility, if this element is not present, the server refers to the PSXField
element for search attributes that existed prior to version 5.5.

Used in: Local, Shared, System

Contained by: PSXField

Attributes

Name Required? Value Effect Default
userSearchable Yes yes

no

Field is available to
implementers and to Content
Contributors for use in searches.

Field is not available for search

yes

enableTransformation Yes yes

no

Field data is transformed into
simple text data during indexing
(in other words, HTML,
documents, rich-text formats,
.pdf files, etc., are converted into
raw text.

Field data is not transformed to
simple text format during
indexing. (This value is
preferred for fields that store
simple text data in the first
place.)

Dependso
n the datat
type of
the field.
For
example,
the default
for BLOB
data types
is yes
(and
cannot be
chagned).

 Appendix III Appendices 249

userCustomizable Yes yes

no

The field is available to be
added to custom searches by the
user.

The field is not available to be
added to custom searches by the
user.

yes

defaultSearchLabel No CDATA If a field does not have a
UIDefinition, or if the UI
definition has been overridden,
the value of this attribute is used
in search dialogs presented to
the user. If both the UIDef and
this attribute are missing, the
name of the field is used.

None

visibleToGlobalQuery Yes yes

no

The fields is available to be
searched using the Search for
field on the Search dialog in
Content Explorer.

The field is not available to be
searched using the Search for
field on the Search dialog in
Content Explorer. The user can
search on the field if
customizing the search.

yes

searchToken Yes yes

no

Punctuation marks are included
in search strings, rather than
being used as word separators.
This option should be selected if
the text in the field includes file
names, product IDs, etc.

Punctuation marks are used as
word separators and are not
included in search strings.

no

Elements: None

250 Rhythmyx Implementing Content Editors

Content Editor Local Def
PSXContentEditor
The root element of the content editor proper.

Used in: Local

Contained by: Root

Attributes:

Name Required? Value Effect
contentType Yes Numeric Specifies the content type associated with

the editor. This value is a key into the
CONTENTTYPES table. The supplied
value must exist in the table before the
application is started.

workflowID Yes Numeric Specifies the workflow associated with the
editor. This value is a key into the
WORKFLOWAPPS table. The supplied
value must exist in the table before the
application is started.

Elements:

Name Appearance Description
PSXDataSet (on page 251) Once Defines a set of fields for the content

editor.

PSXCommandHandlerStylesheets (see
"PSXCommandHandlerStylesheet" on
page 226)

Zero or one Defines the set of stylesheets used in the
content editor. Any entry defined
overrides the values in the system
definition.

PSXApplicationFlow (on page 226) Zero or one Determines the redirection of the server
after each query. Any entry defined
overrides the values in the system
definition.

SectionLinkList (on page 252) Zero or one Any URL provided in this list is passed
directly to the output document, after
being processed. The editor does not
make use of these elements.

PSXValidationRules (on page 229) Zero or one Defines validation rules that require
multiple fields to execute. They are
implemented as exits.

PSXInputTranslations (on page 228) Zero or one Defines translation rules for the
submission of data in multiple fields to
the database.

 Appendix III Appendices 251

PSXOutputTranslations (on page 228) Zero or one Defines translation rules for the retrieval
of data in multiple fields from the
database.

PSXCustomActionGroup (on page 231) Zero or more Defines the behavior of buttons and other
HTML objects in the editor.

PSXDataSet
Defines a set of fields for the content editor.

Used in: Local

Contained by: PSXContentEditor (on page 250)

Attributes:

Name Required? Value Effect
id Yes Numeric Defines an identifier for this dataset.

Elements:

Name Appearance Description
name (on page 247) Once Defines a name for this dataset.

description (on page 251) Once Free-form description of the dataset.

transactionType (on page 251) Once Not used by content editors.

PSXContentEditorPipe (on page
252)

Once Defines the set of fields for the dataset, their
location, and how they are mapped to the
output document.

PSXRequestor
Only needed if building the application containing the content editor without using the workbench.

description
Free-form description of the parent element.

Used in: Local

Contained by: PSXDataSet (on page 251), PSXContentEditorPipe (on page 252)

Attributes: None

Elements: None

transactionType
Obsolete.

252 Rhythmyx Implementing Content Editors

SectionLinkList
Defines a set of named URLs to other Rhythmyx components.

Used in: Local

Contained by: PSXContentEditor (on page 250),

Attributes: None

Elements:

Name Appearance Description
PSXUrlRequest (on page 219) One or more Defines a URL.

PSXContentEditorPipe
Defines a set of fields and the location of the values for those fields.

Used in: Local

Contained by: PSXDataset (on page 251)

Attributes:

Name Required? Value Effect
id Yes Numeric Defines an identifier for this pipe.

Elements:

Name Appearance Description
name (on page 247) Once Defines the name of the pipe.

InputDataExits (on page
247)

Once

Defines a set of Java exits to transform data
when updating the database

ResultDataExits (on page
248)

Once

Defines a set of Java exits to transform data
when querying data from the database.

description (on page 251) Once Free-form description of the pipe.

PSXContainerLocator (on
page 198)

Once Defines the set of backend database tables
where the data for the fields in the pipe are
stored.

PSXContentEditorMapper
(on page 253)

Once Defines the user interface of the fields in the
content editor.

 Appendix III Appendices 253

PSXContentEditorMapper
Defines the set of fields and any business rules that affect one field.

Used in : Local

Contained by: PSXContentEditorPipe (on page 252)

Attributes: None

Elements:

Name Appearance Description
PSXFieldSet (on page 197) Once Defines the set of fields in the content

editor.

PSXUIDefinition (on page 210) Once Defines the user interface display of the
fields in the content editor.

SystemFieldExcludes (on page
253)

Zero or one Defines the system fields not used in
this content editor.

SharedFieldIncludes (on page
254)

Zero or one Defines the shared field groups
included in the content editor.

SystemFieldExcludes
By default, all system fields are included in each content editor. Any field specified in this tag will be
excluded from the content editor.

Used in: Local

Contained by: PSXContentEditorMapper (on page 253)

Attributes: None

Elements:

Name Appearance Description
FieldRef (on page
208)

One or more Specifies a field to be excluded from the content
editor. If the field does not exist, the system returns
an error.

254 Rhythmyx Implementing Content Editors

SharedFieldIncludes
Specifies the sets of shared fields that will be included in the content editor.

Used in: Local

Contained by: PSXContentEditorMapper (on page 253)

Attributes: None

Elements:

Name Appearance Description
SharedFieldGroupName (on page
254)

One or more Specifies a shared field group to
include in the content editor. If the
group does not exist, the system returns
an error.

SharedFieldExcludes (on page
254)

One or more Specifies a shared field to exclude from
the content editor.

SharedFieldExcludes
Specifies a field in an included shared field group that will be excluded from the content editor.

Used in: Local

Contained by: SharedFieldIncludes (on page 254)

Attributes: None

Elements:

Name Appearance Description
FieldRef (on
page 208)

One or more Specifies a field to be excluded from the content editor. If the field
does not exist, the system returns an error.

Content Editor Shared Def
SharedFieldGroupName
Specifies the name of a shared field group to include in the content editor.

Used in: Local

Contained by: SharedFieldIncludes (on page 254)

Attributes: None

Elements: None

 Appendix III Appendices 255

PSXContentEditorSharedDef
Defines a set of shared field groups

Used in: Shared

Contained by: Root

Attributes: None

Elements:

Name Appearance Description
PSXSharedFieldGroup (on page
255)

One or more Defines a set of fields shared by two or more
content editors.

PSXApplicationFlow (on page
226)

Zero or one

Determines the redirection of the server after
each query. Overrides the definition in the
system definition for the specified handlers.

PSXCommandHandlerStylesheets
(see
"PSXCommandHandlerStylesheet"
on page 226)

Zero or one

Defines a set of stylesheets used by the
shared field group. Overrides the definition
in the system definition for the specified
handlers.

PSXSharedFieldGroup
Defines a collection of fields, their location, business rules associated with the fields, and optional default
values and default display properties.

Used in: Shared

Contained by: PSXContentEditorSharedDef (on page 255)

Attributes:

Name Required? Value Effect
name Yes CDATA Defines a name for this group of shared fields.

Elements:

Name Appearance Description
PSXContainerLocator (on
page 198)

Once Defines the set of backend database tables where the
data for the fields in the shared field group are stored.

PSXFieldSet (on page 197) Once Defines the set of fields in the shared field group.

PSXUIDefinition (on page
210)

Once Defines the user interface display of the fields in the
shared field group.

PSXValidationRules (on
page 229)

Zero or one Defines validation rules for multiple fields.

PSXInputTranslations (on
page 228)

Zero or one Defines translation rules for the submission of data in
multiple fields to the database.

256 Rhythmyx Implementing Content Editors

Name Appearance Description
PSXOutputTranslations (on
page 228)

Zero or one Defines translation rules for the retrieval of data in
multiple fields from the database.

 257

Index
A
ActionLinkRef • 231, 232
Activating a Content Editor Resource for Edit •

21, 23
Adding Choices to a Control • 49, 52
Adding Components to the Content Editor • 132,

142
Adding Custom Menu and Toolbar Actions •

170, 171
Adding Data Validation • 75
Adding Parameters to a Control • 47
Adding Related Content Links to a Content

Editor • 132, 139
Adding the sys_EditLive Control to a Content

Editor • 169
Adding the sys_WebImageFX Control to a

Content Editor • 178
alias (lowercase) • 234
Alias (uppercase) • 200
Anchor • 219, 220
Appendices • 129
Attaching Tables to a Content Editor • 21, 23

B
Basic Objects • 197
Best Practices

sys_EditLive • 172
sys_WebImageFX • 183

boolean • 237, 239

C
Child Editor Field Properties Dialog • 35
Child Editors • 38
Choices Tab • 67
Clearing Binary Data from a Field • 60
column • 236
columnAlias • 236, 237
CommandHandler • 218, 219, 220, 226, 227
comment • 234
Conditions • 219, 220, 221, 225
Configuring a Content Editor Control • 72

Content Assemblers and the ELJ HTML Editor •
169

Content Editor Control Dialogs • 64
Content Editor Control Reference • 47, 72, 147
Content Editor Definition Files • 6
Content Editor Field Controls • 47, 63
Content Editor Local Def • 250
Content Editor Maintenance • 21
Content Editor Maintenance Dialogs • 14
Content Editor Properties Dialog • 14
Content Editor Settings Content Item Input and

Output Translations Tabs • 18
Content Editor Settings Dialog • 15
Content Editor Settings General Tab • 16
Content Editor Settings Item Validation Tab •

19, 80
Content Editor Settings Workflow Tab • 17
Content Editor Shared Def • 254
Content Editor XML Reference • 197
Content Type • 21, 23
Continuous Conversion Example • 100, 108, 109
Control • 47
Control Events • 148
Control Header • 147
Control Tab • 65
Control Template Standards • 148
Controlling Processing of XML files • 184
Copying the Template File to the Client Word

Application • 119, 126
Create Choice Lookup Request Dialog • 54, 71
Creating a Content Editor File Based on an

Existing Definition File • 132
Creating a Content Editor from a Database Table

• 22
Creating a Content Editor from an XML File •

22
Creating a Content Editor from Scratch • 21, 114
Creating a Content Editor Resource • 21
Creating a Content Editor that Extracts Text •

92, 94
Creating a New Field • 36
Creating an Internal Lookup Query • 157, 158,

161, 189, 195
Creating the Content Editor Application • 144
Creating the Content Editor Definition • 131
Creating the Word Template File • 115, 116
Customizing ELJ Configuration • 170
Customizing the ArticleWord Content Editor •

111
Customizing the ELJ Editor • 169

258 Index

Customizing the sys_EditLive control • 169
Customizing the sys_WebImageFX Control •

181

D
Data Type • 55
Database • 200
DataLocator • 205, 207, 208, 209, 221, 236, 240,

243, 244, 245, 246
Datatype • 205, 206
date • 241, 242
Default Value of Field • 58
DefaultSelected • 214, 215
DefaultValue • 205, 207, 209
Defining Conditions for Exits, Effects, and

Cloning Processes • 25
Defining Fields • 136
Defining the Content Editor Mapper • 132, 134
Defining the Database Definition • 132, 133
Defining the Interface • 138
Deleting a Field • 38
description • 251, 252
Display Control Properties Dialog • 64
Displaying Extracted Text in a Content Editor •

95, 97
driver • 234, 235

E
Editing a Field • 38
EditLive for Java Editor • 164
Error Label • 46
ErrorInfo • 211, 218
ErrorLabel • 211, 212, 223, 226
Example

Hiding the Workflow Field in the Content
Editor System Definition • 86

Excluding System Fields • 137

F
Field Data • 33, 39
Field Maintenance • 38
Field Maintenance Dialogs • 32
Field Properties Dialog • 34
Field Sets • 134
FieldInputTranslation • 222, 223
Field-Level Validation • 19, 76
FieldOutputTranslation • 222, 223
FieldRef • 207, 208, 209, 233, 253, 254
FieldRules • 205, 222, 223, 224
FieldValidationRuleRef • 224

format • 241, 242
Format of Field • 57

H
How to Create a Word-based Content Editor •

114
How Word-based Content Editors Work • 113
Href • 219, 220

I
Implementing a Content Editor Manually • 22,

31, 131
Implementing Text Extraction in Rhythmyx • 92
Implementing the sys_WebImageFX Control

Manually • 181
Including Shared Fields • 137
InputDataExits • 247, 252
Installing New Features of Rhythmyx Word

Connector • 119, 122, 124
Introduction to Content Editors • 5
Item-Level Validation • 80

K
Key • 214, 243

L
Label • 211, 212
Label of Field • 44
Local Definition Structure • 6

M
Maintaining Content Editor Fields • 31
Maintaining Content Editor Settings • 21, 24, 80
Maintaining Content Editors • 13
Managing Dependencies in a Control • 51
Migration Example • 108
Mnemonic • 45
Modifying the Content Assembler to Display

Custom Word-based Content Editor Fields •
115, 118

Modifying the Style Sheet for Parsing Fields •
115, 116

Moving Rhythmyx Word Connector Files to the
Correct Directory • 119, 120

N
name • 243, 244, 245, 246, 247, 251, 252
Name of Field • 43
New Field Properties Dialog • 33, 114
number • 241, 242

 Index 259

O
Occurrence of Field • 56
OccurrenceSettings • 205
operator • 237, 238
Origin • 200, 201

P
password • 234, 235
Processing Related Links • 124
PSXActionLink • 211, 221, 230, 231
PSXActionLinkList • 230, 231
PSXApplicationFlow • 226, 227, 250, 255
PSXApplyWhen • 224, 225, 230
PSXBackEndColumn • 207, 236, 237, 238, 239
PSXBackEndCredential • 200, 233, 234, 235
PSXCGIVariable • 207, 238, 239, 245, 247
PSXChoices • 211, 213, 214, 215, 216, 219, 243
PSXCommandHandlerStylesheet • 226, 227,

250, 255
PSXConditional • 226, 237, 238, 239
PSXConditionalExit • 228, 229, 246
PSXConditionalRequest • 219, 220, 221, 227
PSXConditionalStyleSheet • 218, 219, 221, 227
PSXContainerLocator • 198, 199, 252, 255
PSXContentEditor • 218, 226, 250, 251, 252
PSXContentEditorMapper • 197, 210, 252, 253,

254
PSXContentEditorPipe • 198, 247, 248, 251,

252, 253
PSXContentEditorSharedDef • 226, 255
PSXControlRef • 211, 217, 218, 221
PSXCookie • 207, 238, 239, 243, 247
PSXCustomActionGroup • 211, 231, 232, 251
PSXDataSet • 250, 251, 252
PSXDateLiteral • 207, 239, 240, 241, 242
PSXDefaultSelected • 214, 215
PSXDefaultUI • 210
PSXDisplayMapper • 208, 209, 210
PSXDisplayMapping • 208, 209
PSXDisplayText • 211, 212, 216, 218, 230
PSXEntry • 211, 214, 216, 217
PSXExtensionCall • 208, 220, 246, 247
PSXExtensionCallSet • 208, 223, 226, 229, 246,

247, 248
PSXExtensionParamValue • 246, 247
PSXField • 202
PSXFieldTranslation • 212, 223, 246
PSXFieldValidationRules • 212, 222, 224, 225
PSXHTMLParameter • 207, 238, 239, 243, 247

PSXHTMLSingleParameter • 207, 244
PSXInputTranslations • 228, 229, 250, 255
PSXLiteralSet • 207, 240, 241
PSXLocation • 231, 232
PSXNullentry • 214, 215, 216
PSXNumericLiteral • 207, 239, 240, 241, 242
PSXOutputTranslations • 228, 229, 251, 256
PSXParam • 207, 217, 219, 221, 230
PSXRequestor • 251
PSXRule • 212, 218, 221, 222, 224, 225, 237,

246
PSXSearchProperties • 205, 248
PSXSharedFieldGroup • 197, 198, 210, 228,

229, 255
PSXStylesheet • 218, 219, 227
PSXTableLocator • 199, 200, 201, 233
PSXTableRef • 199, 201
PSXTableSet • 198, 199
PSXTextLiteral • 208, 238, 239, 240, 242
PSXUIDefinition • 208, 210, 253, 255
PSXUISet • 209, 210, 212, 213, 217, 218
PSXURLRequest • 214, 218, 219, 220, 221, 227,

246, 252
PSXUserContext • 208, 238, 239, 245, 247
PSXValidationRules • 229, 250, 255
PSXVisibility Rules • 222, 225
PSXXmlField • 207, 238, 239, 244, 247

Q
Quick Field Creation • 37

R
Read-only Rules • 89
ReadOnlyRules • 211, 217, 218, 225
Registering a New Content Type • 131
RemoveAction • 231, 232
ResultDataExits • 248, 252
Rule Editor • 20

S
Sample Error Page • 83
Sample Item Validation Exit • 81
Search Properties • 62
SectionLinkList • 250, 252
Selecting a Content Editor Definition Template •

131, 132
server • 234, 235
Setting a Field in a Content Editor to Read-Only

• 90

260 Index

Setting the Address in the Word Template Files •
119, 122

Shared Definition Structure • 10
SharedFieldExcludes • 254
SharedFieldGroupName • 254
SharedFieldIncludes • 253, 254
Show in Preview • 42
Show in Summary • 61
Source of Field • 40
Specifying a URL for a Control • 49
Specifying an External Request • 49
Specifying an Internal Request • 50
Specifying the URL of a Choices Application •

53
Standard Rhythmyx Controls • 149
sys_CalendarSimple • 150
sys_CheckBoxGroup • 152, 195
sys_DropDownSingle • 159, 195
sys_EditBox • 163
sys_EditLive Control • 165, 173
sys_File • 93, 176, 183
sys_HiddenInput • 185
sys_HTMLEditor • 194
sys_RadioButtons • 186, 195
sys_Table • 190
sys_TextArea • 192
sys_TextExtraction • 96, 98
sys_WebImageFX and the WebImageFX Editor

• 175
sys_WebImageFX Control • 176
SystemFieldExcludes • 253

T
tableAlias • 236
TableLocatorAlias • 200
text • 240, 242
Text Extraction • 91, 98
transactionType • 251
Transition-Dependent Field-Level Validation •

78
Treating Text as Binary • 59
Type of Field • 41

U
Understanding the System Definition • 12
Updating the Content Type Registration • 143
Updating the sys_FileWord Content Editor

Control • 119, 127
Upgrading from sys_eWebEditPro to

sys_EditLive • 173

Uploading External Binary Files into Rhythmyx
• 92, 93

URL Request Properties Dialog • 68
URL Request Properties Dialog for External

Requests • 69
URL Request Properties Dialog for Internal

Requests • 70
userID • 234, 235
Using the Value Selector • 26, 54, 70, 71, 72, 73

V
Validating the Content Editor Definition • 145
value (lowercase) • 236, 237, 239, 240, 241, 243,

244, 245, 247
Value (uppercase) • 216, 217
variable • 236, 237, 238, 240, 243, 244, 245
Visibility and Read-only Rules • 85
Visibility Rules • 86

	Introduction to Content Editors
	Content Editor Definition Files
	Local Definition Structure
	Shared Definition Structure
	Understanding the System Definition

	Maintaining Content Editors
	Content Editor Maintenance Dialogs
	Content Editor Properties Dialog
	Content Editor Settings Dialog
	Rule Editor

	Content Editor Maintenance
	Creating a Content Editor Resource
	Activating a Content Editor Resource for Edit
	Content Type
	Attaching Tables to a Content Editor
	Maintaining Content Editor Settings

	Maintaining Content Editor Fields
	Field Maintenance Dialogs
	New Field Properties Dialog
	Field Properties Dialog
	Child Editor Field Properties Dialog

	Creating a New Field
	Quick Field Creation

	Field Maintenance
	Editing a Field
	Deleting a Field
	Child Editors

	Field Data
	Source of Field
	Type of Field
	Show in Preview
	Name of Field
	Label of Field
	Mnemonic
	Error Label
	Control
	Adding Parameters to a Control
	Specifying a URL for a Control
	Managing Dependencies in a Control
	Adding Choices to a Control

	Data Type
	Occurrence of Field
	Format of Field
	Default Value of Field
	Treating Text as Binary
	Clearing Binary Data from a Field
	Show in Summary
	Search Properties

	Content Editor Field Controls
	Content Editor Control Dialogs
	Display Control Properties Dialog
	URL Request Properties Dialog
	Create Choice Lookup Request Dialog

	Configuring a Content Editor Control

	Adding Data Validation
	Field-Level Validation
	Transition-Dependent Field-Level Validation

	Item-Level Validation
	Sample Item Validation Exit
	Sample Error Page

	Visibility and Read-only Rules
	Visibility Rules
	Example: Hiding the Workflow Field in the Content Editor System Definition

	Read-only Rules
	Setting a Field in a Content Editor to Read-Only

	Text Extraction
	Implementing Text Extraction in Rhythmyx
	Uploading External Binary Files into Rhythmyx
	Creating a Content Editor that Extracts Text
	Displaying Extracted Text in a Content Editor
	sys_TextExtraction
	Continuous Conversion Example
	Migration Example

	Customizing the ArticleWord Content Editor
	How Word-based Content Editors Work
	How to Create a Word-based Content Editor
	Creating the Word Template File
	Modifying the Style Sheet for Parsing Fields
	Modifying the Content Assembler to Display Custom Word-based Content Editor Fields

	Installing New Features of Rhythmyx Word Connector
	Moving Rhythmyx Word Connector Files to the Correct Directory
	Setting the Address in the Word Template Files
	Processing Related Links
	Copying the Template File to the Client Word Application
	Updating the sys_FileWord Content Editor Control

	Appendices
	Implementing a Content Editor Manually
	Registering a New Content Type
	Creating the Content Editor Definition
	Updating the Content Type Registration
	Creating the Content Editor Application
	Validating the Content Editor Definition

	Content Editor Control Reference
	Control Header
	Control Template Standards
	Control Events
	Standard Rhythmyx Controls
	Creating an Internal Lookup Query

	Content Editor XML Reference
	Basic Objects
	Content Editor Local Def
	Content Editor Shared Def

	Index

