
Rhythmyx

Rhythmyx
Implementation

Guide
Version 6.7

 Printed on 10 June, 2009

Copyright and Licensing Statement
All intellectual property rights in the SOFTWARE and associated user documentation, implementation
documentation, and reference documentation are owned by Percussion Software or its suppliers and are
protected by United States and Canadian copyright laws, other applicable copyright laws, and
international treaty provisions. Percussion Software retains all rights, title, and interest not expressly
grated. You may either (a) make one (1) copy of the SOFTWARE solely for backup or archival purposes
or (b) transfer the SOFTWARE to a single hard disk provided you keep the original solely for backup or
archival purposes. You must reproduce and include the copyright notice on any copy made. You may not
copy the user documentation accompanying the SOFTWARE.

The information in Rhythmyx documentation is subject to change without notice and does not represent a
commitment on the part of Percussion Software, Inc. This document describes proprietary trade secrets of
Percussion Software, Inc. Licensees of this document must acknowledge the proprietary claims of
Percussion Software, Inc., in advance of receiving this document or any software to which it refers, and
must agree to hold the trade secrets in confidence for the sole use of Percussion Software, Inc.

The software contains proprietary information of Percussion Software; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information and
intellectual property contained herein is confidential between Percussion Software and the client and
remains the exclusive property of Percussion Software. If you find any problems in the documentation,
please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of Percussion Software.

Copyright © 1999-2009 Percussion Software.
All rights reserved

Licenses and Source Code
Rhythmyx uses Mozilla's JavaScript C API. See http://www.mozilla.org/source.html for the source code.
 In addition, see the Mozilla Public License (http://www.mozilla.org/source.html).

Netscape Public License

Apache Software License

IBM Public License

Lesser GNU Public License

Other Copyrights
The Rhythmyx installation application was developed using InstallShield, which is a licensed and
copyrighted by InstallShield Software Corporation.

The Sprinta JDBC driver is licensed and copyrighted by I-NET Software Corporation.

The Sentry Spellingchecker Engine Software Development Kit is licensed and copyrighted by Wintertree
Software.

The Java™ 2 Runtime Environment is licensed and copyrighted by Sun Microsystems, Inc.

The Oracle JDBC driver is licensed and copyrighted by Oracle Corporation.

http://www.mozilla.org/source.html
http://www.mozilla.org/source.html

The Sybase JDBC driver is licensed and copyrighted by Sybase, Inc.

The AS/400 driver is licensed and copyrighted by International Business Machines Corporation.

The Ephox EditLive! for Java DHTML editor is licensed and copyrighted by Ephox, Inc.

This product includes software developed by CDS Networks, Inc.

The software contains proprietary information of Percussion Software; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information and
intellectual property contained herein is confidential between Percussion Software and the client and
remains the exclusive property of Percussion Software. If you find any problems in the documentation,
please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of Percussion Software.

AuthorIT™ is a trademark of Optical Systems Corporation Ltd.

Microsoft Word, Microsoft Office, Windows®, Window 95™, Window 98™, Windows NT® and MS-
DOS™ are trademarks of the Microsoft Corporation.

This document was created using AuthorIT™, Total Document Creation (see http://www.author-it.com).

Schema documentation was created using XMLSpy™.

Percussion Software
600 Unicorn Park Drive
Woburn, MA 01801 U.S.A.
 781.438.9900
Internet E-Mail: technical_support@percussion.com
Website: http://www.percussion.com

http://www.author-it.com/

 v

Contents

About the Rhythmyx Implementation Guide 11
Rhythmyx Implementation Roadmap ...12
Implementation in the Rhythmyx Implementation Roadmap ...14

Accessing Rhythmyx Client Interfaces 15
Starting the Rhythmyx Workbench ..16
Starting the Rhythmyx Server Administrator ...18

Setting Up the Development Infrastructure 19
Creating User Logins ..21

Adding Users to the USERLOGIN Table Manually ...21
Adding Users to the USERLOGIN Table Using a Script..23

Roles ...24
Creating a Role ..24
Adding Users to a Role..28

Communities...33
Creating a New Community ..33

Workflows ..35
About the Workflow Administrator...35
Implementing the Simple Workflow ...36
Implementing the Standard Workflow ..53

Setting up the Publishing Site and Basic Navigation 67
Creating the Site Root Folder ...69
Registering the Publishing Site with Rhythmyx ...71
Creating Site Subfolders ...73
Managed Navigation for the Site ..74

Adding a NavTree to the Site Hierarchy ...74
Defining Access to Folders using Access Control Lists (ACLs) ..76

Creating Shared Fields 81
shared Field Set...83
sharedimage Field Set...84
The Rhythmyx Workbench Field and Field Set Editor...85
Creating Shared Field Sets and Configuring Fields..87

Implementing the "shared" Field Set ...87
Implementing a List Control..95
Implementing the sharedimage Field Set...98

Field Visibility, Validation, and Transform Rules..104
Adding a Field Visibility Rule...105
Adding a Field Validation Rule...108

vi Contents

Creating Slots and Templates 113
Creating Slots..120

Creating a Standard Slot ..121
Creating Templates ...125

Preparing HTML for Use in Templates...126
Implementing Snippet Templates ..127
Bindings...141
Implementing a Binary Template ..144
Complex Snippets..147
Implementing Page Templates ..153
Implementing Global Templates ...169
Implementing a Page Template Without a Global Template...183
Dispatch Templates ...187

Creating an Automated Slot..192
Creating a Simple Automated Slot ..192
Automated Slots with Variable Parameters ...198

Troubleshooting Templates ..200
Property Not Found Error..200
Macro Rendered as Plain Text...201
Invalid Argument...202
Problem Assembling Output: Value is Badly Formed ...203
Parameter Not Defined ..204
Lexical Error..205
Velocity Code in Output..206
Illegal Argument Exception: Target Template May Not be Null ...207
Problems Assembling Binary Outputs...208
Could Not Find Method <Name> for Object [null]...209
Java.lang.RuntimeException: Could not find method <name> for object <bindingfunction>.....211
Problem Parsing Expression..212
Java.lang.NullPointerException ..213

Creating Content Types 215
Summary of Content Types ..217

Generic Content Type..217
Image Content Type ..219
Event Content Type...220

Basic Content Type Creation..222
Creating the Generic Content Type Object..223
Including Shared and System Fields..227
Specifying an Icon for the Generic Content Type ...229
Making the Generic Content Type Visible to Another Community ..231
The Generic Content Editor...235
Viewing Generic Content Items ..236

Image Content Type Creation...239
Creating the Image Content Type Object ..240
Including a Local Field..241
Entering Content Editor Properties..243
The Image Content Editor ...246
Viewing Image Content Items...248
WebImageFX ..249

 Contents vii

Creating a Content Type with a Child Field Set ...250
Overriding a Shared Field..251
Adding a Child Field Set ...252
Populating a Field from an External Lookup...256
The Event Content Editor ..267
Viewing Event Content Items..270

Item Transformation, Validation, and Pre- and Post-Processing ..271
Adding Pre-processing Extensions ..272

Implementing Text Extraction ..275
Creating a Text Extraction Content Type ..275

Managed Navigation 279
How Managed Navigation Works ..281
Maintaining Managed Navigation Content Items ...285

Navigation Communities...285
Assigning a Landing Page to a Navon...285
Creating a NavImage...286
Splitting Navigation Sections ..287
Merging Navigation Items...290
Reordering a Submenu ..291
Creating and Using Keywords...291

Managed Navigation Slot ...295
Customizing Navigation Look and Feel ...296

Creating Managed Navigation Templates ...296
Customizing Navigation CSS..303
Navon Properties ...307

Configuring Publishing 309
Publishing Specifications..311
Content Explorer's Publishing DesignTab ..313
Defining Content Lists..314

Defining the Full Binary Content List ...314
Defining the Full Non-Binary Content List...318
Defining the Incremental Content List ..319

Defining Contexts and Location Schemes ..321
Creating the Publish Context and its Generic Location Scheme ...321
Common Errors in JEXL Expressions...327
Creating Additional Contexts ..328
Creating Additional Location Schemes ...328

Creating Editions ..330
Full Publish Edition...330
Incremental Edition Edition...334
Testing your Content Lists ..337

Testing Publishing of your Editions ...338
Publishing the Full Publish Edition ...338
Publishing the Incremental Edition ...340

Implementing Demand Publishing (Publish Now) ...342
Setting Up the Corporate Investments Site ...344

Copying a Site in the Content Tab...344
Copying a Site Registration...349
Copying Editions and Content Lists ..351

viii Contents

Setting Up Publishing to a Local Web Server ..353
Implementing FTP Delivery ...356

Setting up Standard FTP Delivery...356
Setting Up Secure FTP (SFTP) Delivery...359

Database Publishing in Rhythmyx 363
Database Publishing Implementation Process ..364
Database Publishing Specifications ..365
Creating a JNDI Datasource Configuration and a Database Connection..368
Creating a Database Publishing Template ..373

Defining Bindings to Publish Content Item Data ..378
Defining Bindings to Publish Local Child Data ..382
Defining Bindings to Publish Child Data from an External Repository..385
Testing and Debugging a Database Publishing Template ...389

Defining the Publishing Configurations for Database Publishing ..392

Specialized Implementations 395

Next Steps 397

Appendices 399

Setting Up SSL 401
Enabling SSL on the Rhythmyx Server on Windows...402
Enabling SSL on the Rhythmyx Server on Solaris and Linux..403
Implementing a Self-signed Certificate ..404

Binding Variables 407
System Variables ..408
System Functions..412

$rx.asmhelper ..413
$rx.codec ...417
$rx.cond...418
$rx.db...419
$rx.doc...419
$rx.ext..420
$rx.guid..421
$rx.i18n..421
$rx.keyword...422
$rx.link ..424
$rx.location..425
$rx.nav...427
$rx.pagination..428
$rx.session ...430
$rx.string..430

 Contents ix

Navon Properties ..432
Database Publishing Variables ...433
Velocity Tool Extensions..434
Assembly Items and Assembly Nodes..435

Accessing Object Properties 437

Naming Conventions 439
File and Application Naming Conventions...440
Design Object Naming Conventions ..441

Project Prefix ...441
Content Types..441
Templates ..442
Slots ...443
Communities ...443
Workflows ...444
Sites ...444
Editions and Content Lists...444
Context Variables ..444
Publishers ..445

FastForward Implementation Plan 447
Shared Field Sets ..448

shared Field Set ...448
sharedimage Field Set..449
sharedBinary Field Set Specification...450

Content Types...452
rffAutoIndex Content Type Specification ...452
rffBrief Content Type Specification ..453
rffCalendar Content Type Specification ..454
rffContacts Content Type Specification ..456
rffEvent Content Type specification..457
rffExternalLink Content Type Specification ...459
rffFile Content Type Specification ..460
rffGeneric Content Type..462
rffGenericWord Content Type Specification...463
rffHome ...465
rffImage Content Type specification ...467
rffPressRelease ..469

FastForward Workflows ...471
Implementation Plan for Simple Workflow...472
Implementation Plan for Standard Workflow..475

FastForward Publishing Configurations ...479
FastForward Sites ..479
FastForward Item Filters ...479
FastForward Content Lists...480

x Contents

Content Editor System Definition 483

Index 487

 11

C H A P T E R 1

About the Rhythmyx
Implementation Guide

The Rhythmyx Implementation Guide provides instructions for implementers developing the Rhythmyx
design objects specified in the development plan by illustrating the implementation of selected
components of the Enterprise Investments Site included in the FastForward reference implementation.

Setting Up the Development Infrastructure (see page 19) shows how to set up Roles, Communities, and
Workflows, as well as how to add users to a default Security Provider that can be used in your
development environment. For a detailed discussion of Security Providers for the production
environment, see "Implementing Security in the Production Environment" in Setting Up the Rhythmyx
Production Environment.

Setting Up a Publishing Site and Basic Navigation (see page 67) describes the process of defining a
Publishing Site in Content Explorer, including the Folder hierarchy for your Site. We also show how to
add basic Managed Navigation components to the Publishing Site.

Creating Shared Fields (see page 81) describes the process of creating Fieldsets that can be shared by
multiple Content Editors. This chapter illustrates the implementation of several different fields to
demonstrate the rich variety of options available for implementing a Content Type field.

Creating Slots and Templates (see page 113) shows the implementation of both Standard and Automated
Slots, Global Templates, and a variety of Local Templates.

Creating Content Types (see page 215) illustrates how to add fields specific to a Content Editor as well as
how to include Shared Fields but the emphasis of this chapter is a description of the editor-level options
that can be implemented (as opposed to the field-level options illustrated in detail in Creating Shared
Fields (see page 81)).

Managed Navigation (on page 279) describes how to implement the infrastructure required to publish
Managed Navigation successfully, with a special emphasis on Managed Navigation Templates.

Configuring Publishing (see page 309) describes how to set up the system infrastructure to publish
content to a Web server and how to configure publishing to a database.

12 Rhythmyx Rhythmyx Implementation Guide

Rhythmyx Implementation Roadmap
The Rhythmyx implementation roadmap follows. You may find that performing some of these steps in a
different order better serves the function of your system. You will also find yourself returning to steps
that you have already completed because it has become clear that you must revise some of the components
that you have designed.

Steps in the implementation roadmap:

1 Model and design your Web Site and the components that will make up your Rhythmyx CMS.
Create a development plan that implementers can follow when designing these components.
Most of the remaining steps instruct you to create the components designed and outlined
during this process.

2 Configure the Roles (see page 24), Communities (see page 33), Workflows (on page 35), and
users (see "Creating User Logins" on page 21) sketched out during modeling and design. As
you continue the implementation process, you will see changes that you want to make.

3 Set up the basic framework for your Site Folders and navigation hierarchy (see "Setting up
the Publishing Site and Basic Navigation" on page 67). The Site Folder structure may not be
established during modeling and design; you may begin to determine it at this time, and will
note changes that you want to make as your implementation proceeds.

4 Create your shared fields (see page 81).

5 Create your Slots (see "Creating Slots" on page 120).

6 Create your Global template (see "Implementing Global Templates" on page 169).

7 Create your Content Types (see page 215), either by modifying existing FastForward Content
Types or by creating new ones.

8 Create your local and shared Templates (see page 125).

9 Completing the set up of your Site Folders and navigation hierarchy (see "Managed
Navigation" on page 279).

10 Modify the configuration of your Roles (see page 24), Communities (see page 33),
Workflows (on page 35), and users (see "Creating User Logins" on page 21) according to any
necessary changes that you have noted during implementation.

11 Configure site folder publishing.

12 Deploy your Rhythmyx components to your integration environment, and, after testing, to
your production environment.

 Chapter 1 About the Rhythmyx Implementation Guide 13

The implementation roadmap will be represented by the following graphic at the section or chapter that
begins each step. The road map will indicate which step you have reached in the process.

Figure 1: Rhythmyx Implementation Roadmap

14 Rhythmyx Rhythmyx Implementation Guide

Implementation in the Rhythmyx
Implementation Roadmap
This document is part of the Rhythmyx development library, including:

 Getting Started with Rhythmyx
 Modeling and Design of a Rhythmyx Content Management System
 Setting Up the Rhythmyx Production Environment

A variety of documents is also available addressing specialized implementation issues.

Implementation should not occur until you have become familiar with Rhythmyx and completed modeling
and design of your implementation. The result of modeling and design should be a development plan
specifying the Rhythmyx objects in your implementation and how they interact.

Before beginning implementation, you should complete the following tasks:

 Read the Rhythmyx Concepts Guide.
This document introduces and explains the basic concepts of Rhythmyx and of Content
Management using Rhythmyx. You should read at least the portions of the Rhythmyx
Concepts Guide recommended for implementers.

 Read Getting Started with Rhythmyx.
This document guides you through a basic installation of Rhythmyx with the FastForward
implementation and includes some basic tutorial exercises to help you learn more about
Rhythmyx and how it works.

 Attend training on Rhythmyx.
Percussion Software provides training on Rhythmyx frequently throughout the year. Training
will provide more opportunities to become familiar with Rhythmyx and the implementation
process.

 Read Modeling and Design of a Rhythmyx Content Management System.
This document outlines an example modeling and design process.

 Complete a development plan.
This document provides the specification for the Rhythmyx design objects to implement for
your system.

 15

C H A P T E R 2

Accessing Rhythmyx Client
Interfaces

During implementation, the following Rhythmyx client interfaces are used:

 Rhythmyx Workbench
 Rhythmyx Server Administrator

These clients are part of the Rhythmyx Developer Tools. Rhythmyx Developer Tools are certified only on
Microsoft Windows operating systems. Use of these clients on other operating systems is not supported.

16 Rhythmyx Rhythmyx Implementation Guide

Starting the Rhythmyx Workbench
To start the Rhythmyx Workbench:

 In the Percussion Rhythmyx Program Group on your desktop, choose Rhythmyx Workbench;
or

 Open Windows Explorer, browse to your Rhythmyx installation directory and double-click on
RhythmyxWorkbench.exe.

When the Rhythmyx Workbench starts, it displays the Manage Connections dialog with a default
connection configuration. You must enter the connection data to connect to your server:

Figure 2: Connections dialog

1 The Name field specifies the name of the connection configuration. You can save named
configurations so you can re-use them quickly. The default name of the default connection
configuration is Connection. You can change this value to any alphanumeric string.

2 The Server field specifies the name or IP address where the Rhythmyx server for the
connection resides. The default value is localhost. If you are connecting to a Rhythmyx
server on a remote machine, change this value to the name or IP address of that machine.

 Chapter 2 Accessing Rhythmyx Client Interfaces 17

3 The Port field specifies the port of the Rhythmyx server for the connection. The default value
is 9992, the default Rhythmyx port. Change this value to the correct port.

4 The UID field specifies the user ID used the connection uses to log in to the Rhythmyx server.
The default value is admin1. Change this value to your Rhythmyx user name.

5 The Password field specifies the password used to log in to the Rhythmyx server with the
specified ID. Enter the password for the ID specified in the UID field.

6 The Save Password checkbox specifies whether the password entered with the connection
configuration will be saved with the configuration. If you check this box, the password will
be saved. If you also check the Make this the default connection checkbox, the Rhythmyx
Workbench will automatically attempt to log in Rhythmyx server specified in the connection
configuration using the specified ID and password. If you do not check this box, you must
enter the password and click the [Connect] button to connect to the Rhythmyx server.

7 The Make this the default connection checkbox specifies that the configuration is the default
connection configuration. When you initially start the Rhythmyx Workbench, the Manage
Connections dialog displays the default connection configuration. If you have also checked
the Save Password box, the Workbench also automatically attempts to log in to the Rhythmyx
server specified in the configuration using specified ID and password.

8 The SSL checkbox specifies that the Workbench communicates with the server over the
Secure Socket Layer using secure HTTP (HTTPS). SSL must be enabled on the server if you
enable this option. If SSL is not enabled on the server, the connection will fail. For details
about enabling SSL on the Rhythmyx server, see Setting Up SSL (on page 401).

9 The Timeout field specifies how long the Workbench will attempt to establish a connection to
the specified server before stopping and reporting a connection error. You can change this
value if you would like a different timeout period.

10 Click the [Apply] button to save the connection configuration.

11 Click the [Connect] button to connect to the Rhythmyx server.
To create a new connection configuration, click the [New] button, enter the connection configuration data,
and click the [Apply] button to save the configuration.

Connection configurations are listed by name in the Name field. Select the Configuration you want to use
to connect to the Rhythmyx server.

For details about specific Rhythmyx Workbench functionality, see the Rhythmyx Workbench online Help.

18 Rhythmyx Rhythmyx Implementation Guide

Starting the Rhythmyx Server Administrator
To start the Rhythmyx Server Administrator:

 In the Percussion Rhythmyx Program Group on your desktop, choose Rhythmyx Server
Administrator; or

 Open Windows Explorer, browse to your Rhythmyx installation directory and double-click on
RhythmyxServerAdministrator.exe.

When the Rhythmyx Server Administrator starts, it displays the Login dialog with default data.

Figure 3: Server Administrator Log In Dialog

1 The value in the Server field defaults to the name of the machine on which the Rhythmyx
Server Administrator is installed. Change this value to the name or IP address of the machine
where the Rhythmyx server resides.

2 The value in the Port field defaults to 9992, the default Rhythmyx port. Change this value to
the port of the Rhythmyx server to which you want to connect.

3 The value in the User name field defaults to admin1. Change this value to the User ID you
want to use to log in to the Rhythmyx server. This user must have administrative rights on the
Rhythmyx server or login will fail.

4 Enter the Password of the ID specified in the User name field.

5 If you want to connect to the Rhythmyx server over the Secure Socket Layer using secure
HTTP (HTTPS), check the Use SSL box. SSL must be enabled on the server if you enable this
option. If SSL is not enabled on the server, the connection will fail. For details about
enabling SSL on the Rhythmyx server, see "Enabling SSL on the Rhythmyx Server" in Setting
Up the Rhythmyx Production Environment.

6 Click the Login button to connect to the Rhythmyx server.

 19

C H A P T E R 3

Setting Up the Development
Infrastructure

The most logical way to start your implementation is by creating the user logins, Roles, Communities, and
Workflows required as part of both your development environment and your Rhythmyx implementation.
These elements provide a foundation for the rest of your development process. The development
infrastructure consists of:

 User logins, which allow you to log in to Rhythmyx with the proper access;
 Roles, which allow you to group users that require the same access to parts of the Rhythmyx

implementation, including Sites, Communities, and Workflows.
 Communities, which allow you to filter access to specific content for different users. As part

of the process of creating other design elements of your system, you will assign the design
elements to Communities, so you should have the Communities available before creating the
design elements.

 Workflows, which define the business processes for creating, maintaining, and publishing
content. You must specify the Workflows available to Content Editors when designing
Content Editors later; creating Workflows now streamlines your development process.

20 Rhythmyx Rhythmyx Implementation Guide

You do not have to create all the users, Roles, Communities, and Workflows you might need right now,
but you need to create a minimum set of these elements that allows you to begin your work. Rhythmyx
includes a number of pre-defined elements as part of the FastForward Sites Enterprise Investments (EI)
and Corporate Investments (CI). You should have already determined in your modeling and design work
which of those elements you can use as they are and which elements you need to modify or create from
scratch. Normally, later in the implementation process, you would revisit this step and complete the
configuration of your Roles, Workflows, Communities and users. Therefore, on the implementation
roadmap graphic (see page 12) shown in this document, Step 10 is "Complete configuration of Roles,
Workflows, Communities, and users".

Note: Throughout this guide, we illustrate procedures by showing how selected elements of the Enterprise
Investments (EI) Site were created. The EI elements already exist on your server if you installed
FastForward, so don't attempt to save your work if you enter the data to create these examples. The
examples are only intended to provide a model to follow as you enter the data for your own Site.

For descriptions of the type of data required in each field on the dialogs, see the online help.

The following sections describe how to:

1 Create user logins for your Rhythmyx system (see "Creating User Logins" on page 21).

2 Create the Roles you need to get started with your implementation (see "Creating a Role" on
page 24).

3 Add users to Roles (see "Adding Users to a Role" on page 28).

4 Create a Community for your Site (see "Creating a New Community" on page 33).

5 Create a Workflow, defining the process for approval and publication of content in your
Site (see "Workflows" on page 35).

 Chapter 3 Setting Up the Development Infrastructure 21

Creating User Logins
Rhythmyx is installed with default user login data used in demonstrations and training. When developing
your own implementation, however, best practice is to create your own logins. You should not use the
default logins and passwords installed with Rhythmyx in any of your working environments. For details
about the potential security problems posed by this default login data, see "Important Security
Considerations" in Installing Rhythmyx.

Rhythmyx provides several Security Providers to list and authenticate users into Rhythmyx. The default
Security Provider is the rxmaster Backend Table Security Provider. This Security Provider stores the user
names and passwords in a database table. This Security Provider is adequate for development
environments but should not be used in production environments because the passwords are stored
unencrypted.

NOTE: For details about implementing other Security Providers, see the Online Help for the Rhythmyx
Server Administrator.

The rxmaster Security Provider stores the authentication data in the table USERLOGIN. This table
contains two columns: USERID and PASSWORD. Add authentication data for each developer and each
system administrator that will interact with Rhythmyx during development.

Adding Users to the USERLOGIN Table Manually
To add users to the USERLOGIN table manually, use the Enterprise Manager tool for your RDBMS. In
this procedure, we will use MS SQL Server Enterprise Manager to add the following users:

USERNAME PASSWORD

Lisa Kerr lisakerr

Ed Wong edwong

Rita Perez ritaperez

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To add users to the USERLOGIN table:

1 Open Microsoft SQL Server Enterprise Manager.

22 Rhythmyx Rhythmyx Implementation Guide

2 Expand the rxmaster database on the development server and click on Tables to display a list
of tables in the database. The tables are listed alphabetically, so USERLOGIN is near the
bottom of the list.

Figure 4: USERLOGIN Table

3 Right-click on the USERLOGIN table and from the popup menu choose Open Table > Return
all rows.

4 Enterprise Manager displays the USERLOGIN table with its current data.

5 Click in the USERID column of the last row and enter Lisa Kerr; the click in the
PASSWORD column of the same row and enter lisakerr. Press the return key on your
keyboard to save the new entry.

 Chapter 3 Setting Up the Development Infrastructure 23

6 Repeat Step 5 to enter the authentication data for Ed Wong and Rita Perez.

Figure 5: Adding Users to the USERLOGIN Table

Adding Users to the USERLOGIN Table Using a Script
To add users to the USERLOGIN table with a script, devise a script to insert the user names into the
USERNAME column and the passwords into the PASSWORD column. For example, to add the
following example authentication data:

USERNAME PASSWORD

Lisa Kerr lisakerr

Ed Wong edwong

Rita Perez ritaperez

The script would resemble the following code:
insert into USERLOGIN (USERID, PASSWORD) values 'Lisa Kerr', 'lisakerr'
insert into USERLOGIN (USERID, PASSWORD) values 'Ed Wong', 'edwong'
insert into USERLOGIN (USERID, PASSWORD) values 'Rita Perez',
'ritaperez'

Then run the script in your RDBMS.

24 Rhythmyx Rhythmyx Implementation Guide

Roles
A Role is a collection of users with the same access to certain elements in a Rhythmyx implementation,
such as particular Sites, Communities, and Workflows. Grouping users into Roles helps administrators
more easily manage users that have the same permissions. Instead of managing the permissions for each
user, the administrator defines permissions for a Role, then assign users to the Role. Users inherit their
access rights from the Roles to which they are assigned.

All Roles in Rhythmyx are created on the server using the Server Administrator. The same procedure is
used to create all Roles regardless of how they are used.

Rhythmyx uses Roles in two ways:

 In Workflows, Roles specify which users can access content at specific points, or States, in
the Workflow. Roles used in Workflow typically have names that describe the functions that
the users in the Role typically perform in the Workflow, such as Author, Editor, or
Administrator. After creating a Role in the server, you must add it to the Workflow before
you can assign it to a State. For details about adding a Role to a Workflow, see Adding a
Role to a Workflow (on page 38) for additional details.

 In Communities, Roles define the users that belong to the Community. All users that belong
to a Community are Members of the Role assigned to that Community. Community Roles
typically have names that indicate the Community with which they are associated, such as
EI_Members or CI_Members. Once the user is assigned to the Community Role, they can
access the design elements associated with that Community.

Note that in nearly every case, a Rhythmyx user will be a member of at least two Roles: a Community
Role and one or more Workflow Roles.

Creating a Role
To illustrate the process of creating a Role, we will create the EI_Members Role. Later, we will assign
this Role to the Enterprise Investments Community to grant users access to that Community.

We will define the property sys_defaultcommunity for this Role, with a value of Enterprise Investments.
This property ensures that users will be logged in to the Enterprise Investments Community when they log
is using this Role. Note that we will create the Enterprise Investments Community in a future procedure.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

1 Start the Rhythmyx Server Administrator. For instructions, see Starting the Rhythmyx
Server Administrator (on page 18).

 Chapter 3 Setting Up the Development Infrastructure 25

2 Click the Security tab along the top of the Server Administrator dialog and then click the
Roles tab along the bottom. The Server Administrator displays the Roles tab.

Figure 6: Server Admin Roles Tab

26 Rhythmyx Rhythmyx Implementation Guide

3 Click the [Add Role] button to display the New Role dialog.

Figure 7: New Role Dialog

4 In the Name field, enter EI_Members.

 Chapter 3 Setting Up the Development Infrastructure 27

5 In the Properties box, click in the first row of the Name column and from the drop list, choose
sys_defaultCommunity. In the Value column of the same row, enter Enterprise Investments.

Figure 8: Creating the EI_Members Role

6 Click the [OK] button.

Rhythmyx creates the EI_Members Role and returns you to the Server Administrator.

28 Rhythmyx Rhythmyx Implementation Guide

Adding Users to a Role
You must add users to a Role before they can log in to Rhythmyx using that Role. The users in a Role are
referred to as Members of the Role. We need to add the users we created in Creating User Logins (see
page 21) (Lisa Kerr, Ed Wong, and Rita Perez) to the EI_Members Role we created in Creating a Role
(see page 24).

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To add the Members to the Role:

1 Open the Rhythmyx Server Administrator, click the Security tab along the top, and then click
the Roles tab along the bottom. The Server Administrator displays the Roles tab dialog.

Figure 9: Server Admin Roles Tab

 Chapter 3 Setting Up the Development Infrastructure 29

2 Open the Roles folder (under the View: Members by Role drop list) and select the
EI_Members Role. The Server Administrator displays a list of users that are Members of the
EI_Members Role.

Figure 10: Roles tab showing EI_Members by Role

30 Rhythmyx Rhythmyx Implementation Guide

3 Click the Add Member(s) button. The Server Administrator displays the "Modify member list
for: EI Members" dialog.

Figure 11: Modify Member List for: EI_Members Dialog

You can retrieve a list of members available from each Security Provider. This function,
known as cataloging, makes it easier to add new Members to the Role. Note that you can also
add new Members manually, but cataloging is generally more efficient and less error prone,
and ensures that the Members are associated with a Security Provider.

4 To catalog Members:

a) In the Provider drop list, choose the default Security Provider, rxmaster/Back-End Table.
Members were added to this Security Provider when user logins were created (see
"Creating User Logins" on page 21).

b) Click the [Catalog] button.

 Chapter 3 Setting Up the Development Infrastructure 31

 In the Cataloged Members field the Server Administrator displays a list of users cataloged

Figure 12: Modify Members dialog showing the users in the rxmaster/Back End Table Security Provider

cataloged.

32 Rhythmyx Rhythmyx Implementation Guide

5 To add Ed Wong, Lisa Kerr, and Rita Perez to the EI_Members Role, select them in the
Cataloged Members field (press the CTRL key while selecting Members in this field to multi-
select). Then click the [Add] button.

Figure 13: Modify Members dialog showing new Members added to the EI_Members Role

6 Click the [OK] button to save your changes.

NOTE: Rhythmyx automatically adds the user rxserver to the Admin Role. Since the rxserver user is
required to perform Aging Transitions (see "Implementing an Aging Transition" on page 44), you must
either use the Admin Role as the Workflow administrator Role or reassign the rxserver user to the Role
that you want to use as the Workflow administrator Role. For details, see About the Workflow
Administrator (on page 35).

 Chapter 3 Setting Up the Development Infrastructure 33

Communities
Communities streamline the content and design elements available to users by filtering the Content Types,
Templates, Workflows, Sites, and other elements available to them. Rhythmyx displays only those
elements associated with the user's Community. A user can belong to more than one Community, but can
only log in to one Community at a time. (To see all the elements controlled by Communities, go to the
Community Visibility view of the Rhythmyx Workbench.)

Typically, each Site defined in the system has at least one Community, but one Community may access
several Sites, and a Site may use more than one Community to control access to Content Items. In
FastForward, for instance, the EnterpriseInvestments and CorporateInvestments Sites each have two
Communities: one Community can access and maintain the Managed Navigation Content Items in the
Site (EI_Admin, CI_Admin) the other Community (EI_Members and CI_Members) can access and
maintain all other Content Items in the Site.

Note that Community is not the sole factor that determines whether a user can access a specific Content
Item. The user must also be in a Workflow Role that has access to the Content Item. If the user's
Workflow Role is not assigned to the current State of the Content Item, they will not be able to see or
access the Content Item.

Creating a New Community
To illustrate the process of creating a Community, we will create the Enterprise Investments Community,
with the description "Community for users that create and manage Content Items for the Enterprise
Investments Site". We will assign the EI_Members Role that we created earlier (see "Creating a Role"
on page 24) as a Role assigned to this Community.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create the Enterprise Investments Community:

1 Log in to the Rhythmyx Workbench.

2 Click on the Security Design tab.

3 In the Menu bar, choose File > New > Other.

4 On the New Wizard dialog, choose Community and click the [Next] button.

34 Rhythmyx Rhythmyx Implementation Guide

5 The Rhythmyx Workbench displays the Community wizard.

Figure 14: New Community Wizard

6 In the Community name field, enter Enterprise Investments.

7 In the Description field, enter Community for users that create and manage Content Items for
the Enterprise Investments Site.

8 In the Available Roles field select EI_Members. Click the [>] (add) button to move the
EI_Members Role to the Assigned Roles field.

9 Click the [Finish] button to complete the wizard.
As we create additional design elements later in the implementation, we will add them to the Community.

 Chapter 3 Setting Up the Development Infrastructure 35

Workflows
A Workflow defines the business process Content Items go through to be created, maintained, published
and archived. Various individuals and business departments play different roles in this process, such as
designers, writers, editors, and content approvers. These individuals are assigned to Rhythmyx Roles.
Content Items pass through a number of stages in the process, or States; States typically have names that
describe the activity occurring in the State such as Draft, Review, Publish, or Archive. Roles are assigned
to each State to provide users with the ability to access the Content Items in each State. The mechanism
used to move a Content Item from one State to another is called a Transition. Some Transitions are
manually executed by users, but others, known as Aging Transitions, are executed automatically by the
system. Manual Transitions may be restricted to specific users, or may require a set number of users to
approve the Transition before the Content Item can be Transitioned successfully.

The FastForward implementation includes two basic Workflows: Simple and Standard. You should be
able to implement most of the Workflows you require by copying and modifying these Workflows. We
will demonstrate the implementation of Workflows by illustrating the implementation of specific features
of these Workflows. To demonstrate some Rhythmyx Workflow features, we will change the
implementation plan for some features of the Standard Workflow.

About the Workflow Administrator
You must have a role that represents the Workflow administrator that you give assignee access (see
"Assigning a Role to a State" on page 40) to all States. The purpose of this role is to be able to edit and
transition content in any state and to override the workflow process. The Workflow administrator role
gives assigned users these rights, and is otherwise like any other role.

Normally only the user who has checked out a content item may edit or check in those content items. If
that user is unavailable, there is potential for a content item to get stuck in the workflow. The Workflow
administrator role assigns designated end users the power to check in content items.

In addition, you must always have a user named rxserver that has at least reader access (see "Assigning a
Role to a State" on page 40) to all States. However, in general, it is recommended that the rxserver user
be assigned to the Workflow administrator role because it enables aging transitions to occur. Therefore,
the rxserver user usually has assignee access (see "Assigning a Role to a State" on page 40) to every
State.

By default, Rhythmyx assigns rxserver to the Admin role. If you want to use a different role as a
Workflow administrator, you must assign rxserver to that role.

36 Rhythmyx Rhythmyx Implementation Guide

Implementing the Simple Workflow
To illustrate the process of implementing a Workflow from scratch, we will demonstrate the
implementation of the following selected features of the Simple Workflow:

 Draft State; we will also discuss the value of the Publishable parameter for other States
 Author Role assigned to Draft as an Assignee, and Editor assigned to Draft as a Reader
 Approve Transition as a manual Transition
 Age to Public as an Aging Transition
 Content Archived Notification

Later, we will implement the Standard Workflow to illustrate copying a Workflow and other Workflow
features.

Creating a Workflow
The first step in creating a Workflow from scratch is creating the new Workflow itself.

Each Workflow requires a Workflow Administrator. For details, see About the Workflow Administrator
(on page 35). We will assign the Admin Role as the Workflow Administrator of the Simple Workflow.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create the Simple Workflow:

1 Log in to Content Explorer and click the Workflow tab.

2 Click the New Workflow link.

Content Explorer displays the New Workflow page.

3 In the Name field, enter Simple Workflow.

4 In the Administrator field, enter Admin.

5 In the Description field, enter This workflow is assigned to all communities.

Note that the dialog includes a default value for Initial State. We will update this value after
we create the Draft State.

Figure 15: Creating the Simple Workflow Object

6 Click the [Save] button to create the Workflow.

 Chapter 3 Setting Up the Development Infrastructure 37

Associating a Workflow with a Community
When creating a Workflow, you cannot associate it with a Community because Workflows are not created
in the Rhythmyx Workbench. Instead, you must manually associate the Workflow with the Community
after creating it. Note that you can add this association at any time after initially creating the Workflow;
for example you could wait until after creating the States, Transitions, and other Workflow elements rather
than associating the Workflow with the Community immediately after creating the Workflow.

We must assign the Simple Workflow to the Enterprise Investments Community to make the Simple
Workflow available to users in that Community.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To associate the Simple Workflow with the Enterprise Investments Community:

1 Start the Rhythmyx Workbench. For instructions, see Starting the Rhythmyx Workbench (on
page 16).

2 Display the Community Visibility View. To display the Community Visibility View:

a) In the Menu bar of the Rhythmyx Workbench, choose Window > Show View > Other.

The Rhythmyx Workbench displays the Show View dialog

Figure 16: Show View dialog

b) Select Community Visibility and click the [OK] button.

38 Rhythmyx Rhythmyx Implementation Guide

c) Drag the Community Visibility View to the working area of the Rhythmyx Workbench.

3 In Community Visibility View, expand the Enterprise Investments Community, then expand
the Visible Workflows node.

4 Display the System Design View.

5 On the System Design View, select the Simple Workflow and drag it to the Visible
Workflows node of the Enterprise Investments Community in Community Design View.

Figure 17: Standard Workflow added to the Enterprise Investments Community

Adding a Role to a Workflow
If you want to associate any Roles with a Workflow, you must create them on the Rhythmyx server first.
For details about creating a Role, see "Creating a Role (on page 24)". You must associate a Role with a
Workflow before you can assign the Role to a State.

Note that you do not create new Roles in the Workflow. You can only assign a Role to a Workflow if the
Role already exists on the Rhythmyx server.

Reviewing the implementation plan for the Simple Workflow (see page 472), we see that we need to
assign the following Roles:

 Admin
 Author
 Editor
 QA
 RxPublisher (This is an internal Role used in Publishing; it must always be assigned to the

Public State to ensure that the Publisher can access the Content Items to publish)
 Web Admin

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

 Chapter 3 Setting Up the Development Infrastructure 39

To illustrate the process, we will add the Author Role to the Simple Workflow:

1 Log in to Content Explorer and click the Workflow tab.

2 Click the Simple Workflow link in the Name (ID) column.

Content Explorer displays the Simple Workflow page.

3 Click the New Roles link.

Content Explore displays the New Role page.

4 In the Name drop list, choose Author. (The drop list contains all Roles in the system not
already added to the Workflow.)

Figure 18: Adding a Role to a Workflow

5 Click Save. You have added the Role to the Workflow and can now assign the Role to a State.

Creating a Workflow State
States are the stages in a Workflow through which Content Items pass. Once you create a State, you can
assign Roles to the State, which allows users to act on Content in that State.

Reviewing the implementation plan for the Simple Workflow (see page 472), we see that it includes the
following States:

 Draft
 Pending
 Public
 Quick Edit
 Archive

One key piece of data in a State definition is the value in the Publishable field. This value determines
whether Content Items in the State are eligible to be published. Rhythmyx is shipped with the following
options for this field:

Publishable
Value

Description Example States in the Simple
Workflow

Unpublish Do not publish Content Content Items; if a Content Item
has been published, remove it from the published output

Content Items in a State with this value can be seen as
related Content Items in Previews.

Draft, Pending

Publish Publish Content Items Public

40 Rhythmyx Rhythmyx Implementation Guide

Publishable
Value

Description Example States in the Simple
Workflow

Ignore Publish the Last Public Revision of the Content Item. Quick Edit

Archive Do not publish Content Content Items; if a Content Item
has been published, remove it from the published output

Content Items in a State with this value cannot be seen
as related Content Items in Previews.

Archive

Note that it is possible to add other values to extend the Publishable functionality. For details see
"Extending Publishable States" in the Rhythmyx Technical Reference Manual.

To demonstrate the process of creating a State, we will create the Draft State. To create the Draft State:

1 Log in to Content Explorer and click the Workflow tab.

2 Click the Simple Workflow link name in the Name (ID) column.

Content Explorer displays the Simple Workflow page.

3 Click the New State link.

Content Explorer displays the New State page.

4 In the Name field, enter Draft.

5 In the Description field, enter All Content Items start here.

6 In the Sort Order field, enter 10.

7 In the Publishable drop list, choose Unpublish.

Figure 19: Creating a New Workflow State

8 Click the [Save] to save the State.

Content Explorer returns to the Simple Workflow page.

Assigning a Role to a State
You must assign a Role to a State to allow users in that Role to access and act on Content Items in that
State. Note that you must already have added the Roles to the Workflow (see page 38) before you can
assign them to a State.

 Chapter 3 Setting Up the Development Infrastructure 41

When you assign a Role to a State, you also determine whether users in the Role can act on Content Items
in the State, or can only see them. This access is defined by the value in the Assignment field, which can
take the following values:

 Assignee: users can see and act on Content Items in the State (in other words, they can open
the Content Items to edit them, or they can Transition the Content Items. You must give the
Role you define as the Workflow administrator assignee access to all States. For details, see
About the Workflow Administrator (on page 35).

 Reader: users have read-only access to Content Items in the State; the Content Items will be
listed in Content Explorer, and the users can view both the properties and the data for the
Content Items, but they cannot edit or Transition the Content Items.

 None: users cannot see or access Content Items in the State. Users may be assigned this level
of access if they need to be notified about actions taken on a Content Item, but do not
necessarily need to see the Content Items.

Typically, any user in a Role with Assignee access can act on a Content Item. In some cases, however,
you may want to assign a Content Item to a specific user. In that situation, you must allow Ad-hoc
assignment for the Role. Ad-hoc assignment allows the user Transitioning a Content Item to specify a
particular user to act on the Content Item.

Finally, the Role assignment data also determines whether users in the Role will receive Notification e-
mails sent when a Content Item Transitions to or from the State, and whether Content Items in the State
will appear in the Inbox view of users in the Role.

Let us examine the Role assignments for the Draft State from the Simple Workflow implementation plan:

Roles Assignment
Type

Ad Hoc Show in Inbox Receive Notifications?

Web Admin Assignee No No No

Admin Assignee No No No

Author Assignee No Yes No

Editor Reader No No No

Members of the Author, Admin, and Web Admin Roles will be able to both see and act on Content Items
in this State. Ad hoc assignment will be disabled, and none of the Members of these Roles will receive
Notifications. Only Members of the Author Role will see Content Items in their Inbox View. Members of
the Editor Role will be able to see Content Items in the Draft State, but will not be able to act on them.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To assign the Author Role to the Draft State:

1 Log in to Content Explorer and click the Workflow tab.

2 Click the Simple Workflow name in the Name (ID) column.

3 In the States section of the page, click Draft link.

Content Explorer displays Edit State page for the Draft State.

4 In the Assigned Roles section of the page, click the New Assigned Role link.

Content Explorer displays the New Assigned Role page.

42 Rhythmyx Rhythmyx Implementation Guide

5 In the Role drop list, choose Author.

6 In the Assignment drop list, choose Assignee.

7 In the Show in Inbox drop list, choose Yes.

8 In the Ad-hoc drop list leave Disabled selected, and in the Notify drop list leave No selected.

Figure 20: Assigning a Role to a State

9 Click the [Save] button to assign the Role.
Assigning the Admin and Web Admin Roles to the Draft State follows essentially the same procedure,
except for a change at Step 7. When assigning those Roles, the value specified for Show in Inbox is No.

When assigning the Editor Role, the value specified for the Assignment field is Reader.

Assigning an Initial State to a Workflow
For each Workflow, you must define an Initial State. The Initial State is the State Content Items enter
when they are first created.

Recall that when we created the Simple Workflow, this field had a default value. We could not assign an
Initial State until we had created a State.

If you view the Simple Workflow page now, you will notice that the value in the Initial State field is Draft,
which is the State we just created. The first State you create defaults as the value of the Initial State of the
Workflow. For that reason, good practice is to ensure that the first State you create in your Workflow is
the State specified in your implementation plan as the Initial State of the Workflow. If you follow this
practice, that State will default as the Initial State of the Workflow, and you will not need to assign the
Initial State manually.

Defining Transitions for the Simple Workflow
Transitions are the mechanism Rhythmyx Workflow uses to move Content Items from one State to
another. Each Transition defines:

 the State to which the Content Item will move;
 how the Content Item must be approved to move to a new State; and
 any automated processing that will occur during the Transition.

 Chapter 3 Setting Up the Development Infrastructure 43

Rhythmyx uses two types of Transitions:

 Manual Transitions require a user to initiate the Transition.
 Automatic Transitions, known as Aging Transitions, are initiated automatically by the system.

To illustrate a manual Transition, we will implement the Approve Transition from the Draft State to the
Pending State. To illustrate an Aging Transition, we will implement the Age to Public Transition from the
Pending State to the Public State.

Implementing a Basic Manual Transition
The Approve Transition from the Draft State is a very basic Transition:

Name To State Details Notification

Approve Pending Manual Transition, 1 Approval No

This Transition does not require any special approvals or automated processing.

Note that the procedure below assumes that you have already created the Pending State, which is the
Target State for the Transition. If you do not create the Target State before you create the Transition, you
need to come back to the Transition after you create the Target State and assign it.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To implement the Approve Transition:

1 Log in to Content Explorer and click the Workflow tab.

2 Click the Simple Workflow name in the Name (ID) column.

3 In the States section of the page, click Draft link.

Content Explorer displays Edit State page for the Draft State.

4 In the Transitions section, click the New Transitions link. (NOTE: Do not confuse this
section with the Aging Transitions section. We will create an Aging Transition later.)

Content Explorer displays the New Transition page.

5 In the Label field, enter Approve. This is the label Content Explorer will display for the
Transition.

6 In the Description field, enter Approve Item to Pending.

7 In the Trigger field, enter Approve. Rhythmyx uses the value in the Trigger field for internal
processing. Each Transition defined for a State requires a different value in this field.

8 In the To State drop list, select Pending. The values in this drop list include all States
currently defined for the Workflow.

9 The specification for this Transition requires only one approval, and it does not specify any
specific Roles for the Transition, so we will leave the default values in the Approval Type drop
list (Specified Number) and Approvals Required field (1).

44 Rhythmyx Rhythmyx Implementation Guide

10 The specification does not indicate that a comment is required, so we will leave the default
value (Optional) for the Comments field. We have not specified a Default Transition for the
Draft State, so we leave the value of the Default Transition drop list as No. Nor is automatic
processing is specified, so we leave None as the value in the Workflow Action field. Finally,
the specification does not restrict the Transition to specific Roles, so we leave All Roles as the
Value in the Transition Roles drop list.

Figure 21: Defining the Approve Transition

11 Click the [OK] button to save the Transition.

Implementing an Aging Transition
An Aging Transition is a Transition that Rhythmyx initiates automatically. An Aging Transition may be
initiated:

 once, based on reaching a specified date;
 once, after a specified period of time has passed; or
 repeatedly at specified intervals.

In this example, we will define the Age to Public Transition, which is initiated when a specified date
occurs. Later, we will implement a repeating Transition and review other Aging Scenarios.

Let's review the specification for the Age to Public Transition:

Name To State Details Notification

Age to Public Public Aging Transition, Triggered by Start
Date of Content Item

No

 Chapter 3 Setting Up the Development Infrastructure 45

This Transition automatically moves a Content Item from the Pending State to the Public State when the
Start Date of the Content Item is reached. Note that the following procedure assumes that the Public State
has already been created.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To implement the Age to Public Transition:

1 Log in to Content Explorer and click the Workflow tab.

2 Click the Simple Workflow name in the Name (ID) column.

3 In the States section of the page, click Pending link.

Content Explorer displays Edit State page for the Pending State.

4 In the Aging Transitions section, click the New Aging Transitions link. (NOTE: Do not
confuse this section with the Transitions section.)

Content Explorer displays the New Aging Transition page.

5 In the Label field, enter Age to Public. Copy the value and paste it to the Description and
Trigger fields.

6 In the To State drop list, choose Public.

7 We want to initiate the Transition on the Start Date of the Content Item, so from the Aging
Type drop list, choose System Field and from the System Field drop list choose Start Date.

8 The specification for the Age To Public Transition does not call for any automatic processing,
so leave None as the value for the Workflow Action drop list. Since we did not choose either
the Repeated or Absolute Aging Type, we do not have to enter a value in the Aging Interval
field.

Figure 22: Defining the Age to Public Transition

46 Rhythmyx Rhythmyx Implementation Guide

9 Click the [Save] button to save the Transition.

Implementing Notifications
Notifications are generic e-mail messages that the system can send automatically when a Content Item is
Transitioned. Once created, Notifications must be associated with a Transition. The data for this
association specifies which Roles will receive the Transition and additional recipients of the message.

The specification of the Public State of the Simple Workflow includes a Notification that is associated
with two Transitions: Expired and Age to Archive. The specified subject of the e-mail message is
"Content Archived", and the specified text is "A content item has transitioned into the archived state and
will be removed from your web site." In both cases, the Members of the Roles assigned to the To State
should receive the Notification message.

Creating the "Content Archived" Notification
To create the Content Archived Notification:

1 Log in to Content Explorer and click the Workflow tab.

2 Click the Simple Workflow name in the Name (ID) column.

Content Explorer displays the Simple Workflow page.

3 In the Notifications section, click the New Notifications link.

Content Explorer displays the New Notification page.

4 In the Subject field, enter Content Archived.

5 In the Description field, enter Notification for Transitions into the Archive State.

6 In the Body field, enter A content item has transitioned into the archived state and will be
removed from your web site.

Figure 23: Defining the Content Archived Notification

If you want to include any comments the user entered when making the transition, include the
macro $wfcomment.

 Chapter 3 Setting Up the Development Infrastructure 47

You can also include data from any field in the Rhythmyx Content Item by adding
${fieldname}, where fieldname is the name of the Rhythmyx field whose data you want to
include. For example:

Figure 24: Notification with $wfcomment macro and the field sys_title added

This Notification would result in the following e-mail message:

Figure 25: Notification e-mail resulting from the example Notification

7 Click the [Save] button to save the Notification.

Associating the Content Archived Notification
To assign the "Content Archived" Notification to the Expired Transition:

1 Log in to Content Explorer and click the Workflow tab.

2 Click the Simple Workflow name in the Name (ID) column.

Content Explorer displays the Simple Workflow page.

3 In the States section, click on the Public link.

Content Explorer displays the Public State Page.

4 In the Transitions section, click on the Expired link.

Content Explorer displays the Expired Transition page.

5 In the Transition Notifications section, click the New Transition Notification link.

48 Rhythmyx Rhythmyx Implementation Guide

Content Explorer displays the Transition Notification page.

6 In the Notification Subject drop list, choose Content Archived.

7 In the State Role Recipients Type drop list, leave the default option, To State Role Recipients
only.

8 The specification does not call for additional recipients, so leave the Additional Recipients and
CC fields blank.

Figure 26: Assigning the Content Archived Notification

 Chapter 3 Setting Up the Development Infrastructure 49

9 Click the [Save] button to save the Notification assignment. Content Explorer returns you to
the Expire Transition page.

Figure 27: Expire Transition with Content Archived Notification assigned

Repeat this procedure, with appropriate changes, to assign the Notification to the Age to
Archive Transition.

Specifying Workflow Properties for Notification
The final step in implementing Notifications is to define the Workflow properties for Notification.
Workflow properties are defined in the file
<Rhythmyxroot>/rxconfig/Workflow/rxworkflow.properties. You must specify
values for the following properties:

 SMTP_Host

This property defines the SMTP mail server used to e-mail Notifications. You can specify
either the name of a server or its IP address. Specifying the name of the server is generally
preferable. While the IP address of a server may change, it is unlikely that the name of the
server will change.

50 Rhythmyx Rhythmyx Implementation Guide

 MAIL_DOMAIN

This property is used to generate an originating e-mail address for the Notification if the user
making the triggering Transition does not have a value for sys_e-mail. In that case,
Rhythmyx generates an e-mail address by concatenating the user name and the value of this
property. If you do not specify a value for this property and you have any users that do not
have a value for sys_e-mail, Rhythmyx will return errors when generating Notifications.

 RXSERVER_HOST_NOTIFICATION

This property is used by the aging agent to generate links in Notification e-mails. Specify the
name or IP address of the Rhythmyx server.

 RXSERVER_PORT_NOTIFICATION

This property is used by the aging agent to generate links in Notification e-mails. Specify the
port of the Rhythmyx server.

You can optionally specify a value for the following property:

 RX_SERVER_IS_SSLLINK_NOTIFICATION

If you enable SSL on your Rhythmyx server, specify "yes" for this property to ensure that the
links in Notification e-mail messages use SSL to link to Content Items on your server. If this
property specifies any other value, or if no value is specified for this property, links to
Rhythmyx Content Items will not be generated for SSL. (NOTE: For details about setting up
SSL, see .Setting Up SSL (on page 401).

For example, assume we want to use the following values:

 SMTP host: outbound.enterpriseinvestments.com
 Mail domain: enterpriseinvestments.com
 Rhythmyx server name: Rhythmyx
 Rhythmyx installation directory: Rhythmyx
 Rhythmyx server port: 9992

For the purposes of this exercise, assume the SSL is not being used.

To specify Notification properties:

1 On the machine named Rhythmyx, start Notepad or another simple text editor.

2 Open the file C:\Rhythmyx\rxconfig\Workflow\rxworkflow.properties.

3 Specify the following values for these properties:
SMTP_Host=outbound.enterpriseinvestments.com

MAIL_DOMAIN=enterpriseinvestments.com

RXSERVER_HOST_NOTIFICATION=Rhythmyx

RXSERVER_PORT_NOTIFICATION=9992

NOTE: Not all properties in the file are illustrated here; only
those properties associated with Notification are described.

4 Save the file rxworkflow.properties.

 Chapter 3 Setting Up the Development Infrastructure 51

Implementing Quick Edit
Rhythmyx does not allow users to check out Content Items in a Public State. Therefore, a user must
Transition an item from the Public State to an editable State, then check it out, in order to edit the item.
This process can be cumbersome if the user only needs to correct a minor misspelling.

To make the process easier for the user, for any Content Item in a Public State, Rhythmyx includes the
menu option Edit > Quick Edit. This menu option provides a single action that Transitions the Content
Item from Public and checks it out to the user. Each Workflow must implement some special feature to
make the option available to users.

To implement Quick Edit in a Workflow:

1 The Workflow must include a Quick Edit State.

To make a State a Quick Edit State, in the Publishable drop list, choose Ignore. Any State
with this value in the Publishable parameter is a Quick Edit State. A Workflow can include
any number of Quick Edit States.

Figure 28: Quick Edit State Definition in Default Article Workflow

2 Define a Quick Edit Transition from the Public State to the Quick Edit State.

52 Rhythmyx Rhythmyx Implementation Guide

To make a Transition a Quick Edit Transition, the value in the Trigger field must be Quick
Edit. The server requires this value to activate the Quick Edit processing.

Figure 29: Quick Edit Transition from the Default Article Workflow

Note that each Public State can have only one Quick Edit Transition because the value of the
Trigger field for each Transition in the State must be unique. If multiple Transitions share the
same Trigger, Rhythmyx cannot determine which to execute.

A Workflow can include multiple Public States, however, and each State may have its own
Quick Edit Transition, because Transitions in different States can have the same Trigger.

3 Define a Transition from the Quick Edit State back to the Public State. In the Workflow
Actions drop list, choose sys_TouchParentItems to ensure that all related content items are
updated with the changes made during Quick Edit.

 Chapter 3 Setting Up the Development Infrastructure 53

The following graphic shows an portion of a State diagram of a Workflow in which Quick Edit has been
implemented. Note the Quick Edit State, the Quick Edit Transition to the State, and the Publish Transition
back to Public.

Figure 30: Workflow Diagram Showing Quick Edit

NOTE: If a Content Item is in a Quick Edit State, the Publishing engine publishes the Content Item’s last
public Revision. If a Content Item is linked to a Related Content Item that is currently in a Quick Edit
State, the Publishing engine publishes a link to the last public Revision of the Related Content Item.

Implementing the Standard Workflow
It is usually easier to implement a Workflow by copying an existing Workflow and modifying it rather
than implementing a completely new Workflow. Copying a Workflow avoids the need to repeat several
of the procedures when one Workflow closely matches another.

For example, the major difference between the Standard Workflow and the Simple Workflow is that the
Standard Workflow has one additional State (Review). The Review State requires Transitions to other
States, and also requires redirecting some existing Transitions.

In addition to demonstrating how to copy a Workflow, we will make some minor changes to the
specification of the Standard Workflow to illustrate additional Rhythmyx Workflow features:

 enable Ad Hoc assignment and Notification for the Author Role in the Draft State;
 require user comments on the Rework Transition from the Review State to the Draft State and

add a Notification, including user comments, to that Transition;
 add a repeating Reminder Transition to the Public State;

54 Rhythmyx Rhythmyx Implementation Guide

 change the Approve Transition from Review to Pending to require approvals from both the
Editor and Web Admin Roles; and

 implement an alternative escalating scenario for the Approve Transition.

Copying a Workflow
The Simple and Standard Workflows included with FastForward provide a basic level of Workflow
functionality based on Percussion Software experience implementing Workflows for a variety of
customers. In most cases, you can implement your Workflows by copying one of the FastForward
Workflows and modifying it to meet your needs. In this case, we will copy the Simple Workflow to create
the Standard Workflow.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To copy the Simple Workflow and create the Standard Workflow:

1 Log in to Content Explorer and click the Workflow tab.

2 Click the Copy Workflow Link.

Content Explorer displays the Copy Workflow page.

3 In the Source Workflow drop list, choose Simple Workflow.

4 In the New Workflow field, enter Standard Workflow.

Figure 31: Copying the Simple Workflow to create the Standard Workflow

5 Click the [Create] button to create the Standard Workflow.

6 Content Explorer returns you to the Workflow page.

Figure 32: Workflows after creating the copy

 Chapter 3 Setting Up the Development Infrastructure 55

Enabling Ad Hoc Assignment and Notification for a Role Assignment
Suppose that when returning a Content Item to the Draft State, we want the reviewer to be able to assign it
specifically to the user that last worked on it rather than assigning it to the Author Role generally. We
need to enable Ad Hoc assignment to allow this behavior. Later we will see how to create a Notification
that allows the assignee to see the comments added when a Content Item is sent back. To allow Members
of the Author Role to receive the Notifications, we must enable Notification for the Role.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To enable Ad Hoc assignment to the Author Role in the Draft State:

1 Log in to Content Explorer and click the Workflow tab.

2 Click the Standard Workflow name in the Name (ID) column.

3 In the States section of the page, click Draft link.

Content Explorer displays Edit State page for the Draft State.

4 In the Assigned Roles section of the page, click the Author link.

5 Content Explorer displays the Author Role Assignment page.

Figure 33: Assigning the Author Role to the Draft State with Ad Hoc Assignment enabled

6 In the Ad Hoc drop list, choose Enabled.

56 Rhythmyx Rhythmyx Implementation Guide

7 In the Notify drop list, choose Yes.

Figure 34: Assigning the Author Role to the Draft State with Notification enabled

8 Click the [Save] button to save your changes.

Content Explorer returns you to the Draft page.
Now, suppose a user wants to return a Content Item to Ed Wong, who was the last user that worked on it.
When the user initiates the Transition, Content Explorer displays the following dialog:

Figure 35: Content Explorer Transition dialog for Workflow Comments and Ad Hoc assignee

 Chapter 3 Setting Up the Development Infrastructure 57

The user could enter Ed Wong directly into the Ad hoc Assignees field, but to ensure that they got the
right name, they click the [Search] button and enter Ed in the Name Filter field:

Figure 36: Searching for users with names beginning "ed"

which returns the following results:

Figure 37: Search results returned with Ed Wong

When the user checks the box next to Ed Wong's name and clicks the [OK] button, Ed Wong is added as
the assignee. The user can also enter a comment in the Workflow Comments field. Later, we will see how
to implement a Notification that includes this comment.

Adding a New State to a Copied Workflow
Let us review the specification for the Review State from the implementation plan for the Standard
Workflow:

State: Review
 Publishable Value: Unpublish

 Sort Order: 20

 Assigned Roles

Roles Assignment
Type

Ad Hoc Show in Inbox Receive Notifications?

Web Admin Assignee No No No

Admin Assignee No No No

Author Reader No No No

QA Reader No No No

Editor Assignee No Yes Yes

58 Rhythmyx Rhythmyx Implementation Guide

 Transitions

Name To State Details Notification

Approve Pending Manual Transition, 1 Approval No

Rework Draft Manual Transition, 1 Approval No

Creating this State uses the same procedure that we used to create the Draft State for the Simple Workflow
(see page 39). We also need to update the Sort Order for the other States in the Workflow to match the
Standard Workflow specification.

Updating Transitions in a Copied Workflow
Since we have added a new State to our Workflow, we will naturally need to add some new Transitions.
We will also need to replace another transition.

Let use review the Transition specification for the Review State:

Name To State Details Notification

Approve Pending Manual Transition, 1 Approval No

Rework Draft Manual Transition, 1 Approval No
We will need to add these Transitions, using the procedure described in Implementing a Basic Manual
Transition (see page 43).

If we Preview the Standard Workflow as initially created, we notice that it includes an Approve Transition
from Draft to Pending:

Figure 38: Preview of Standard Workflow as initially copied

 Chapter 3 Setting Up the Development Infrastructure 59

The specification for the Draft State, however, calls for a Submit Transition to the Review State:

Name To State Details Notification

Submit Review Manual Transition, 1 Approval Content Into Review, to
State Role Recipients;
"A content item has
transitioned into the
review state."

Direct to Public Public Manual Transition, 1 Approval,
Admin only

No

While we could edit the name of the Approve State, we cannot edit the value in the From State. We will
have to delete the Approve Transition from the Draft State to the Pending State and create the Submit
Transition from the Draft State to the Review State.

After we make all changes, we should see the following Preview of the Standard Workflow:

Figure 39: Preview of Standard Workflow after updating Transitions

60 Rhythmyx Rhythmyx Implementation Guide

Requiring Comments on a Transition and Including User Comments on Notifications
Earlier, we decided to modify the specification of the Rework Transition from Review to Draft in two
ways:

 require user comments on the Transition; and
 add a Notification that included the user Comments.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To modify the Rework Transition:

1 Log in to Content Explorer and click the Workflow tab.

2 Click the Standard Workflow name in the Name (ID) column.

Content Explorer displays the Standard Workflow page.

3 In the States section of the page, click Review link.

Content Explorer displays Edit State page for the Review State.

4 In the Transitions section, click the Rework link.

Content Explorer displays the Edit Transition page for the Review Transition.

5 In the Comment drop list, choose Required.

6 Click the [Save] button to save the Transition.

Content Explorer returns to the Review State page.
Now, if a user tries to use the Rework Transition but does not include comments, Content Explorer will
display the following error message:

Figure 40: Workflow Comment Required warning

To include the user comments, we must define a new Notification. Let us assume that we will add a
Notification with the Subject "Content Item Requires Additional Work" and the text: "A Content Item has
been returned to Draft State for additional work with the following comment", followed by the user
comment on a new line.

 Chapter 3 Setting Up the Development Infrastructure 61

To implement this Notification, we would use the procedure illustrated in Implementing Notifications
(see page 46), but we would add the macro $wfcomment on a new line:

Figure 41: Notification with $wfcomment macro

Now, if the user assigned the Content Item to Ed Wong and included a message, Ed Wong would receive
an e-mail message.

Implementing a Repeating Transition
A common Workflow requirement is periodic reminders to members of a Role to which a Content Item is
assigned that the Content Item requires action. To accomplish this, use a Repeated Aging Transition. A
Repeated Transition occurs each time the interval specified in the Transition passes. A Notification is
associated with the Transition, reminding the user that an action is necessary.

To illustrate a Repeating Transition, we will implement a Reminder Transition that will occur daily,
sending the Reminder Notification to the recipients.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To implement the Reminder Transition:

1 Log in to Content Explorer and click the Workflow tab.

2 Click the Standard Workflow name in the Name (ID) column.

3 In the States section of the page, click Public link.

Content Explorer displays Edit State page for the Review State.

4 In the Aging Transitions section, click the New Aging Transitions link.

Content Explorer displays the New Aging Transition page.

5 In the Label field, enter Reminder Transition. Copy the value and paste it to the Description
and Trigger fields.

6 In the To State drop list, choose Public. This choice creates a "circular Transition", a
Transition that returns to the State from which it was initiated.

7 From the Aging Type drop list, choose Repeated. In the Aging Interval field, enter 1440 (the
number of minutes in a day)

62 Rhythmyx Rhythmyx Implementation Guide

8 We do not want any automatic processing, so we leave None as the value for the Workflow
Action drop list. Since we did not choose the System Field Aging Type, we can ignore the
System Field field.

Figure 42: Implementing a Repeating Transition

9 Click the [Save] button to save the Transition.

Content Explorer returns to the Public State page. Use the procedure described in
"Implementing Notifications (see page 46)" to add the Reminder Notification to the
Transition.

Implementing a Transition Requiring Approvals from Specific Roles
In some cases, you might want to implement a Transition that requires approvals from users in several
specific Roles. For example, during modeling and design, we decided that the Approve Transition from
the Review State to the Pending State will require approvals from both the Editor Role and the Web
Admin Role.

To implement this behavior:

1 Log in to Content Explorer and click the Workflow tab.

2 Click the Standard Workflow name in the Name (ID) column.

Content Explorer displays the Standard Workflow page.

3 In the States section of the page, click Review link.

Content Explorer displays Edit State page for the Review State.

4 In the Transitions section, click the Approve link.

Content Explorer displays the Edit Transition page for the Approve Transition.

5 In the Approval Type drop list, choose Each Role.

 Chapter 3 Setting Up the Development Infrastructure 63

6 In the Transition Roles section of the page, click the New Transition Roles link.

Content Explorer displays the Transition Role page.

7 In the Role drop list, choose Editor and click the [Save] button.

Figure 43: Specifying Editor as a required approver for a Transition

Content Explorer returns to the Transition Role page.

8 Repeat Steps 6 and 7 to add the Web Admin Role.

When you finish, the Approve Transition page should resemble the following screenshot:

Figure 44: Review Transition with required approvers

64 Rhythmyx Rhythmyx Implementation Guide

Implementing an Escalating Aging Scenario
Another common Workflow scenario is escalating notices. In this scenario, when a Content Item initially
Transitions into a State, the Members of the Assigned Roles are notified that the Content Item needs
action, and are typically given a specific period of time to take action. After the specified period of time,
an Aging Transition automatically Transitions the Content Item to another State. In between, one or more
additional Transitions may occur reminding the users that they need to act on the Content Item.

This scenario uses Absolute Aging Transitions. Like Repeated Aging Transitions, Absolute Aging
Transitions occur after a specified period of time has passed. Unlike Repeated Aging Transitions,
Absolute Aging Transitions occur only once.

For example, suppose we want to give Members of the Editor Role three days to act on Content Items
before we automatically move those items to Pending, with daily reminders that a Content Item needs
attention. This scenario would involve four Transitions:

1 The existing Submit Transition from Draft to Review. The only modification required here
would be to add a new Notification, which would inform the Editors that a Content Item
required attention within three days or it would automatically move to Pending. Don't forget
to enable Notification for the Editor Assignment to the Review State.

2 An Absolute Aging Transition to the Review State with an Aging Interval of 1440 minutes,
and a Notification informing the Editors that they had two days to act on the Content Item
before it automatically moved to Pending.

3 An Absolute Aging Transition to the Review State with an Aging Interval of 2880 minutes,
and a Notification informing the Editors that they had one day to act on the Content Item
before it automatically moved to pending.

4 An Absolute Aging Transition to the Pending State with an Aging Interval of 4320 minutes.

Associating a Copied Workflow with Content Types
A copied Workflow is not automatically associated with the Content Types that the original Workflow is
associated with.

If your system already includes Content Types when you copy a Workflow, and you want to associate the
copied Workflow with existing Content Types, you must associate them manually.

The following procedure assumes that you have copied a Workflow that was associated with a group of
Content Types and shows you the simplest way to associate the new Workflow with a group of Content
Types. You can associate a Workflow with a single Content Type in by dragging it onto the Allowed
Workflows folder for the Content Type in Content Design view, or by opening the Content Type's editor.

To associated a Workflow with a group of existing Content Types:

1 Open the System Design view and the Content Design view in separate windows.

2 In System Design view, expand the new Workflow to display the Allowed Content Types
folder.

3 In Content Design view, multi-select the Content Types that you want the Workflow
associated with.

4 From Content Design view drag the Content Types to the Allowed Content Types folder
under the Workflow in System Design view.

 Chapter 3 Setting Up the Development Infrastructure 65

5 If you expand Allowed Content Types under the Workflow, the Content Types are now listed.

Figure 45: A Workflow and its associated Content Types

If you use Multi-Server Manager to deploy the Workflow to another server, you must separately package
the Content Types or they will not have the associations to the Workflow on the target server.

 67

C H A P T E R 4

Setting up the Publishing Site and
Basic Navigation

The Enterprise Investments Site is comprised of two pieces:

 Site Folder and Subfolders
Define the directory structure of the published Site and the Content Items that will be
published to that Site.

 Site registration
Identifies the location where output will be published, and the data used to connect to and
pass published content to that location. Note: The Enterprise Investments registration
identifies a directory; however a Site registration may specify either a directory or an FTP
location

Rhythmyx can maintain multiple Sites. Each Site in Rhythmyx represents a complete directory structure
in the output location. Note that in some cases, what appears to a visitor browsing the Web site as one site
may be managed in Rhythmyx as two or more Site Folders.

68 Rhythmyx Rhythmyx Implementation Guide

As an implementer you will to perform the following basic Site setup tasks:

 Create the Site Root Folder and assign user access.
 Define a folder structure parallel to the intended output directory structure.
 Register your Site in Rhythmyx.
 Add a Managed Navigation NavTree Content Item to the Site.

Optionally, you might want to define Access Control Lists (ACLs) for specific Folders in the Site to
specify user access to those Folders.

 Chapter 4 Setting up the Publishing Site and Basic Navigation 69

Creating the Site Root Folder
The first step in Rhythmyx Publishing is the creation of the Site Root folder in the Content Explorer. The
Site Root folder is the hub of all the Site information to be published and is the first level of information
for the Site. A Site can have only one Site Root Folder. (But the Site Root Folder need not be an
immediate child of the //Sites node. Both //Sites/EnterpriseInvestments and
//Sites/Investments/EnterpriseInvestments are valid Site Root Folders.)

Creating the Site Root Folder is a simple procedure but the processes that follow require careful attention
to be sure the publishing environment remains consistent.

In the following exercise we will create the Site Root folder for the Enterprise Investments web site. You
already have the Enterprise Investments Site on your system as part of Rhythmyx so this is for
demonstration purposes only. You would use the information in your implementation plan as substitute for
the data used in the following exercise.

To create the Enterprise Investments Site Root folder:

1 Log in to Rhythmyx Content Explorer.

2 Right-click on the Sites node and select New Folder from the popup menu.
Content Explorer displays the Create Folder dialog.

Figure 46: Create folder dialog

3 In the Folder Name field enter EnterpriseInvestments (no spaces). This will be the name that
your Site folder will have under the Sites node in Content Explorer.

70 Rhythmyx Rhythmyx Implementation Guide

4 The Folder ID field is assigned a value by Rhythmyx when you have finished entering all of
the Site Root folder attributes and save.

5 For Folder Community accept the default value All Communities. By selecting All
Communities you ensure that users in all Communities can view the Enterprise Investments
site. You can restrict access based on Community through this drop down list. By selecting a
community from the list, only that Community is able to view the Enterprise Investments site.

6 The Location field is unavailable because the field is automatically populated when you save
the folder. It will use the Folder Name contents that you entered to name the Location.

7 The Description field is optional. If you enter a Description in here, you can change it at any
time; this field is always editable.

8 The next field is the Default Display Format field. Display Formats are used to specify the
columns to show in the user interface and the order in which to organize them. This field
contains a drop down list of available Display Formats for the Site. For this exercise select
Default.

Figure 47: Edit folder dialog

9 The next field is the Global Template field. Global Templating facilitates the reuse of page
templates. For this example, select Use Default.

10 Leave the Publish Only in Special Edition field unchecked. This is an outdated feature formerly
used for special processing.

NOTE: You can also copy an existing Site root folder, its sub-folders, and optionally, its contents. For
instructions, see the topic "Copying a Site Folder Tree" in the Content Explorer online help.

 Chapter 4 Setting up the Publishing Site and Basic Navigation 71

Registering the Publishing Site with
Rhythmyx
Register the Enterprise Investments Site to allow Rhythmyx to determine the correct location to publish
the Site’s content. For the purpose of this exercise, we will assume that the EI Global Template has
already been created. (See Implementing Global Templates (on page 169) for details about creating a
Global Template.)

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To register the Site with Rhythmyx:

1 Log in to Rhythmyx Content Explorer and click the Publishing Design tab.

2 Click on the Sites node.

The Edit and View pane displays the Site List.

3 In the Menu bar, choose Action > Create Site.

The Edit and View pane displays the Site Editor.

4 The Site Name defaults to Site_0. Change this value to EnterpriseInvestments.

5 The Description field provides a description of your Site; it is optional. Enter the following
description: Represents the Enterprise Investments web site.

6 The Rhythmyx Path field specifies the Rhythmyx Site Folder that will be treated as the root
Folder when the Site is published. Enter //Sites/EnterpriseInvestments. Note that the Folder
name (or path) you specify must exist. If you did not create the Site Folder in Content
Explorer before starting this procedure, Content Explorer will return an error when you

attempt to save the Site registration. You can use the button to browse the //Sites node
in the Navigation pane of Content Explorer to find the root location you want to use for the
Site. The Site root Folder need not be a direct child of the Sites Folder. In other words, you
can specify either //Sites/EnterpriseInvestments and
//Sites/Investments/EnterpriseInvestments. Both are valid root paths.

7 In the Global Template drop list, choose EI GLobal Template.

8 The Published URL field is optional It defines the URL entered in a browser to access the Site
when it is published. Since we plan to use the File System Delivery Type for this Site, enter
http://127.0.0.1:9992/EI_Home. (If you want to use one of the FTP Delivery Types for this
Site, you would enter the virtual directory where the Site output would be published.)

9 The Published Path field is optional. It specifies the directory location where the files will be
saved. For this example enter the following: ../EI_Home.war. If you specify a relative path,
the location is relative to the application server root (<Rhythmyx
root>\AppServer\server\rx\deploy\rxapp.ear); so the path ../EI_Home actually goes to the
directory <Rhythmyx root>\AppServer\server\rx\deploy\EI_Home.

72 Rhythmyx Rhythmyx Implementation Guide

10 In the Menu bar, click Save.
The Enterprise Investments site is now registered in Rhythmyx.

The Enterprise Investments Site registration resembles the following graphic:

Figure 48: Enterprise Investments Site Registration

 Chapter 4 Setting up the Publishing Site and Basic Navigation 73

Creating Site Subfolders
Site subfolders are merely folders within folders but they contain all of the information and files for your
Site. Folders can only be added by a user with administrative rights in the system. Subfolders can also
contain additional subfolders within them. This establishes the hierarchy within the Site. The Site folder
structure in the graphic below details the Enterprise Investments Site.

Figure 49: Site hierarchy in Content Explorer

With the creation of subfolders complete, you can start to set up the navigation for the Site. To review the
steps for creating a new folder refer to Getting Started with Rhythmyx.

74 Rhythmyx Rhythmyx Implementation Guide

Managed Navigation for the Site
Rhythmyx includes a Managed Navigation system, which makes it easy to add navigation elements to a
web page. Managed Navigation is added once you have created the Site Root Folder and any Site
Subfolders

Once implemented, Managed Navigation is fairly simple to use. It is based on three navigation Content
Types:

 NavTree - Similar to a Navon, the NavTree Item resides at the root of a Site. A NavTree
initiates the propagation of Navons to every subfolder in the Site. The NavTree Item is
generally linked to the Site's Home Page Item.

 Navon - Items used to create navigation menus including breadcrumbs, bottom, side, and top
navigation, and site maps. Each Navon should be linked to a Content Item not used for
Navigation (such as a Generic Page or a Category Content Item).

 NavImage - Images used by Navons to replace text links for navigation elements. NavImages
are also used by several Content Types to provide Image Links.

See the chapter Managed Navigation (on page 279) for more information on implementing and
configuring Managed Navigation.

Adding a NavTree to the Site Hierarchy
Adding a NavTree to the root of the Site hierarchy is the first step in setting up Managed Navigation.

The NavTree is responsible for propagating Navons through the Site’s subfolders. Once you create the
NavTree, Rhythmyx automatically propagates Navons for each subfolder you create in your Site. Note
that a Site folder cannot already have a NavTree Content Item. If a Site root folder already contains a
NavTree Content Item, Rhythmyx will return an error when you try to add the new NavTree Content Item
to the Repository.

To create the NavTree:

1 Log into Content Explorer under the Admin Community for your Site. (You must have
Admin access to create a NavTree.)

2 On the Content Tab, locate the Site root folder where you want to create the NavTree.
Note that this folder cannot already have a NavTree Content Item.

 Chapter 4 Setting up the Publishing Site and Basic Navigation 75

3 Right click the Site root folder and choose New Item > NavTree from the popup menu.
Content Explorer displays the Edit Content dialog.

Figure 50: NavTree Content Editor

4 In the System Title field enter Enterprise Investments Internet Root. This field represents the
title of the Content Item within the Repository.

5 In the Title field enter Enterprise Investments Home. This field represents the name of the
NavTree that the end user will see in Content Explorer.

6 Leave the Start Date field with the default selection. This field represents the date the NavTree
was created.

7 In the Theme field drop down list select Enterprise Investments. This field represents the
NavTheme that the Site will use. For now you will ignore this field.

8 Check "Yes” in the Propagate field. This will add Navons to any existing Site Subfolders.
Rhythmyx will always add Navons to new Site Subfolders you add after adding a NavTree to
a Site Root Folder.

9 Leave the Image Selector field with None selected. For now you will ignore this field.

10 Leave the Variable Selector field with None selected. For now you will ignore this field.

11 Click the [Insert] button.
This will add the NavTree to the Repository.

12 Close the Content Editor.

76 Rhythmyx Rhythmyx Implementation Guide

Defining Access to Folders using Access
Control Lists (ACLs)
When a folder is created all users in Rhythmyx have access to the folder by default, defined by the
“Everyone” category. The Security tab is where you can set permissions for particular Roles, Users and
Communities.

To specify Site access for particular users or Roles, use the Security tab in the Edit Folder dialog. You can
also define Access Control Lists (ACLs) for specific Folders within the Site to specify user access to those
specific Folders.

Figure 51: Edit folder

In the following procedure you are going to add EI_Admin_Members and EI_Members to the list of roles
that have access to the Site. We are also going to grant the Editor Role Admin permissions for the Briefs
folder.

Note: the example we use in the following exercise is already included as part of your FastForward
Rhythmyx installation. Use your implementation plan or statement of work to determine the data to use.

To specify access to a specific folder:

1 Log in to Rhythmyx Content Explorer.

2 Expand the Sites node in the Content tab, then right-click the Briefs folder.

 Chapter 4 Setting up the Publishing Site and Basic Navigation 77

3 In the popup, select Properties.
The Edit Folder dialog opens.

4 Click the Security tab of the Edit Folder dialog. This tab is where you can add or remove
Users and/or Groups from the Enterprise Investments site. Under the Names heading you will
see all users and groups that are currently assigned folder rights.

Figure 52: Edit folder dialog

By default, the Everyone role is issued Read permissions. This allows users not previously
defined to have rights to see the contents of the new Folder. The user who created the Folder
is issued Read, Write, and Admin rights to the Folder. In this example that user is admin1.
This allows the creator to see the contents of the Folder, add Items to the Folder, and change
the Folder's properties. In addition, the Admin permission allows the user to delete the folder.

The fields in the Permissions section are described below.
Read – allows the user to view the folder and its contents. Does not allow users to move, copy,
or add contents to the folder. Lets users copy but not move contents in the folder to another
folder. Lets users view folder properties.
Write – allows the user to view, copy, and move the folder, but not delete it, and to view, copy,
move, or add contents. Lets users view folder properties..
Admin – grants the user all Write permissions and enables them to delete folders, sub-folders
and to edit all folder and sub-folder properties.

Permissions can be added for additional users or Roles. Click the [Add] button and select the
additional user or Role you want to add to the Folder ACL using the Folder ACL List Entry
Editor.

78 Rhythmyx Rhythmyx Implementation Guide

5 Add the EI_Admin_Members role and the EI_Members role to the list of Current ACL
Entries on the right. To do this press the Ctrl + Shift keys to select both EI_Admin_Members
and EI_Members from the Cataloged Entries list. Once both are selected, click the [Add]
button.

6 Now you need to assign permissions to the newly added roles. Select EI_Admin_Members
and notice that the Read checkbox is selected. The Read checkbox is selected by default for all
roles you add to the Current ACL Entries list. Select the Write and Admin checkboxes for
EI_Admin_Members.

7 Click [Add] on the Edit Folder dialog.
The Folder ACL List Entry Editor opens.

Figure 53: Folder ACL

8 In the "Show catalog of" section, select Roles. The options indicate how you would like to
assign access:

Roles – lists all system-defined Roles in the Cataloged Entries section of the dialog

Users - lists all system-defined users in the Cataloged Entries section of the dialog

Virtual – displays the groups Everyone and Folder Community. Everyone includes all users
logged into the system. Folder Community includes all members of the folder creator’s
Community.

 Chapter 4 Setting up the Publishing Site and Basic Navigation 79

9 Depending on which selection you make, the list of system-defined Roles, Users, or Virtual
appears in the Cataloged Entries column.

10 Select Editor from the Cataloged Entries column and click [Add].

11 Click [OK].
The Edit Folder dialog now displays the newly added Editor Role.

Figure 54: Edit folder dialog with Editor Role added to ACL

12 Select Editor from the Names column and select the Admin checkbox.
Note that the Editor will have Admin permission for the Briefs folder only.

13 Click [OK] to save the new permission setting.

80 Rhythmyx Rhythmyx Implementation Guide

Folder permissions can be assigned on all folder levels. A user could have Write permission
on a specific subfolder but not the folder as a whole. For example, the user could have Write
access to the CalendarOfEvents folder but not the Press Releases folder. However, if the user
is granted Write permission on the AboutEnterpriseInvestments folder, that permission will
carry over to any subfolders contained therein.

Figure 55: Folder visibility

 81

C H A P T E R 5

Creating Shared Fields

Rhythmyx Content Types include three types of fields:

 System - System fields are supplied by Rhythmyx and can appear in all Content Types. An
example of a system field is the Community associated with a Content Item,
sys_communityid.

 Shared - Shared fields are user-defined. You can include them in multiple Content Types.
Shared fields are always defined as field sets in shared field objects. In general, several shared
field sets are included in a single shared field set object.

 Local - Local fields are user-defined for a specific Content Type. You must open a Content
Type object to view its local fields.

This section emphasizes shared fields rather than system or local fields because you do not create system
fields, and local field creation is discussed in the chapter Creating Content Types (see page 215). Since
the details of creating local fields are identical to the details of creating shared fields, when the Creating
Content Types chapter instructs you to enter properties for a field, it refers back to this chapter.

When you create a Content Type, you have the option of including fields from shared field sets.
Therefore, shared field sets allow you to create common fields once, but use them in multiple Content
Types. Shared fields also enable you to create modified versions of system fields (you should not modify
system fields directly since they are overwritten on upgrade).

82 Rhythmyx Rhythmyx Implementation Guide

Store your shared fields in separate sets that group them by their function to make it easier for other
implementers to determine which shared fields they need when they create a new Content Type.
FastForward includes three shared field sets. Each shared field set includes fields that tend to be used
repeatedly in Content Types for a similar function. For example, the shared Field Set includes general
fields, such as displaytitle and body, while the sharedimage field set includes fields for uploading images,
such as img1_filename and img1_type.

The topics in this chapter walk you through the procedure of using the Workbench's Field and Field Sets
Editor to create FastForward's shared (see page 83) and sharedimage (see page 84) field sets. We have
chosen to demonstrate these two field sets because most Rhythmyx systems include general fields that are
used repeatedly and include one or more Content Types that upload images. The FastForward shared and
sharedimage field sets model the types of fields you might want to include in a general shared field set
and in a shared field set for uploading images.

Since the process of creating a shared field set involves creating a group of fields, the topics will also
focus on the creation of certain fields, and why certain values are chosen for the properties in these fields.
FastForward also includes two other shared field sets: sharedbinary and sharedcategory. For instructional
purposes, we are not demonstrating how to create these two field sets in this chapter, but you may read
more about them in the Rhythmyx Technical Reference.

Note that you already have the FastForward shared and sharedimage field sets on your system as part of
Rhythmyx so we are using them in this chapter for demonstration purposes only. You would use the
information in your implementation plan as a substitute for the data used in the instructions in this chapter
(or copy our steps but use different names for the field sets).

 Chapter 5 Creating Shared Fields 83

shared Field Set
The shared field set includes fields that are used by many Content Types. Most Content Types include a
body field to store their main body content, and a field that stores a summary of the content. In the shared
field set, these fields are body and callout. Most Content Types also require a title that is displayed to
users. In the shared field set, this field is displaytitle. Some Content Types require a file name that is used
when the Content Item is published. In the shared field set, this field is filename. By default, this field is
hidden from users because it is used for processing and not displayed in Content Items.

In the sample CMS that we are creating, all Content Items should be able to store search words and
phrases that are not part of any displayed fields in the Content Item. In the shared field set the fields
keywords and description store words and phrases for searching on.

The webdavowner field stores the user who has a lock on the Content Item when content is uploaded
through Rhythmyx's WebDAV feature. By default, this field, which is used for processing only, is hidden
from users. It is included in the shared field set so that if implementers choose to enable WebDAV in their
system, this required field is readily available in Content Types. However, this document will not cover
WebDAV. See the document Implementing WebDAV in Rhythmyx for information about WebDAV.

The shared Field Set specification (see page 448) outlines the shared field set. The sections of the
chapter that follow will explain the purpose of the information included and will refer to this table.

In this chapter, to demonstrate ways of adding default values, we give some fields in the shared field set
default values that are not included in FastForward. We give the displaytitle field the default value
sys_title and the body field the default value "Enter body here". In addition, we add a doc_type field to the
shared field set. The doc_type field is not included in FastForward's shared field set, but here we include
it to demonstrate how to implement a list control. The specification for our doc_type field is:

Name Label Description Control Data Type/
Storage Size

doc_type Type The type of document. sys_DropDownList text/50

84 Rhythmyx Rhythmyx Implementation Guide

sharedimage Field Set
The sharedimage field set includes fields that are used by Content Types that upload image files. Two
versions of the same fields are included, one for uploading full size images (the full size image fields are
prefixed with img1) and one for uploading a thumbnail graphic of the same image (the thumbnail image
fields are prefixed with img2). Since many systems do not require the thumbnail image, the img2 fields
are hidden by default.

Both versions include a field for uploading the image. The upload fields are named img1 and img2. img1
and img2 use the sys_file control, which is necessary for uploading a binary file into a field in Rhythmyx.
As the topics that follow explain, the sys_file control uploads the image file and lets the img1 and img2
fields store its binary data.

The img1_filename, img1_size, img1_type, img1_ext and img2_filename, img2_size, img2_type, and
img2_ext fields in the sharedimage field set store metadata that is automatically extracted when the
sys_file control uploads the img1 or img2 file. Other metadata is also extracted, and you can include fields
for storing these values in your shared image upload field set if you want to include them in Content
Types in your system.

In FastForward most of the metadata fields are extracted by the sys_imageInfoExtractor extension which
is included as a Java extension (a Java plugin) when the sys_file control is used. This extension requires
certain names for fields in which it stores data. See the topic sys_imageInfoExtractor in the Rhythmyx
Technical Reference for more information about this extension. See the topic The Image Content Editor
(see page 246) in the chapter Creating Content Types for more information about using
sys_imageInfoExtractor with a Content Type.

The sharedimage Field Set specification (see page 449) outlines the sharedimage field set that you will
use and is included for your reference. The sections of the chapter that follow will explain the purpose of
the information included and will refer back to this table

 Chapter 5 Creating Shared Fields 85

The Rhythmyx Workbench Field and Field
Set Editor
All fields, shared, local, and system, are viewed in the Rhythmyx Workbench's Fields and Field Sets
Editor. Shared and Local fields are also created and edited in the Fields and Field Sets Editor, and System
fields are edited in the Fields and Field Sets Editor. Depending on what type of field you are working
with, the Fields and Field Sets Editor is accessed differently and appears with slight variations. The
following graphic shows the version of the Fields and Field Sets Editor for shared fields.

Figure 56: Field and Field Set Editor

86 Rhythmyx Rhythmyx Implementation Guide

You can access shared, system, and local fields in the Rhythmyx Workbench's Content Design view.

Figure 57: Content Design view

Shared field objects and the names of the shared field sets that they include are listed under the Shared
Fields folder in Content Design view. To create a shared field object, right-click on the shared field folder
and choose New > Shared Field File.

To view or modify the system field set, right-click on the Content Types Global Configuration folder and
choose Open. The Fields and Field Sets Editor appears as it does for editing shared fields, except the
delete button for deleting fields and the control for adding an additional field set are not present.

To create or edit a local field, create or open the Content Type that includes (or will include) the field. The
Fields and Field Sets Editor appears within the Content Type Editor. To view the Fields and Field Sets
Editor in this format, see Creating Content Types (see page 215).

For complete information about the Fields and Field Sets Editor for each type of field or field set, see the
Rhythmyx Workbench Online Help.

 Chapter 5 Creating Shared Fields 87

Creating Shared Field Sets and Configuring
Fields
This section covers the procedure for entering the shared and sharedimage field sets. As we enter the
field sets, we will demonstrate how to choose values for some of the individual properties and fields
within specific fields in the field set. Since the process for choosing values for local field properties is
identical to the process for choosing values for shared fields, the information given here applies to local
fields as well as shared fields.

The topics in this section will explain the purpose of the fields' properties and discuss the impact of
choosing different values for these properties. The topic Implementing the "shared" Field Set (see page
87) will cover common choices for frequently used fields, while the topic Implementing the
"sharedimage" Field Set (see page 98) will discuss the required and optional fields for uploading images.
The topic Implementing the "sharedimage" Field Set will also emphasize how other field properties may
require special values because the data stored is binary.

In all topics, some emphasis will be given to choosing the appropriate control for displaying the field in a
Content Editor. The topic Implementing a List Control (see page 95) is included to demonstrate the
implementation of a list type control.

Note: You cannot create a shared field object that includes shared and sharedimage field sets, since they
already exist in FastForward. Instead, create a similar shared field object and shared fields sets that are
included in your implementation plan or copy our steps but give your components different names.

You must also give your shared fields different names than those used in FastForward. In general, we
recommend giving fields in different shared field sets different names.

Implementing the "shared" Field Set
This topic shows you how to enter the shared Field Set by focusing on the entry of the displaytitle and
body fields. Walking through the process of filling in these fields demonstrates some important concepts,
such as the difference between the Name and Label fields, the functions of the sys_EditBox and
sys_EditLive controls, the use of a Default Value for a field and the function of the Mnemonic. At the end of
the topic, you are instructed to enter the remaining fields in the shared field set, using the information you
have learned in this topic and the details provided in the shared Field Set specification (see page 448).
You are also introduced to the process of entering the next shared field set in the shared field set object
into the editor.

Note: You cannot create a shared field object named rxs_ct_shared.xml, since it already exists in
FastForward. Instead, create a shared field object included in your implementation plan or copy our
steps but give your shared field object a different name. In addition, give your shared field set a different
name than the FastForward name used in the following procedure.

To create the shared field set:

1 Open the Rhythmyx Workbench's Content Design view. In the Menu bar, choose File > New
> Other.

88 Rhythmyx Rhythmyx Implementation Guide

The Select a Wizard dialog opens.

2 Choose Shared Field File and click [Next].

The New Shared Field Definition File wizard opens.

3 In Shared Definition file name, enter rxs_ct_shared.xml. This is the name of the file that will
hold the shared field set definitions. In the Rhythmyx Workbench, we refer to the file as an
object.

4 In First group name, enter shared.

Figure 58: New Shared Field Definition File wizard

5 Click [Finish].

 Chapter 5 Creating Shared Fields 89

The Shared Field Definition File editor opens in the Workbench. At this point, it includes a
single tab, which holds the shared field set. The Fields table for the shared field set is empty.

Figure 59: Shared Field Definition File editor

6 Begin by entering the displaytitle field.

d) In the Fields table, under Name enter displaytitle. displaytitle is the internal name that
Rhythmyx uses for the field. It is best practice to enter all field names in lower case. The
editor automatically enters Displaytitle: under Label because the internal Name is
frequently used as the Label. However, in this case change the entry under Label to Title:.

90 Rhythmyx Rhythmyx Implementation Guide

e) In the Fields table, under Control choose sys_EditBox. The sys_EditBox control presents
a one-line box in which users can enter unformatted data. Since the displaytitle should be
no more than one line of plain text, the sys_EditBox control is appropriate.

f) Click on the displaytitle row to display Field Properties in the lower part of the editor.

g) In Data Type, leave the default value of text.

h) In Storage size, change the default value of 50 to 512. Although it is unlikely that anyone
will enter a value that uses this amount of space, it takes into account foreign characters
that may require additional bytes and databases that may require extra space to store
characters.

i) In the FastForward version of this field, a Default value is not entered. Here, we will enter
a value that will cause the displaytitle field to automatically take the value of the Content
Type's sys_title field.

o Click [...] beside Default value.

o Choose Other value.

The Value Selector dialog opens.

o In the Type drop list, choose Single HTML Parameter. System fields appear in
the Choices list.

o In the Choices list, choose sys_title. If it does not appear, type it into the Value
field.

Figure 60: Value Selector

o Click [OK]. The Value Selector closes and PSXSingleHtmlParameter/sys_title
appears in the Default value field.

 Chapter 5 Creating Shared Fields 91

For more information about the Value Selector, see the Selecting Values topic in the
Rhythmyx Workbench Online Help.

Leave Mime type mode as Default, to allow the system to specify the mime type for the
field. Note that when you choose Default, Mime type value remains grayed out. The
system chooses Mime type value based on the Data Type and Storage Size. In this case
Mime type value is text/plain.

j) Leave Enable searching for this field checked because users will want to search on the title
of the field.

k) Check Required to make displaytitle a required field.

l) Choose a Mnemonic value (a letter) from the drop list. The user must enter ALT + [value]
to access the field without using the mouse. The drop list only displays letters that have
not yet been used for the shared field set. Since the name of the field will appear as Label
to users, choose L.

m) Leave Show in preview checked so that users can see the displaytitle field when they
preview templates of Content Items that contain it.

n) Do not click the [All Properties] button. You will leave the default values of the
properties that it accesses.

7 Next enter the body field.

a) In the next row in the Fields table, under Name enter body. body is the internal name that
Rhythmyx uses for the field.

The editor automatically enters Body: under Label because the internal Name is frequently
used as the display label that appears next to the field in Content Editors.

b) Under Control choose sys_EditLive. The sys_EditLive control uses Ephox's EditLive for
Java (ELJ) rich text editor. No additional configuration of this control is necessary unless
you want to customize it.

92 Rhythmyx Rhythmyx Implementation Guide

The sys_EditLive control is appropriate for the body field because the control allows users
to enter information in a WYSIWYG format but stores it in HTML markup, which
enables text formatting and insertion of graphics and links. Use of the sys_EditLive
control assumes that a browser, which can interpret the markup, will display the
information to users when it is published. See the Rhythmyx Technical Reference for
information about customizing the sys_EditLive control.(for details about the standard

features and Rhythmyx features of ELJ, click the help button in the control). This
control works with all browsers that Rhythmyx supports.

Figure 61: sys_EditLive control

Note that any number of fields in a Content Type can use the sys_EditLive editor, but
when users view the fields in the content editor, only one sys_EditLive field can be active
and edited at a time. When a user first opens a content editor including a sys_EditLive
field, the user must click on the field to enable it. Once the user clicks on another
sys_EditLive field, the first sys_EditLive field becomes disabled.

c) Click on the row for the body field to make sure you are displaying the Field Properties for
this field.

d) In Data Type, leave the default value of text. Note: If you are using the sys_EditLive
control, you must use the Data Type text.

e) In Storage size, change the value to max. The value max indicates that the storage size is
the maximum allowed for the text Data Type in the database used. (max is an appropriate
choice for the body field because users may enter relatively large amounts of text in the
field.)

f) In the FastForward version of this field, a Default value is not entered. Here, we will enter
the Default value Enter body here. Since Enter body here is a literal value, you can type it
into the edit box provided. You could also click [...] to choose a user-defined function to
enter the default value or enter the value with a method chosen from the Value Selector.

Leave Mime type mode as Default, to allow the system to specify the mime type for the
field. Note that when you choose Default, Mime type value remains grayed out. The
system chooses Mime type value based on the Data Type and Storage Size. In this case
Mime type value is text/html.

g) Leave Enable searching for this field checked.

h) Leave Required unchecked, so that Body is not a required field.

 Chapter 5 Creating Shared Fields 93

i) In Mnemonic, choose a key for accessing the field. Since the body field begins with the
letter B, choose B.

j) Leave Show in preview checked so that users can see the body field when they preview
Content Item templates that contain it.

The editor filled in for the body field appears as:

Figure 62: Fields and Field Sets Editor

8 Click [All Properties] to enter additional properties for the body field in the Field Properties
dialog.

9 In the Field Properties dialog several fields are filled in from the previous screen; we will not
modify these fields. The following steps refer to fields that appear only on this screen.

a) Leave the default value of Body: in Error label. Rhythmyx will concatenate any validation
errors with the Error Label value and display them in the Content Editor.

94 Rhythmyx Rhythmyx Implementation Guide

b) Show in summary is disabled because the body field is not a child field set. Note: Shared
fields cannot be child field sets; Show in summary is included because the dialog is also
used for local fields.

c) Show "clear field" check box in binary control is disabled because the body field does not
use a control that uploads binary files.

d) Include in full text multi-field query is checked to allow users to use the body field when
creating searches in Content Explorer.

The Field Properties dialog filled in for the body field appears as:

Figure 63: Body Field Properties

10 Click [OK] to return to the Fields and Field Sets editor.

 Chapter 5 Creating Shared Fields 95

11 Proceed to enter the filename, keywords, callout, description, and webdavowner fields. Use
the values indicated in the shared Field Set specification (see page 448). Leave the default
values for any properties that are unspecified or use the information given to you in this topic.
In this exercise, do not add visibility rules for hiding the filename and webdavowner fields as
specified; the next section will demonstrate how to do this in the topic Adding a Field
Visibility Rule (see page 105).

12 Add the doc_type field in the next available row. Follow the instructions in the topic
Implementing a List Control (see page 95).

13 When you have finished adding the shared field set, you can add the sharedimage field set as
an additional field set within the same shared field set file. To add the sharedimage field set,
you fill in the information under Field Set at the bottom of the Fields and Field Sets editor.

See Implementing the "sharedimage" Field Set (see page 98) for information about entering
this field set.

Note: Quick field creation is the process of entering a name for a field and pressing <Enter> and then
using the default properties that the Workbench enters. You always have the option of editing the default
properties and adding others. The default properties entered are:

Label: Same as Name, except capitalized and followed with ":"

Control: sys_EditBox

Source (if field is created in a Content Type): Local

Data type: Text

Storage size: 50

Mime type mode: Default

Enable searching for this field: unchecked

Required: unchecked

Show in preview: checked

Implementing a List Control
To illustrate the process of implementing a list control, we will show how to enter and configure the
doc_type field in our shared field set. Here, we repeat the doc_type field's specifications:

Name Label Description Control Data Type/
Storage Size

Default Value

doc_type Type The type of document. sys_DropDownList text 50

96 Rhythmyx Rhythmyx Implementation Guide

After entering the webdavowner shared field in the Fields and Field Sets editor, complete the following
steps to enter the doc_type field.

1 In the Fields table, under Name enter doc_type. doc_type is the internal name that Rhythmyx
uses for the field. (NOTE: Field names cannot include an initial lowercase letter followed by
an uppercase letter. In other words aBcd is not a valid field name. abcd or ABCD would be
valid field names.) The editor automatically enters doc_type under Label because the internal
Name is frequently used as the Label. Change the Label value to Type.

2 Under control choose sys_DropDownSingle. The sys_DropDownSingle control lets users
choose one option from a list of predefined choices:

Figure 64: sys_DropDownSingle control

3 After choosing the drop-down single control, you must populate it with choices that a user can
choose from.

a) Click [...] beside the control to open the Control Properties editor.

b) Click the Choices tab.

c) To use a Keyword's choices in a drop down control, leave the Use a Keyword radio button
selected and choose FF Press Release Type in the Name drop list.

The Default values box displays the Keyword Choices.

Note: See the section Creating and Using Keywords (see page 291) in the chapter
Creating Content Types for information about setting up your own Keywords and
Keyword Choices through the New Keyword Wizard and Keyword Editor.

d) Initially display a dummy value in the drop list so that users are forced to choose a type.
At the bottom of the dialog check Display text for empty entry. Enter Choose type in Label
and Value. In Include, choose Only if Null, and in Sort order, choose First. This instructs a
Content Editor to display Choose type as the first value in the drop list if no value is
chosen for Type.

 Chapter 5 Creating Shared Fields 97

For more information about filling in the Display Control Properties dialog including
additional methods of entering choices, see Maintaining the Control Associated with a
Field topic in the Rhythmyx Workbench Online Help.

Figure 65: Control Properties dialog, Choices tab

98 Rhythmyx Rhythmyx Implementation Guide

e) Click [OK] to return to the Fields and Field Sets editor.

4 In Data Type, leave text.

5 The Storage size for text is automatically set to 50.

6 Since you set the default value for the field when you filled in the values for the drop down
control, do not enter a Default value.

Leave Mime type mode as Default. The system chooses Mime type value based on the Data
Type and Storage Size. In this case Mime type value is text/plain.

7 Leave Enable Searching for this field checked, since users may want to search on the value of
the region.

8 Leave Required as unchecked.

9 Since users will have to manually choose a value for the field, choose the Mnemonic T from
the drop list.

10 Check Show in preview so that users can see the region in any preview templates that include
it.

11 Leave the default values of the properties in the Field Properties dialog (do not click the [All
Properties] button).

You have completed adding the shared field set to your shared.xml shared field object.

12 To add the sharedimage field set to the rxs_ct_shared.xml shared field object, do not close the
editor. Instead proceed to the next section, Implementing the "sharedimage" Field Set (see
page 98).

Implementing the sharedimage Field Set
The sharedimage field set is part of the same shared field set object as the shared field set. To begin
entering it, fill in the information at the bottom of the Fields and Field Sets editor for the shared Field Set,
and click the [Add Field Set] button. The editor adds a tab for the sharedimage field set. When you are
complete, Rhythmyx adds the sharedimage field set to the same object as the shared field set and displays
the two shared field sets under the same object node in the Content Design view in the Rhythmyx
Workbench.

This topic focuses on the entry of the img1 and img1_filename fields to demonstrate when to use the
sys_File control, and the options Treat Data as Binary, and Show "clear field" checkbox in binary control as
well as others. After entering the img1 and img1_filename fields, you are instructed to enter the remainder
of the fields in the sharedimage field set.

Note that we change the following default FastForward values from the img1_filename field:

 We change the control from sys_EditBox to sys_HiddenInput to demonstrate use of the
sys_HiddenInput control. The sys_HiddenInput control is usually only used if we never want
users to see a field; if we may want them to see the field under some conditions, we apply a
visibility rule, which is explained in the topic Adding Field Visibility Rules (see page 105).

 We uncheck Show in Preview to demonstrate why we would choose not to show a field in
previews.

 Chapter 5 Creating Shared Fields 99

To enter the sharedimage field set:

1 After you enter the shared field set in the Fields and Field Sets Editor, under Field Set, enter
sharedimage in Field set name and click [Add Field Set].

Figure 66: Adding another field set

The editor adds a tab for the sharedimage field set and makes it the visible tab.

Figure 67: sharedimage field set

100 Rhythmyx Rhythmyx Implementation Guide

2 Now enter the fields specified in the topic sharedimage Field Set specification (see page
449).

3 Begin by entering the img1 field.

a) In the Fields table, under Name enter img1. img1 is the internal name that Rhythmyx uses
for the field. The editor automatically enters Img1: under Label. Change this to Image:.

b) Under Control choose sys_File. The sys_File control lets users enter or browse for a file
that it uploads and stores. The control includes buttons for clearing the uploaded file or
previewing it.

Figure 68: sys_File control

In FastForward, Content Types with fields that use the sys_File control include the
sys_FileInfo and sys_ImageInfoExtractor extensions as pre-processing extensions. A pre-
processing extension is a java plugin that performs processing on a Content Item before a
request is made to the database and before the Content Item is created. sys_FileInfo and
sys_ImageInfoExtractor return various types of metadata that can be stored in other fields
in the Content Item. In FastForward these metadata fields are included in the sharedimage
field set.

In our example, we will only use sys_ImageInfoExtractor because it encompasses the
functionality of sys_FileInfo. The metadata that it extracts includes file name, Mime type,
character length, file encoding, file height, and file width. It returns the values to field
names formed by combining the file name field (in this case, img1 and img2) with
specific suffixes. For example, img1_type stores the Mime type. See sharedimage Field
Set Specification (see page 449) for names of fields that these extensions use in the
sharedimage field set.

Note that sys_ImageInfoExtractor must store extracted information into the img1_type
and img1_ext fields in order to display the uploaded image in the browser, so you should
always include these fields. You can choose to store other extracted values in the Content
Editor if they are useful for users to see or for processing. See sys_ImageInfoExtractor in
the Rhythmyx Technical Reference for more information and other metadata it can store.

c) In Data Type, choose binary. All files are stored as binary data.

The value in Storage size is automatically set to max.

d) In Storage size, leave max. max represents the largest amount of space that the database
used will allocate for binary data.

e) Leave the Mime type mode, which is automatically filled in, as Default. In this case, the
system sees that the Data Type is binary, and maps the uploaded file's extension to a mime
type. The system fills the Mime type value with the mime type that mapped to the
extension.

f) By default, Enable searching for this field is checked. Uncheck this field because it is
unlikely that the binary data that makes up the image will include any text that a user is
searching for, and indexing the data and then searching uses unnecessary resources.

g) Check Required since the image file is the main content of the item.

h) Choose the Mnemonic I for the field.

 Chapter 5 Creating Shared Fields 101

i) Leave Show in Preview checked, so that the image is visible in previews.

j) Click [All Properties] to set additional properties for the field.

The Field Properties dialog opens.

k) Leave the default value of Image: in Error label. Rhythmyx will concatenate any
validation errors with the Error Label value and display them in the Content Editor.

l) Leave Show 'clear field' checkbox in binary control checked. It indicates that before the
binary data is copied into the database the database column is cleared of all other data.
This is important, because if a value is currently stored for the image in the database, and
a user chooses to replace it with no data, unless Rhythmyx specifically knows to clear the
original data, it may remain, and the field will not be empty as desired.

m) The search fields are unchecked because you unchecked Enable searching for this field in
the previous dialog. Leave the search fields unchecked.

n) Click [OK] to return to the Field and Field Sets editor.

4 Now enter the img1_filename field.

a) In the Fields table, under Name enter img1_filename. The editor automatically enters
Img1_filename: under Label. Change this to Image file name:.

b) Users do not enter the file name; the sys_file control inserts it into the field. Although you
want to save the filename for internal processing you do not want to display it to users
because you do not want them to include it in content item output. Choose the
sys_HiddenInput control. This control stores the field invisibly in the Content Editor for
processing or insertion in the database. By default it is a text field of 50 characters.

c) In Data Type, leave text. All filenames should be stored as text.

d) In Storage size, change the default value of 50 to 512. Although it is unlikely that anyone
will enter a file name that uses this amount of space, it takes into account foreign
characters that may require additional bytes and databases that may require extra space to
store characters.

e) Leave the Mime type mode, which is automatically filled in, as Default. The system sets
the Mime type value according to the Data Type and Storage size. In this case, Rhythmyx
automatically fills the Mime type value with text/plain but does not display it on the screen.

f) Leave Enable searching for this field checked, since advanced users may want to search on
the filename of the image.

g) Check Required since the field should be filled automatically when the file is uploaded.

h) Do not enter a Mnemonic. This field is filled in automatically when the file is uploaded
and the user does not have to access the field. Note: Since the file is automatically
uploaded and its properties are filled in by extensions, the only fields in the sharedimage
field set that require mnemonics are img1, img_alt, and img2, because users manually
enter these fields.

i) Leave Show in Preview checked so that the field is shown in previews of Templates of
Content Items of this type.

j) Do not click [All Properties] because we will leave the default values on the Field
Properties dialog.

102 Rhythmyx Rhythmyx Implementation Guide

5 Proceed to fill in the other fields in the sharedimage Field set. Use the data specified in the
sharedimage Field Set Specification (see page 449) and apply any information explained in
this topic. In this exercise, do not add visibility rules for the fields specified as hidden in the
table in the sharedimage Field Set Specification; the next section will demonstrate how to do
this in the topic Adding a Field Visibility Rule (see page 105). When you are done, the table
should appear as:

Figure 69: Shared Image Field Set

6 Click X in the rxs_ct_shared.xml tab to close the editor.

A pop-up opens and prompts you to save your changes.

7 Click [Yes].

 Chapter 5 Creating Shared Fields 103

The rxs_ct_shared.xml object appears in the Rhythmyx Workbench's Content Design View
as:

Figure 70: test_shared.xml now appears in Content Design view

You may have to refresh the Shared Fields folder to view the new object.

104 Rhythmyx Rhythmyx Implementation Guide

Field Visibility, Validation, and Transform
Rules
You can access editors for adding visibility, validation, read only, and transformation rules to fields at the
bottom of the Field Properties dialog.

Figure 71: Field Properties dialog

The table below explains the functions of these rules and give some examples. The following topic,
Adding a Field Visibility Rule (see page 105), shows you how to add one of these rules.

 Chapter 5 Creating Shared Fields 105

Type of rule Function Examples

read only Specify under what conditions a field
is read only in a Content Editor.

A read only rule could specify that a
Workflow field is read only when the item
is being modified because if the Workflow
were changed the item could become
inaccessible.

visibility Specify under what conditions a field
is visible in a Content Editor.

A visibility rule could specify that a field
that stores an uploaded file size is only
visible to users in Administrator
Communities since it is only used in
internal processing.

A visibility rule could specify that a file
type field is visible to a user when the
Content Item is being created but not when
it is being edited.

validation Specify what values for a field are
valid.

A validation rule could specify that a value
must be entered in a field.

A validation rule could specify that a credit
card number entered in a field must be
located in an external database.

transformation Input transformation rules specify
how Rhythmyx should modify a
value for storage in the repository
when it is entered in a Content Editor
field.

NOTE: An input transformation rule
should always be preceded by a
validation rule to ensure that the data
submitted is valid for the
transformation.

Output transformation rules specify
how Rhythmyx should modify a
value when it retrieves it from the
repository to display in a Content
Editor field.

An input transformation rule could specify
that a date entered in the format Month dd,
yyyy is stored in the format yyyymmdd.

An output transformation rule could
specify that a two-digit state value stored
in the repository is displayed as the full
state name in the Content Editor.

Adding a Field Visibility Rule
Adding various types of rules to fields uses similar dialogs and similar procedures. To access one of the
dialogs, click the corresponding button in the Field Properties dialog. You can also access the
[Validation] button in the Fields and Field Sets Editor (see page 85).

Here, you will add a two-part visibility rule to the img1_size field. You will add the first part of the rule by
setting up a conditional statement, and you will add the second part of the rule by specifying an extension.

To add a visibility rule to the img1_size field:

1 In Content Design view, in the Shared Fields folder, open your shared field object.

106 Rhythmyx Rhythmyx Implementation Guide

2 Access the tab for the sharedimage field set.

3 Click the row for img1_size and click [All Properties].

The Field Properties dialog opens.

4 Click [Visibility].

The Field Visibility editor opens.

5 Since you are entering a new rule rather than editing an existing one, fill in the information at
the bottom of the screen under Rule Details.

6 In the Rule type drop list, choose Conditional.

In the table that appears below the Rule type drop list, enter a rule that hides the img1_size field
for users in all Communities except Enterprise Investments Admin. The rule that you enter
specifies when the field is visible, not when it is invisible.

Since the Enterprise Investments Admin Community ID is 1001(confirm that this is true in
your system), the rule you enter in the table is sys_community = 1001. Note that under Value
you can use the Value Selector to choose a method for entering a value. See Selecting Values in
the Rhythmyx Workbench Online Help for information about using the Value Selector.

Figure 72: Rule Details

7 Click [Add].

 Chapter 5 Creating Shared Fields 107

The rule appears in the Visibility table in the upper portion of the editor.

Figure 73: Rule added in Field Visibility Rule dialog

8 If you were finished entering visibility rules, you would click [OK] to apply the rule.
However, since you want to add a second statement to the rule select the next row.

9 Return to the Rule Details section of the editor and choose Create Only in the Rule type drop
list.

This rule that makes the field visible when the Content Item is being created, but hides it
when the Content Item is being edited.

10 Click [Add].

The rule appears in the Visibility table below the first rule that you entered.

11 If AND is not already entered in the Boolean column beside the first rule, enter AND.

The entire visibility rule now states that the img1_size field is visible if the Community is
Enterprise Investments Admin and the Content Item is being created rather than edited.

Figure 74: Completed Visibility Rule

12 Click [OK].

The rule is associated with the shared img1_size field and applies in any Content Editor that
uses the field unless the rule is overridden within the Content Editor.

13 Click [OK] to close the Field Visibility editor and return to the sharedimage tab.

108 Rhythmyx Rhythmyx Implementation Guide

The most common field visibility rule is a simple conditional statement that is never true. This rule hides
the field that it applies to. It is usually used for fields that you may choose to make visible in the future,
because you can easily make the field visible by removing the rule. Now you will apply the rule to one of
your img1_ext field which does not use a sys_HiddenInput control, but that your specification lists as
hidden. (Use sys_HiddenInput controls to hide fields that you do not intend to make visible in the future.)

To apply a simple conditional to the img1_ext field:

1 Open the Field Visibility editor for the img1_ext field.

2 In Rule Type, choose Conditional.

3 In the table that appears below the Rule type drop list enter 1 = 2. You can enter 1 and 2
directly into the cells.

4 Click [Add].

The rule appears in the upper portion of the editor.

Figure 75: Visibility Rule for hiding a field

5 Click [OK].

The Field Visibility editor closes.

6 Click [OK] in the Field Properties dialog.

7 Now, return to your shared and sharedimage shared field sets and add this simple visibility
rule to all of the other fields that you want hidden by default. They are listed in the following
table.

shared sharedimage

filename all of the fields beginning with img2_

webdavowner

Adding a Field Validation Rule
In this topic, we will add a common validation rule to the img_alt field. The rule checks that the field,
which is required, is entered. If not, it displays a message in the Content Editor stating that the field must
be entered.

 Chapter 5 Creating Shared Fields 109

To add a validation rule to the img_alt field:

1 In your shared field object's tab for the sharedimage field set, click the row for img_alt and
click [Validation].

The Field Validation dialog opens.

Figure 76: Field Validation Editor

2 No prerequisite conditions must be met before the validation occurs, so do not press the
[Prerequisites] button.

110 Rhythmyx Rhythmyx Implementation Guide

3 Check Required since this is the validation that you want to use.

4 In the Validation Failure Message text box, enter The Image Alt Text field is required.

Figure 77: Field Validation dialog

5 Click [OK].

The Field Validation dialog closes.

 Chapter 5 Creating Shared Fields 111

Now when a Content Item with the img_alt field is entered or updated, the field validation
rule will check if the field is entered. If not, it will display the message The Image Alt Text
field is required in the Content Editor and prevent further processing until the field is filled in.

6 Click [X] in the tab of the shared field editor, and click [Yes] when you are prompted to save
your changes.

A dialog appears warning you that changes will not take effect until you restart the Rhythmyx
server.

Figure 78: Shared field changes dialog

7 Click [OK].

The shared field editor closes.

Note that we also could have demonstrated adding a field transformation rule, and the steps would have
been similar to those for adding a field visibility or validation rule; the dialog lets you add standard
transforms or extensions for setting up a rule. For more details about adding each type of rule, see the
sections Maintaining Field Validations, Maintaining Field Visibility Rules, and Maintaining Field
Transforms in the Rhythmyx Workbench Online Help.

 113

C H A P T E R 6

Creating Slots and Templates

After you complete development of your Shared Fields, the recommended implementation roadmap calls
for the development of new Slots, and then Global Templates. The process of implementing all
Templates, whether Global, shared, or local, is very similar, so this chapter includes a comprehensive
discussion of the process of implementing Templates. When following the roadmap, however, local and
shared Templates are typically implemented after implementing Content Types (see page 215); therefore,
although the roadmap in the graphic above goes directly from creating the Global Template to creating
local and shared Templates, it is only reflecting our procedure in this document.

During modeling and design, at least one Template is specified for each Content Type defined in the
implementation. The Template specifies

 Which fields will be published; and
 The formatting that will be applied to the published field data.

For example, the rffSnTitleCalloutLink Template of the Generic Page Content Type includes the
following fields:

 Title
 Callout

114 Rhythmyx Rhythmyx Implementation Guide

The Template formatting makes the text of the Title field bold, and adds a hypertext link to a full-page
version of the Content Item. The Callout text is formatted as body text with rich formatting.

Figure 79: Generating an output using the rffSnTitleCalloutLink Template

The rffPgGeneric Template of the Generic Content Type, on the other hand, includes these fields:

 Title
 Body

 Chapter 6 Creating Slots and Templates 115

The Template again formats the Title Field as bold text, this time with a serif font. The Body field is
formatted as body text with rich formatting.

Figure 80: Generating an output using the rffPgGeneric Template

116 Rhythmyx Rhythmyx Implementation Guide

In addition to the data derived from the Content Item being formatted, a Template may include one or
more Slots, or spaces where formatted data from other Content Items may be added. For example, the
rffPgGeneric Template includes a List Slot, which allows users to add links to other Content Items that are
related to the topic of the page:

Figure 81: Page Template showing the List Slot

 Chapter 6 Creating Slots and Templates 117

Each of the Content Items in a Slot is formatted by a Template. In this case, the Content Items in the Slot
are formatted using the rffSnTitleCalloutLink we saw illustrated above. Thus, Templates and Slots are
recursive: a Template contains Slots, which themselves specify the Templates to use when formatting the
Content Items in the Slot. The Templates in the Slot may themselves include Slots, and so forth.

The Workbench illustrates the relationships among these objects. For example, in Content View, you can
list the Templates associated with each Content Type. For each Template, you can show the list of
associated Slots. Note, however, that the View does not show the complete recursion. The Slots used in
the Templates are not listed.

Figure 82: Content View showing Templates

118 Rhythmyx Rhythmyx Implementation Guide

In the Assembly View, you can list the Content Types associated with each Slot. For each Content Type,
you can list the Templates that can be used to format Content Items for the Slot.

Figure 83: Assembly View Showing Slots, Content Types, and Templates

 Chapter 6 Creating Slots and Templates 119

When viewing Templates, you can list the Slots contained by that Template, and the Content Types that
can be formatted using that Template.

Figure 84: Assembly View showing Templates, associated Content Types and Slots

120 Rhythmyx Rhythmyx Implementation Guide

Creating Slots
In Rhythmyx, Slots fall into one of two general categories: Regular and Inline. In addition to the standard
Regular Slot, most implementations include two particular variations of Regular Slots:

 Automated Slots
 Managed Navigation Slots

Managed Navigation Slots are discussed in detail in the chapter Managed Navigation (on page 279).

Inline Slots require special implementation assistance from Percussion Software’s Professional Services
Organization. They are not discussed in this document.

A Slot definition includes two key pieces of information:

 the Content Finder
A Content Finder is a Rhythmyx extension that is used to populate a Slot with Related
Content. Four Content Finders are available by default:

 sys_RelationshipContentFinder

This is a standard Content Finder. It returns the Content Items added to the Slot by
the user.

 sys_AutoSlotContentFinder

This Content Finder is used to populate the Slot with an automatically-generated list
of Content Items. For additional details see Creating an Automated Slot (on page
192).

 sys_ManagedNavContentFinder

This Content Finder is used to populate the Managed Navigation Slot.

 sys_LegacyAutoSlotContentFinder

This Content Finder is used in systems upgraded from Rhythmyx Version 5.7 or
earlier. It uses the Automated Content Query Resources used to populate Automated
Index Content Items in those Versions of Rhythmyx.

 sys_TranslationContentFinder

This Content Finder is used to populate a Slot with links to Content Items associated
in a Translation Relationship with the Content Item being assembled.

You can also implement additional Content Finders if none for the default Content Finders
meet your needs. For details, see the Rhythmyx Technical Reference Manual.

 Allowed Content
The list of Allowed Content specifies which Content Types can be assigned to the Slot, and
which Templates can be used to format Content Items of each Type in the Slot.

 Chapter 6 Creating Slots and Templates 121

Creating a Standard Slot
To illustrate the process of creating a Slot, we will implement the rffImageLink Slot used in FastForward.
This Slot is relatively simple but still includes all of the important characteristics of a Regular Slot. The
rffImageLink Slot has the following characteristics:

Slot Name Description Allowed Relationship
Type

Content Finder

rffSnImageLink General Slot for Images Active Assembly sys_RelationshipContentFinder

The following Content Types are allowed in this Slot:

Content Type Template

Image rffSnImage

Image rffSnImageandTitle

Note: You cannot create a Slot named rffImageLink, since it already exists in FastForward. Instead,
create a similar Slot included in your implementation plan or copy our steps but give your Slot a different
name.

To create the Image Link Slot:

1 In the Rhythmyx Workbench, from the Menu bar, choose File > New > Slot.

The Rhythmyx Workbench displays the New Slot wizard.

Figure 85: Slot Wizard

122 Rhythmyx Rhythmyx Implementation Guide

2 In the Slot name field, enter rffImageLink. This is the name defined for the Slot in the
Implementation Plan. It is used for internal processing.

3 Note that the value rffImageLink is automatically entered in the Label field. The value in the
Label field is displayed in Content Explorer, so we want a more user-friendly value. Change
the value to Image Link.

4 In the Description field, enter General Slot for Images. This is the description for the Slot
defined in the Implementation Plan.

5 In the Content finder drop list, choose sys_RelationshipContentFinder. This is the Content
Finder we selected when developing the Implementation Plan. It is a generic Content Finder
that retrieves content for the Slot. For additional information about Content Finders, see
Creating Sots (see "Creating Slots" on page 120).

Figure 86: Slot wizard with the rffImageLink Slot defined

6 The New Slot wizard does not provide us with fields to add any more data, so click the
[Finish] button.

 Chapter 6 Creating Slots and Templates 123

Rhythmyx saves the Slot and displays it in the Slot editor.

Figure 87: rffImageLink in Slot editor

7 We are implementing a Regular Slot, so leave the Regular radio button selected. Similarly,
leave ActiveAssembly as the value in the Allowed relationship types field.

The options for the Allowed relationship types field include all Relationship Types in the
Active Assembly Category. In the default installation of Rhythmyx, that Category includes
the Active Assembly and Active Assembly – Mandatory Relationships. The Active Assembly
– Mandatory Relationship includes processing that forces both Content Items in the
Relationship to go Public together. That behavior is not required for this Slot.

8 To specify the Content Types and Templates for this Slot:

a) Click in the first row of the Content Type column and select rffCalendar from the drop
list.

b) In the same row of the Template column, click and select rffSnTitleLink from the drop list.

124 Rhythmyx Rhythmyx Implementation Guide

c) Repeat Steps a and b to add the remaining Allowed content to the Slot.

9 In the Button bar of the Rhythmyx Workbench, click the save button.

Controlling the Contents of a Slot
In some cases, you may want more control over the contents of a Slot. For example:

 You might want to specify the Template used to format related Content Items in the Slot. In
that case, specify a value in the template parameter for the sys_RelationshipContentFinder.
The Template you specify for the Slot will override the Template specified by the Active
Assembly Relationship associating the related Content Item to the Slot.

 You might want to control the maximum number of related Content Items in the Slot. In that
case, specify the maximum number of related Content Items in the max_results parameter.
Only the number of results specified will be added to the Slot. Usually, this parameter is used
with the order_by parameter to specify how the related Content Items will be ordered in the
Slot. If the order_by parameter is not specified, the results will be order as defined in the Slot.

 You might want to control the order of the Content Items in the Slot. In that case, use the
order_by parameter. Specify the field you want to use to order the related Content Items in
the field, and whether the order should ascending (asc) or descending (desc). For example, in
the rffCategoryItems Slot, the order_by parameter is specified as rx:displaytitle
asc, which orders the related Content Items in ascending order alphabetically by the value in
the Display Title field. If you wanted to see the most recently created Content Items, you
would define the parameter as rx:createdate dsc. Use the max_results parameter to
control the number of results included in the published output.

 Chapter 6 Creating Slots and Templates 125

Creating Templates
A Template is a Rhythmyx object that defines the assembly processing to generate an output. Three types
of Templates are available:

 Local Templates specify the formatting specific to each Content Item.
 Global Templates provide a wrapper around the Local Template that controls the formatting

and provides navigation for the pages. Global Templates provide a shortcut to applying
consistent formatting when many different pages on the site share the same look and feel.

Figure 88: Global Template and Local Template

 Database Publishing Templates define the configuration to publish to a database. (NOTE:
For additional information on Database Publishing Templates, see Database Publishing in
Rhythmyx (on page 363).)

When defining a Template, you must specify the plugin used to assemble the content in the Slot.

126 Rhythmyx Rhythmyx Implementation Guide

The following plugins are shipped with Rhythmyx:

 Velocity
Velocity Templates are used to format text outputs using the Velocity templating technology.
Velocity Templates specify the fields that will be included in the published output, and define
the formatting for the output. For additional detail about the Velocity technology, see
http://jakarta.apache.org/velocity, or one of the following books:

 Joseph D. Gradecki and Jim Cole, Mastering Apache Velocity

 Rob Harrop, Pro Jakarta Velocity
 Binary

Binary Templates are used to extract binary data, such as image files, from the Repository.
 Dispatch

Dispatch Templates are used to calculate which Template will be used to format an output if
multiple Templates are available.

Both Binary Templates and Dispatch Templates require data bindings. Velocity Templates can also use
bindings. For additional information about bindings, see Bindings (see page 141).

Local Templates fall into two categories, Page Templates and Snippet Templates. A Page Template
outputs a fully formatted HTML page, while a Snippet Template outputs a portion of a page, which is
rolled up with other Snippets in the Page output. Note that a Snippet Template may include Slots
containing additional Snippets.

When creating a Snippet that uses fields defined locally for a specific Content Type, You should designate
the Snippet as a Type-specific Template of that Content Type. This designation ensures that when you
delete the specified Content Type, Rhythmyx will delete the Template automatically. This designation is
not required by the Rhythmyx server, but it will save you additional manual cleanup when you delete the
Content Type.

The recommended roadmap calls for the following implementation order:

1 Slots

2 Global Templates

3 Content Types

4 Local Templates
The general procedures for implementing both Global and Local Templates are essentially the same,
however, differing only in specific details. We will begin by implementing Snippet Templates, which are
the simplest form of Templates, moving on later to Page Templates and finally to Global Templates.

Preparing HTML for Use in Templates
Before creating any Template, you should clean up the HTML to match best practice. Snippet Templates
must be well-formed, although it is good practice to ensure that all of your templates are well-formed (and
HTML used for splitting in legacy applications must be well-formed regardless of whether it is for a
Snippet or a Page).

http://jakarta.apache.org/velocity

 Chapter 6 Creating Slots and Templates 127

Local Template HTML should not include DOCTYPE declarations. Global Templates can include
DOCTYPE declarations, but it is the responsibility of the implementer to ensure that the HTML meets the
criteria for the DOCTYPE specified. If you specify a DOCTYPE of XHTML 1.0 Transitional, for
example, you must ensure that the HTML formatting meets the requirements of XHTML 1.0 Transitional.
Rhythmyx does not validate your markup to ensure that it matches the specified DOCTYPE.

In a Snippet Template, all content within the HTML <body> tag should be wrapped in a <div> or
 tag.

It is also good practice to remove inline scripting HTML pages and store the scripts in support files, and
remove any inline style markup, which should be stored in supporting CSS files. The supporting files
should be added to a subdirectory of the web_resources directory on your Rhythmyx server, as well as to
the web resources directories on your production and staging servers.

Implementing Snippet Templates
Snippets are used to include related Content Items on a page, either directly or contained within another
Snippet. For example, the rffSnNameAndAddress Snippet allows business users to add contact
information stored in a Contacts Content Item to an output page. This Template is a simple text-only
Snippet that allows us to demonstrate the basic process of creating a Template. The Implementation Plan
for this Snippet species the following data:

Name: rffSnNameAndAddress

Label: S - Name And Address

Content Type: Contact

Assembler: Velocity Assembler

Output: Snippet

Publish: Always

Active Assembly Format: Normal

MIME Type: <null>

Character Set: <null>

Location Prefix: <null>

Location Suffix: <null>

Bindings: None

Communities: Enterprise Investments, Corporate Investments

Contained Slots: None

Sites: Enterprise Investments, Corporate Investments

Included Fields: firstname, lastname, address1, city, state, zipcode, displaytitle

128 Rhythmyx Rhythmyx Implementation Guide

We will assume that the HTML for this Snippet is stored in an HTML file named
rffSnNameAndAddress.html, which was created during the modeling and design process.

NOTE: If a Snippet Template is going to be used inline (to add Content Item text inline to a field on
another Content Item), the <body> tag of the Snippet cannot have more than one child. If you intend to
use a Snippet inline, the immediate child of the <body> tag must be a <div> tag.

Creating a Text Template Object
NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create the Template object for the rffSnNameAndAddress Snippet:

1 In Menu bar of the Rhythmyx Workbench, choose File > New > Template.

The Rhythmyx Workbench displays the Type dialog of the Template wizard.

Figure 89: Type dialog for rffNameAndAddress Local Template

2 The rffSnNameAndAddress Snippet is specific to the Contacts Content Type, so make this a
Type-specific Template. Choose the Type-specific radio button and click the [Next] button.

 Chapter 6 Creating Slots and Templates 129

The Rhythmyx Workbench displays the Output format dialog of the Template wizard.

Figure 90: New Template wizard Output dialog

3 In the Assembler drop list, choose Velocity Assembler (this is the default option). In the
Output section of the dialog, choose the Snippet radio button. Click the [Next] button.

130 Rhythmyx Rhythmyx Implementation Guide

The Rhythmyx Workbench displays the General properties dialog of the Template wizard.

Figure 91: General dialog for rffNameAndAddress Local Template

4 In the Template name field, enter rffSnNameAndAddress. This value defaults to the Label
field. In the Label field, change the value to S - Name and Address.

5 In the Description field, enter Name and address fields as simple text.

6 Click browse button next to the Source field, and use the browse dialog to find the file
rffSnNameAndAddress.html, and add it to the field.

7 In the Available Communities field, select Enterprise Investments and Corporate Investments
and click the [>] button to make this Template available to those Communities..

8 Click the [Next] button.

The Rhythmyx Workbench displays the Contained Slots dialog of the Template wizard.

 Chapter 6 Creating Slots and Templates 131

9 This Template does not contain any Slots, so click the [Finish] button.

Rhythmyx creates the Template and displays the Template editor for the
rffSnNameAndAddress Template.

Adding Velocity Macros to a Text Snippet
For a text snippet, the source code is edited on the Velocity tab of the Template editor. The following
screenshot shows the basic rffSnNameAndAddress HTML in the Velocity editor.

Figure 92: rffNameAndAddress Snippet source HTML in the Velocity editor

The Implementation Plan for this Snippet specifies that the dynamic content of this Snippet includes the
following fields:

 displaytitle
 firstname
 middlename
 lastname

132 Rhythmyx Rhythmyx Implementation Guide

 address1
 city
 state
 zipcode

The displaytitle field provides the dynamic data for the <title> tag. The location for the remaining
fields is specified in the source HTML illustrated above.

To include this data when assembling the Template, Rhythmyx provides a set of pre-defined Velocity
macros. All of the macros shipped with Rhythmyx are available in the Snippet Drawer:

Figure 93: Snippet Drawer

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To add most fields, use the #field macro. For example, to add the firstname field

1 Select the Field Macros drawer.

2 In the Field Macros drawer, double-click #field macro.

The Rhythmyx Workbench displays the Insert Template: field dialog.

 Chapter 6 Creating Slots and Templates 133

3 In the Variables table, click in the Value column next to the fieldname parameter and enter
firstname.

Figure 94: Insert Template dialog for the #field macro, with the value "firstname" for the fieldname

parameter

The value of the fieldname parameter specifies the field to add to the Template output.

134 Rhythmyx Rhythmyx Implementation Guide

4 Click the [Insert] button to insert the field.

Figure 95: rffNameAndAddress Template with #field macro

The #field macro should be used for most required fields. Many of the fields in a Content Editor are
not required, however, and if the field does not have a value, the #field macro will return an error. For
fields that are not required, use the #field_if_set macro. This macro includes a value in the HTML
output only if the specified field in the Content Item has a value. If it does not have a value, this macro
outputs no result.

For example, it is common for people to omit their middle names when entering contact information, so
we would want to use the #field_if_set macro to ensure that this field was handled properly. This
macro requires three parameters:

 before
This parameter defines text output before the contents of the field. Typically this text will be
a non-breaking space or some punctuation.

 field
This parameter defines the field to be displayed.

 Chapter 6 Creating Slots and Templates 135

 after
This parameter defines text output after the contents of the field. Typically this text will be a
non-breaking space or some punctuation.

We want to put a non-breaking space before the middlename field to separate it from the firstname field.
We could also add a non-breaking space after the field to separate the middlename field from the lastname
field, but if the middlename field does not have a value, the lastname field will need to own that space, so
we will include a null value for the after parameter; to specify a null value, use an empty set of quotation
marks: "". As a result, our middlename field looks like the following code:

#field_if_set(" ","middlename","")
When added to the HTML, the result resembles the following:

Figure 96: rffNameAndAddress with the #field_if_set macro for the middlename field

Since the rest of the fields in the Content Type are optional, they all use the #field_if_set macro:

Field Macro Markup

lastname #field_if_set(" " "lastname" "")

address1 #field_if_set("
" "address1" "")

address2 #field_if_set("
" "address2" "")

city #field_if_set("" "city" ",")

state #field_if_set(" " "state" "")

zipcode #field_if_set(" " "zipcode" "")

136 Rhythmyx Rhythmyx Implementation Guide

When all the markup is complete, it resembles the following screenshot:

Figure 97: rffNameAndAddress HTML with all fields marked up

When using Active Assembly, the #field and #field_if_set macros include the Active Assembly
icons that allow the user to edit and manipulate content. In some cases, manipulating content using Active
Assembly is either not possible or not desirable. For example, content of the <title> tag in the HTML
header of output is not eligible for Active Assembly.

For those cases, a different macro is available: #displayfield:
#displayfield(fieldname)

 Chapter 6 Creating Slots and Templates 137

The difference between the #field macro and the #displayfield macro is that the latter does not
include Active Assembly icons when using Active Assembly. We use this macro for the contents of the
<title> tag:

Figure 98: Insert Template dialog showing the #displayfield macro

138 Rhythmyx Rhythmyx Implementation Guide

Figure 99: rffNameAndAddress Template with markup complete

NOTE: The <link> tag in the HTML <head> block defines a link to the CSS file used with the site.
For additional details, see Converting References to Static Files (on page 180).

 Chapter 6 Creating Slots and Templates 139

When previewing a Content Item using this Template, Rhythmyx produces the following result:

Figure 100: rffSnNameAndAddress preview

The final rendering of the Snippet depends on the Global Template applied to the page.

When adding a date field to a Template, use the #datefield, #displaydatefield, and
#datefield_if_set macros.

Debugging Templates
A debugging output is available to help diagnose Templates that generate errors. To see the debug output,
in the URL of the preview, change /assembler/render to /assembler/debug.

Figure 101: Preview of rffSnNameAndAddress Template with render selected in the URL.

140 Rhythmyx Rhythmyx Implementation Guide

When you change the render to debug, the browser displays all of the bindings, Content Item Nodes
(including any Managed Navigation Nodes that would be included in a Page Template), and bound Slots.

Figure 102: Debug output of the rffSnNameAndAddress Template previewed above

Use this view to check that the bindings, macros, and Slots are all defined correctly.

NOTE: When debugging Templates, you may see references to the Java class PSAAUtils. The methods
of this class are used internally by Rhythmyx and are not publicly documented.

 Chapter 6 Creating Slots and Templates 141

Bindings
Bindings provide a mechanism for pairing data with a name that can be used in marking up HTML.

A binding consists of two parts:

 a variable name (binding variable).
Variable names must begin with the character “$”, but rest of the name can use any
alphanumeric string value; for example, $name is a valid variable. You can also define
compound variables by separating the terms with dots. For example, you could define the
variables $circle.diameter and $circle.area. This code specifies a variable
$circle, which contains two additional variables, diameter and area. You can also
define a variable as a list by specifying the index value for each element in the list. For
example, a variable defined as $name[0] defines a variable $name which contains a list
with a single entry. If you assign a second value, $name[3], you have defined the variable
$name as a list of four elements. The first and fourth elements of the list would have values,
while the second and third elements in the list would be empty.

Rhythmyx includes a set of predefined binding variables. For details, see Appendix I,
Binding Variables (see "Binding Variables" on page 407).

 a value definition
The value definition is a an expression in Java Expression Language (JEXL) that defines the
data for the variable. For details about JEXL, see http://jakarta.apache.org/commons/jexl/.
(see akarta.apache.org/commons/jexl/ - http://) The currently supported version of JEXL in
Rhythmyx is JEXL 1.1. This version allows scripting and includes an if-else function.
Neither of these capabilities were supported in JEXL 1.0, which was used in Rhythmyx
Version 6.0 and 6.1.

Bindings are defined in a specific order. The order is important because a binding defined later in the
order can use bindings defined earlier in the order as part of their calculations. For example, suppose we
defined the following bindings:

$pi = 3.14159
$radius = $sys.item.getProperty("radius").number

(Note that binding variables are always prefixed by the "$" character. Rhythmyx adds this character even
if you define a binding without it. For example, if you define a binding as "variable", in Rhythmyx it will
be returned as "$variable".)

We can then define the calculation of the diameter in a new binding:
$circumference = $radius*$pi*2.0

In fact, we have already used bindings, as Rhythmyx Velocity macros are effectively a pre-defined set of
bindings. For example, the definition of the #displayfield macro is:

#macro(displayfield
$fieldname)$sys.item.getProperty($fieldname).String#end

This code defines the macro “displayfield” which requires one argument, “fieldname”, In this case, the
system uses a method of another internally-defined binding (the getProperty method of the $sys.item
binding) to retrieve the value of the field specified. The value is returned as a string.

http:///

142 Rhythmyx Rhythmyx Implementation Guide

You must use bindings for Binary Templates and Dispatch Templates, which do not include Velocity
markup. For a Binary Template, the bindings are used to define the source of the binary data in the
Repository. For a Dispatch Template, the bindings are used to calculate the Template that will be used to
produce the final output. Database Publishing Templates also use bindings, which determine the database
location where the output will be published as well as the data to be published. Bindings are also used to
generate the path for hypertext links.

Bindings can invoke any Java method, although a specific set binding variables and functions are provided
for use in assembly and Location Scheme generation.

Defining Bindings
Define bindings on the bindings tab of the Template in the Workbench.

Figure 103: Template editor Bindings tab

To illustrate the process of defining a binding, we will create the variable $fullname, which consists of
the values in the firstname and lastname fields in the current Content Item. We will include a non-
breaking space to separate the two names.

In the rffSnNameAndAddress Snippet Template we defined earlier, we used the following code to define
the first and last names in the Template:

<div>#field(firstname) #field(lastname)</
div>

 Chapter 6 Creating Slots and Templates 143

We can replace this code with the new variable, $fullname.

To define the $fullname binding:

1 On the Bindings tab of the Template editor, click in the first empty row of the Variable Name
column and enter $fullname.

2 To retrieve data from a field, use the getProperty method of the $sys.item variable,
specifying the field whose value to return; in this case, the value of the firstname field.
The value should be a string, so specify the .getString method in the specification of the
values.

a) Double-click in the Value (JEXL Expression) column of the same row, then click in the
Expression Editor.

b) Enter $sys.item.getProperty("rx:firstname").getString.

Note that the Expression Editor has an autocomplete function. As you begin to enter text,
the Rhythmyx Workbench displays a list of available binding variables and functions that
match the text you entered. Thus, as you enter $sys.i, autocomplete displays $sys.item
and $sys.index. You can select the binding variable or function that you want from the
list presented.

3 After the firstname field, add the lastname field:
$sys.item.getProperty("rx:lastname").getString.

4 JEXL requires an operator to combine, or concatenate, the two strings. The JEXL operator
for concatenation is the plus sign (“+”). Insert a plus sign between the two values

5 As currently defined, the two strings will run together: firstnamelastname. To insert a space,
add the string +’ ’ between the firstname variable and the plus sign:

Figure 104: $fullname Binding

144 Rhythmyx Rhythmyx Implementation Guide

To see how this works, in the code on the Velocity tab, replace the following line:
<div>#field(firstname) #field(lastname)</
div>

with this code:
<div>$fullname</div>

When you preview, you will see the same result using the $fullname binding variable as the original
line of code produced. Note, however, that ActiveAssembly would not be available for these fields since
they are provided by the binding.

You can copy and paste bindings between Templates. To copy and paste bindings:

1 Select the binding you want to copy.

2 Right-click and from the popup menu, choose Copy.

3 Open the Template to which you want to paste the binding and select the Bindings tab.

4 Right-click in an empty row and from the popup editor, choose Paste.

Implementing a Binary Template
Binary Templates provide a simple practical example of a Template that uses bindings. A Binary
Template retrieves binary files from the Repository for publishing. Binary Templates use the Binary
Assembler rather than the Velocity Assembler. These Templates use a binding to specify the field from
which to retrieve the data. Binary Templates must use the variable $sys.binary (mapped to the value
$sys.item.getProperty, specifying the field where the binary data is stored) and
$sys.mimetype.(mapped to the value $sys.item.getProperty, specifying the field where the
MIME type of the binary file is specified.) For example, the Image Content Type in FastForward uses the
img1 field to store the binary image file, so the binding would be:

$sys.binary=$sys.item.getProperty(“img1”)
$sys.mimetype=$sys.item.getProperty ("img1_type")

When creating a binary file, you can define a default MIME type on the General tab of the Template
editor. If the binary field stores only one MIME type, you do not need to do anything else. If the binary
field stores more than one MIME type (for example, if it stores .gif, .jpg, and other image formats), you
should define an additional binding for the $sys.mimetype variable to the Content Editor field that
specifies the MIME type of the file.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To illustrate the creation of a binary Template, we will create the rffBnImage Template from FastForward.
To create the rffBnImage Template:

1 In Menu bar of the Rhythmyx Workbench, choose File > New> Template.

 Chapter 6 Creating Slots and Templates 145

The Rhythmyx Workbench displays the Type dialog of the Template wizard.

Figure 105: Creating a Binary Template as a Shared Template

2 Choose the Shared radio button and click the [Next] button.

The Rhythmyx Workbench displays the Output format dialog of the Template wizard.

3 In the Assembler drop list, choose Binary Assembler and click the [Next] button.

Figure 106: Choosing the binary Assembler for the Binary Template

146 Rhythmyx Rhythmyx Implementation Guide

The Rhythmyx Workbench displays the General Properties dialog of the Template wizard.

4 In the Template name field, enter rffBnImage. In the Label field, change the value to Image.

5 Add the Corporate Investments and Enterprise Investments Communities to the Visible in
these Communities field.

Binary Templates do not use HTML markup, so ignore the Source field.

6 Click the [Next] button.

7 The Rhythmyx Workbench displays the Slots dialog. Binary Templates cannot contain Slots,
so click the [Next] button.

The Rhythmyx Workbench displays the Content Types dialog.

8 In the Available Content Types field, select the Image and NavImage Content Types. Click the
Add button (>) to move these Content Types to the Associated Content Types field.

9 Click the [Finish] button.

Rhythmyx displays the Template in the Template editor, with the Velocity tab selected.

10 Click on the Generate tab.

11 In the Mime type drop list, choose image/gif.

12 Click the Bindings tab.

13 To create the $sys.binary binding:

a) Double-click in the first empty row of the Variables column

The Rhythmyx Workbench displays the Binding Variable Properties dialog.

Figure 107: Binding Variable Properties dialog

b) In the Variable Name field, enter $sys.binary.

 Chapter 6 Creating Slots and Templates 147

c) In the Expression editor, enter $sys.item.getProperty("img1").

14 To create the $mimetype binding. repeat step 14, entering $sys.mimetype in the Variables
column and $sys.item.getProperty(img1_type") in the Value column.

Figure 108: Image Template bindings

15 In the Button bar of the Rhythmyx Workbench, click the save button.
To confirm that the Template works correctly, preview an image Content Item.

Complex Snippets
To implement most Snippets, you can get by with the #field and #displayfield macros discussed
earlier. In a few cases, however, Snippets require bindings to work correctly. Snippets that require
bindings include:

 any Snippet that includes a hypertext link;
 any Snippet that includes a link to a binary file.

Implementing Hypertext Links
To implement a hypertext link, create a binding to generate the location of the assembled Content Item
using the $sys.location.generate($sys.assemblyitem) function. For example:

$pagelink=$sys.location.generate($sys.assemblyitem)
This code creates a link to the default Page Template of the Content Item. Typically, each Content Type
has only one Page Template per site. If you implement more than one Page Template on a Site, add the
template parameter:

$pagelink=$sys.location.generate($sys.assemblyitem,template)

148 Rhythmyx Rhythmyx Implementation Guide

This code links to the specified Template. Best Practice is to use a Dispatch Template that calculates the
Page Template to use.

Whenever the value of a field is used as the text for a hypertext link, use the #fieldLink macro to add
the field value if you want users to be able to follow the link in Active Assembly (users can follow a link
by pressing the ALT key while clicking on the link). (If you use the standard #field macro in a
hypertext link, users will not be able to follow the link.) Note that the #fieldLink macro requires two
parameters: fieldname and $pagelink. The fieldname parameter specifies the field whose
content will be included in the link. The $pagelink parameter is the $pagelink binding variable.
This parameter must always be specified as $pagelink.

In Rhythmyx, hypertext links are most commonly based on the title of the Content Item, so we will use the
rffSnTitleLink Snippet to illustrate how to create a hypertext link. The Hypertext link uses the following
HTML:

<html>
 <head>
 <title>DisplayTitle</title>
 </head>
 <body>
 <div>
 <a href="path to Page Template of Content
Item">#fieldLink("displaytitle", $pagelink)<a/>
 </div>
 </body>
</html>

We will assume that this code is stored in a file named rffSnTitleLink.html. The rffSnTitleLink Template
is associated with the following Content Types:

 rffCalendar
 rffEvent
 rffFile
 rffGeneric
 rffGenericWord
 rffHome
 rffPressRelease

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To implement the rffSnTitleLink Snippet:

1 In Menu bar of the Rhythmyx Workbench, choose File > New> Template.

The Rhythmyx Workbench displays the Type dialog of the Template wizard.

2 Choose the Shared radio button and click the [Next] button.

The Rhythmyx Workbench displays the Output format dialog of the Template wizard.

3 In the Assembler drop list, choose Velocity Assembler (this is the default option). In the
Output section of the dialog, choose the Snippet radio button. Click the [Next] button.

The Rhythmyx Workbench displays the General properties dialog of the Template wizard.

 Chapter 6 Creating Slots and Templates 149

4 In the Template name field, enter rffSnTitleLink. Update the value in the Label field to Title
Link Snippet..

5 In the Description field, enter Renders the title as a hypertext link..

6 Click browse button next to the Source field, and use the browse dialog to find the file
rffSnTitleLink.html and add it to the field.

7 In the Available Communities field, select Enterprise Investments and Corporate Investments
and click [>] button to make this Template available to those Communities..

8 Click the [Next] button.

The Rhythmyx Workbench displays the Contained Slots dialog of the Template wizard.

9 This Template does not contain any Slots, so click the [Next] button.

The Rhythmyx Workbench displays the Content Types dialog of the Template wizard.

10 In the Available Content Types field, select the following Content Types:

 rffCalendar

 rffEvent

 rffFile

 rffGeneric

 rffGenericWord

 rffHome

 rffPressRelease

Click the button to move these Content Types to the Associated Content Types field.

11 Click the [Finish] button.

Rhythmyx creates the Template and displays the Template editor for the s-titlelink Template.

12 Add the Velocity macros to render the fields as illustrated in Adding Velocity Macros to a
Text Snippet (on page 131).

13 To code the anchor tag:

a) Specify $pagelink as the value of the href attribute of the anchor tag.

b) For the contents of the anchor tag, specify #fieldLink("displaytitle"
$pagelink). Note that the binding variable $pagelink must be used both as the
value of the href attribute of the anchor tag and as the $pagelink parameter of the
#fieldLink macro.

150 Rhythmyx Rhythmyx Implementation Guide

When you are finished, the Snippet Template HTML code resembles the following
screenshot:

Figure 109: rffSnTitleLink HTML with the anchor tag highlighted. Note the binding variable $pagelink as

the value of the href attribute.

 Chapter 6 Creating Slots and Templates 151

14 On the Bindings tab, add the binding
$pagelink=$rx.location.generate($sys.assemblyitem).

Figure 110: rffSnTitleLink Bindings tab showing the $pagelink binding

15 On the Button bar of the Rhythmyx Workbench, click the save button.
To test the template, in Content Explorer, find a Generic page Content Item, and preview the Template. It
should render the text of the Display title field formatted as a hypertext link. When you click on the link,
Rhythmyx should render a preview of the Generic page template of the Content Item (assuming a Page
Template exists for the Content Type).

Adding a Link to an Image File

An image Snippet includes the tag, which uses the src attribute to specify the location of the
image file. The file location must be generated dynamically using the $rx.location.generate
function. In this case, you must also specify the Template that will be used to retrieve the image file.

We will use the rffSnImageAndTitle Snippet to illustrate the implementation of a Snippet that includes an
image reference. This Snippet includes some Velocity markup to provide some context for the
tag. We will use the rffBnImage Template created earlier as the Image Template. The
rffSnImageAndTitle Snippet uses the following HTML:

<html>
 <head>
 <title>Display Title")</title>
 </head>
 <body>

152 Rhythmyx Rhythmyx Implementation Guide

 <div class="leftTables">
 <img src=published location of the image file alt=img_alt
field
 <div>
 Display Title)
 </div>
 </div>
 </body>
</html>

We will assume that this code is stored in a file named rffSnImageAndTitle.html.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To implement the rffSnImageAndTitle Snippet:

1 In Menu bar of the Rhythmyx Workbench, choose File > New> Template.

The Rhythmyx Workbench displays the Type dialog of the Template wizard.

2 Choose the Shared radio button and click the [Next] button.

The Rhythmyx Workbench displays the Output format dialog of the Template wizard.

3 In the Assembler drop list, choose Velocity Assembler (this is the default option). In the
Output section of the dialog, choose the Snippet radio button. Click the [Next] button.

The Rhythmyx Workbench displays the General properties dialog of the Template wizard.

4 In the Template name field, enter rffSnImageAndTitle. Change the value in the Label field to
Image and Title Snippet.

5 In the Description field, enter Renders the image with the Display Title.

6 Click browse button next to the Source field, and use the browse dialog to find the file
rffSnImageAndTitle.html and add it to the field.

7 In the Available Communities field, select Enterprise Investments and Corporate Investments
and click [>] button to make this Template available to those Communities..

8 Click the [Next] button.

The Rhythmyx Workbench displays the Contained Slots dialog of the Template wizard.

9 This Template does not contain any Slots, so click the [Finish] button.

Rhythmyx creates the Template and displays the Template editor for the rffSnImageAndTitle
Template.

10 Add the Velocity macros to render the Display Title field as illustrated in Adding Velocity
Macros to a Text Snippet (on page 131).

Specify $image as the value of the src attribute of the tag.

11 On the Bindings tab, add the binding
$image=$rx.location.generate($sys.assemblyitem, “rffBnImage”)

12 On the Button bar of the Rhythmyx Workbench, click the save button.
To test the template, in Content Explorer, find an Image Content Item, and preview Template. It should
render the graphic with the Display Title underneath.

 Chapter 6 Creating Slots and Templates 153

Implementing Page Templates
A Page Template outputs a complete HTML page. In most cases, Page Templates contain Slots (although
some Snippets may contain Slots as well). The main difference between a Page Template and a Snippet
Template is that a Page Template produces a complete output HTML page, while a Snippet Template
produces HTML for assembly into a Page or another Snippet.

The basic Page Template in FastForward is the rffPgGeneric Template; FastForward includes an example
of this Template for each of the Sites included in the implementation (rffPgEIGeneric for the Enterprise
Investments Site and rffPgCIGeneric for the Corporate Investments Site. These Templates contain two
local fields (Display Title and Body) and two Slots:

 Sidebar Slot
 List Slot

We will use the rffPgEIGeneric Page Template to illustrate the creation of Page Templates.

Name: rffPgEIGeneric

Label: P-EI Generic

Content Type: Generic

Assembler: Velocity Assembler

Output: Page

Global Template: Default

Publish: Always

Active Assembly Format: Normal

MIME Type: Text/HTML

Character Set: <null>

Location Prefix: <null>

Location Suffix: <null>

Bindings: None

Communities: Enterprise Investments

Contained Slots: Sidebar Slot, List Slot

Sites: Enterprise Investments

Included Fields: Display Title. Body

We will assume that the HTML for this Snippet is stored in an HTML file named rffPgEIGeneric.html,
which was created during the modeling and design process.

Creating the Page Template Object
To create the rffPgEIGeneric PageTemplate object:

1 In the Menu bar of the Rhythmyx Workbench, choose File > New> Template.

154 Rhythmyx Rhythmyx Implementation Guide

The Rhythmyx Workbench displays the Type dialog of the Template wizard.

Figure 111: Type dialog for rffPGEIGeneric Page Template

2 Choose the Type-specific radio button. In the Content Type field, choose Generic. Click the
[Next] button.

 Chapter 6 Creating Slots and Templates 155

The Rhythmyx Workbench displays the Output format dialog of the Template wizard.

Figure 112: Assembler dialog for rffPGEIGeneric Page Template

3 In the Assembler drop list, choose Velocity Assembler (this is the default option). In the
Output section of the dialog, choose the Page radio button. Under Global Template, leave
Default selected, which uses the default Global Template for the Site. (NOTE: This is the
default option.) Click the [Next] button.

The Rhythmyx Workbench displays the General properties dialog of the Template wizard.

4 In the Template name field, enter rffPgEIGeneric. Modify the value in the Label field to
Generic Page Template.

5 In the Description field, enter Renders Generic Content Items as HTML pages.

6 Click browse button next to the Source field, and use the browse dialog to find the file
rffPgGeneric.html, and add it to the field.

7 In the Available Communities field, select Enterprise Investments and Corporate Investments
and click [>] button to make this Template available to those Communities.

8 Click the [Next] button.

The Rhythmyx Workbench displays the Contained Slots dialog of the Template wizard.

9 Select the List Slot and Sidebar Slot and the click [>] button to add them to the Template.

156 Rhythmyx Rhythmyx Implementation Guide

10 Click the [Finish] button.

Rhythmyx creates the Template and displays the Template editor for the rffPgEIGeneric
Template.

Adding Velocity Macros to a Page Template
The following screenshot illustrates the rffPgGeneric HTML before adding Velocity markup.

Figure 113: Original HTML of the rffPgEIGeneric Template

 Chapter 6 Creating Slots and Templates 157

Add the Display Title and Body fields as illustrated in Adding Velocity Macros to a Snippet (see "Adding
Velocity Macros to a Text Snippet" on page 131). When these macros have been added, the Velocity tab
resembles the following screenshot:

Figure 114: HTML of the rffPgEIGeneric Template with field macros

Rhythmyx includes three predefined macros for Slots. The simplest Slot macro is the #slot_simple macro.
#slot_simple(slotname)

The slotname property specifies the name of the Slot you want to include in the output. This macro
renders only the Content Items in the Slot. Thus, the markup for the two Slots specified would be the
following:

#slot_simple("rffSidebar")

158 Rhythmyx Rhythmyx Implementation Guide

#slot_simple(“List Slot”)

Figure 115: rffPgIEGeneric Template with #slot_simple macros

 Chapter 6 Creating Slots and Templates 159

This markup produces the following output:

Figure 116: Generic Page Preview showing the output of the #slot_simple macro

For users familiar with earlier versions of Rhythmyx, this markup produces the equivalent of only the
Snippet.

160 Rhythmyx Rhythmyx Implementation Guide

Another option is to wrap each Snippet instance in some HTML markup. To implement this option, use
the #slot_wrapped macro:

#slot_wrapped(slotname startslottext endslottext)
where startslotext and endslottext is the text (usually HTML markup) you want to output with
each Content Item in the Slot. For users familiar with earlier versions of Rhythmyx, the beforetext
and aftertext are equivalent to the Snippet Wrapper.

For example, if we change the markup in the Sidebar Slot to add a break before and after each Content
Item in the Slot:

#slot_wrapped("rffSidebar" "
" "</br>")

 Chapter 6 Creating Slots and Templates 161

Rhythmyx returns the following output:

Figure 117: Generic Page Preview showing the output of the #slot_wrapped macro

162 Rhythmyx Rhythmyx Implementation Guide

Notice the extra whitespace around the Content Items in the Slots. (Note: In the rffPgGeneric Template in
FastForward, a break is defined after each Content Item in each Slot. We modified the markup in this case
to demonstrate both the startslottext and endslottext attributes of the #slot_wrapped
macro.)

The richest Slot macro is the #slot macro:
#slot(slotname header before after footer params)

Where

 slotname is the name of the Slot
 header is any text to include before any Slot contents
 before is any text to include before each Content Item in the Slot, as illustrated above with

the #slot_wrapped macro
 after is any text to include after each Content Item in the Slot, as illustrated above with the

#slot_wrapped macro
 footer is any text to include after any Slot contents

(For users of earlier versions of Rhythmyx, the header and footer are equivalent to the
Slot Wrapper)

 params are any parameters you want to pass with the Slot.

Thus, the markup for the List Slot on the rffPgGeneric Template in FastForward is:
#slot(“rffList” “<div class="list"><span
class="relatedHeader">Related...
” “</div>” “” “
” “”)

where

“rffList” is the name of the Slot.

“<div class="list">Related...
” is the header for the Slot.

“</div>” is the footer for the Slot

“
” is the aftertext for each Content Item in the Slot
Note that there is no value for either the beforetext attribute or the params attribute, but these must
be included in the markup as nulls. Nulls are denoted by an empty set of quotation marks.

Diagnosing errors when adding so much text can be problematic, so Best Practice is to specify the text as
a set of local bindings, then specify the bindings as the values for the parameters. The bindings are
defined using Velocity #set directives, as illustrated in the following code:

 #set($start_slot = '<div class="list"><span
class="relatedHeader">Related...
')
 #set($start_snippet = '')
 #set($end_snippet = '
')
 #set($end_slot = '</div>')

 #slot("rffList" $start_slot $start_snippet $end_snippet $end_slot '')

 Chapter 6 Creating Slots and Templates 163

This markup produces the following output:

Figure 118: Generic Page Preview showing the output of the #slot macro

164 Rhythmyx Rhythmyx Implementation Guide

Using the params attribute of the #slot Macro
Any parameters you define in the params attribute of the #slot macro are passed directly to the Slot
Content Finder for the specified Slot. Uses of the params attribute include:

 Use these parameters instead of the parameters of the Slot Content Finder parameters, hard-
coding the parameters into the Slot.

 Use these parameters in a specific instance of the Slot in a Template to override the
parameters defined for the Slot.

Adding Child Data to a Page Template

To include content from a Child Editor on a Page Template, use the #children macro:
#children(childname template header beforetext aftertext $footer)

where

childname is the name of the child editor whose contents you want to add to the Template

template is the Template used to format the content from the child editor

header is any text to include before any child table rows; typically, this is the <table> tag, with its
formatting; if the table has a heading row, it would also be included in the header.

beforetext is the text you want to include before each child row

aftertext is the text you want to include after each child row

footer is any text to include after any child table rows; typically, this is the closing tag for the table
(</table>)

For example, to add the event_location child table we added to the Event Content type (see Creating a
Content Type with a Child Field Set (see page 250) for details), we would need to create a Snippet
Template to format the child content. This Template consists of two <td> tags to define two columns in
the child table: one for the address fields with commas inserted between them, and one for the contact
field. Assume for the purposes of this example that we have created a Template named
rffSnEventLocation consisting of the following markup:

 <td>#field("rx:event_address"),
#field("rx:event_city"),#field("rx:event_state")</td>
 <td> contact:#field("rx:event_contact")</td>

NOTE: Templates used to format child snippets should not be associated with any Content Type. If you
associate the Template with a Content Type, it will be listed in the available previews for that Content
Type; previewing of these Templates returns an error, however. To preview a child Snippet Template,
add it to a Page Template, then preview the Page.

The #children macro would be coded as follows:
#set ($header = ' <table> ')
 #set ($beforetext = '<tr>')
 #set ($aftertext = '</tr>')
 #set ($footer = '</table>')

 Chapter 6 Creating Slots and Templates 165

 #children("event_location" "rffSnEventLocation" $header
$beforetext $aftertext $footer)

Figure 119: rffPgEIEvent Template with #children Macro

166 Rhythmyx Rhythmyx Implementation Guide

This code results in the following output:

Figure 120: Preview of Event Content Item showing child data table

 Chapter 6 Creating Slots and Templates 167

Adding Paging Support
When a Content Item includes a large block of text or when a Slot includes a large number of related
Content Items, you may want to implement paging support to break up the output HTML page into several
pages rather than outputting one long page.

Paging support can be added for both Content Item fields and for Slots, but paging should only be
implemented once in a Template. In other words, you should not implement paging support for a field
and for a Slot on the same Template, nor should you implement paging support for more than one field or
more than one Slot on a Template. More than one instance of paging on a Template will result in
inconsistent results on the output pages.

Content Items with pagination can only be previewed in the Preview Context; preview in publish
Contexts returns errors. (Pages are published correctly.)

Implementing Paging Support for a Field
Paging is supported in rich-text fields (fields maintained using the sys_EditLive control). Paging support
should only be added to one field per Content Type. Adding paging support to multiple fields may result
in inconsistent behavior of HTML pages that include pagination.

To add paging support to a field, add paging bindings to the Page Template object and paging markup to
the Template source code.

Paging for a field requires the following bindings:

Binding Variable Description Value

$content Retrieves the content of the paginated field
for later processing.

$sys.item.getProperty("fieldname"); for
example, $sys.item.getProperty("body")

NOTE: The value should NOT include
a conversion to a string value (in other
words, DO NOT append ".getString" to
the value of the binding). The value of
this binding is passed as a parameter into
functions used in later bindings, and the
functions do not take string values.

$selectpage Page number of the page to be rendered if ($sys.page != null) { $sys.page; } else
{ 1; }

$sys.pagecount Count of total pages of the paginated field
to be rendered. Uses the
$rx.paginate.fieldContentPageCount
function, which returns the number of
pages to be generated based on the number
of page breaks added to the specified field.

This binding variable must be included to
trigger pagination processing.

$rx.paginate.fieldContentPageCount
($content)

$page Page to be rendered. Uses the
$rx.paginate.getFieldPage function to
return the content of the individual pages.

$rx.paginate.getFieldPage($content,
$selectpage)

168 Rhythmyx Rhythmyx Implementation Guide

Binding Variable Description Value

$pagetext Text to be rendered on the output page to
provide paging, such as "page 1 of 3"

"Page "+ $selectpage + " of " +
$sys.pagecount

The following graphic illustrates an example set of bindings:

Figure 121: Example bindings to support field paging

In the Velocity code of the Template, replace the field macro with the following code:
$page
#pager($sys.pagecount $sys.page "<" $pagetext ">")

For example, in the rffPgEiGeneric Template, to provide pagination support for the body field, replace the
macro for the body field:

#field("body")

When assembling the Content Item, Rhythmyx will break the Content Item up into the specified number
of pages.

Implementing Paging Support for a Slot
Paging support can be added to any Slot other than an inline Slot. (An inline Slot that uses pagination will
result in errors.) The pagination implementation defines the number of related Content Items that will be
included on each page when the Content Item is paginated.

To add paging support for a Slot, add paging bindings to the Page Template object and paging markup to
the Template source code.

Paging for a Slot requires the following bindings:

Binding Variable Description Value

$pagesize Defines the number of related Content
Items included on each page

A literal numeric value, such as 3 or 5.

$selectpage Page number of the page to be rendered if ($sys.page != null) { $sys.page; } else {
1; }

 Chapter 6 Creating Slots and Templates 169

Binding Variable Description Value

$sys.pagecount Count of total pages of the paginated Slot
to be rendered. Uses the
$rx.paginate.slotContentPageCount
function, which returns the number of
pages to be generated based on the value in
the $pagesize binding variable.

This binding variable must be included to
trigger pagination processing.

$rx.paginate.slotContentPageCount($sys.a
ssemblyItem,"rffList",$pagesize,$sys.para
ms)

$pagetext Text to be rendered on the output page to
provide paging, such as "page 1 of 3"

"Page "+ $selectpage + " of " +
$sys.pagecount

The following graphic illustrates an example set of bindings:

pr

In the Velocity code of the Template, replace the Slot macro with the following code:
 #slot_page("Slotname" "Header" "Beforetext" "Aftertext" "Footer"
"Params" "ItemsPerPage" "Page Number")
#pager($sys.pagecount $selectpage "<" $pagetext ">")

For example, in the rffPgEiGeneric Template, to provide paging support for the Sidebar Slot, replace the
#slot("rffSidebar" '<div class="SideContent">' '' '
' '</div>' '')

with the code:
 #slot_page("rffSidebar" $start_slot $start_snippet $end_snippet
$end_slot '' $pagesize $selectpage)
#pager($sys.pagecount $selectpage "<" $pagetext ">")

When assembling the Content Item, Rhythmyx will chunk the Content Items in the Sidebar Slot into
groups of the specified size (2 Content Items per group in this case), and publish the number of HTML
pages required to include the complete list of Content Items. For example, in this case, if the Sidebar Slot
includes only one or two Content Items, only one HTML page will be published. If the Sidebar Slot
includes five Content Items, three HTML pages will be published, two each with two Content Items in the
Slot, and the last page with one. Of the Sidebar Slot include eight Content Items, four HTML pages will
be published, each with two Content Items in the Sidebar Slot.

Implementing Global Templates
Generally, all of the pages on a web site share a common “look and feel”, meaning they share a common
page structure, use the same color palette, and share common graphics. In some cases, different sections
of a site may vary in format, but all of the pages of each individual section share the same look and feel.

170 Rhythmyx Rhythmyx Implementation Guide

Rhythmyx uses Global Templates to ensure this consistency. A Global Template defines the general
structure of the page and is usually responsible for rendering the outer wrapper for most, if not all, pages
on the site. The wrapper includes page headers and footers and elements of the HTML <head>, such as
references to the CSS files that implement the specific formatting of the HTML markup in the published
page. When publishing a page, Rhythmyx merges the Local Template with a specified Global Template
to produce the final page markup for rendering. The Global Template also commonly includes Managed
Navigation elements that Rhythmyx adds to the final published page.

The simplest approach to page design is to add a common banner across the top of the page. The banner
may include some basic navigation:

Figure 122: Page with Banner Global Template

All pages on the site include the banner, but the content below the banner differs from page to page.

 Chapter 6 Creating Slots and Templates 171

Another approach is the “inverted-L”. This design starts with a banner and adds a dynamic navigation bar
down the left-hand side of the page.

Figure 123: Page with "inverted-L" Global Template

172 Rhythmyx Rhythmyx Implementation Guide

In this design, the banner and left navigation are shared by all pages. The content contained in the
“inverted-L” changes with each page.

A third common design is the “C-clamp, which adds navigation to the bottom of the inverted-L. The
unique content of each page is contained inside of the “C-clamp”.

Figure 124: Page with "C-clamp" Global Template

The Global Template defines the overall page structure and common outer wrapper. The Local Template
specifies the formatting of the content that differs from page to page.

In the Site registration, you must specify the default Global Template for the Site. Rhythmyx uses this
Global Template unless a different Global Template is specified. You can override the default Global
Template in two ways:

 You can specify a Global Template for a specific Folder. Rhythmyx will use the Global
Template to format all Content Items in the Folder, and in any Subfolders.

 You can specify a Global Template for a specific Local Template. Rhythmyx will use that
Global Template whenever formatting Content Items using the Local Template.

NOTE: New Global Templates are not available in Content Explorer until Content Explorer has been
restarted after the Global Template has been saved.

To demonstrate the process of creating a Global Template, we will create the Enterprise Investments
Global Template (rffGtEnterpriseInvestmentsCommon), which is the only Global Template defined for
the Enterprise Investments Site. This Template should only be available on the Enterprise Investments
Site. We will assume that the HTML is defined in a file named rffGtEnterpriseInvestmentsCommon.html,
which was developed during Modeling and design.

 Chapter 6 Creating Slots and Templates 173

Creating the Global Template Object in the Rhythmyx Workbench
NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create the Enterprise Investments Global Template object:

1 In Menu bar of the Rhythmyx Workbench, choose File > New> Template.

The Rhythmyx Workbench displays the Type dialog of the Template wizard.

Figure 125: Template Wizard Type dialog with Global radio button selected.

2 Choose the Global radio button and click the [Next] button.

174 Rhythmyx Rhythmyx Implementation Guide

The Rhythmyx Workbench displays the General properties dialog of the Template wizard.

Figure 126: Template wizard with general data for the rffGtEnterpriseInvestmentsCommon Template

3 In the Template name field, enter Enterprise_Investments_Global Template. In the Label field
change the underscores to spaces..

4 In the Description field, enter Global Template for the Enterprise Investments Site.

5 Click browse button next to the Source field, and use the browse dialog to find the file
rffGtEnterpriseInvestmentsCommon.html, and add it to the field.

6 In the Available Communities field, select Enterprise_Investments and
Enterprise_Investments_Admin then click [>] button to make this Template available to that
Community. Do not add the Corporate Investments Communities, which should not have
access to the Enterprise Investments Global Template.

7 Click the [Next] button.

 Chapter 6 Creating Slots and Templates 175

The Rhythmyx Workbench displays the Contained Slots dialog of the Template wizard.

8 The Enterprise Investment Global Template does not contain any Slots, so click the [Finish]
button.

Rhythmyx creates the Template and displays the Template editor for the
rffGtEnterpriseInvestmentsCommon Template.

Adding Local Content to the Global Template HTML
In the raw markup of the Enterprise Investments Global Template, we have inserted a note “Local Content
Goes Here” to denote the location of the local content in the Global Template:

Figure 127: rffGtEnterpriseInvestmentsCommon Template HTML with location of local content

highlighted

176 Rhythmyx Rhythmyx Implementation Guide

To include the content of a Local Template, use the #inner macro. This macro does not include any
attributes.

Figure 128: rffGtEnterpriseInvestmentsCommon Template with #inner macro added

 Chapter 6 Creating Slots and Templates 177

Previewing a Content Item using this Template produces the following results:

Figure 129: Preview of rffEnterpriseInvestmentsCommon Template. Locations for Managed Navigation

are noted with text.

178 Rhythmyx Rhythmyx Implementation Guide

Adding Managed Navigation to the Global Template
Managed Navigation is a Rhythmyx feature that allows you to create and maintain simple and effective
navigation for your site automatically during publishing. The section Managed Navigation (see page
279) explains how to implement Managed Navigation in detail. For now, we only need to focus on how to
add Managed Navigation to Global Templates.

Rhythmyx is shipped with a default Managed Navigation Slot. Adding this Slot to a Global Template
differs little from adding a standard Slot to a Snippet or Page. Use the #slot macro to add the Slot. In
Enterprise Investments, the params attribute is used to specify the Template used in each Slot, since
different Templates are used for each Managed Navigation Slot . For example, the following Managed
Navigation Templates were created for the Enterprise Investments Site in FastForward:

 rffSnEINavTop (provides Top Navigation for the Enterprise Investments Site)
 rffSnEINavLeft (provides Left Navigation for the Enterprise Investments Site)
 rffSnEINavBottom (provides Bottom Navigation for the Enterprise Investments Site)
 rffSnEINavBreadcrumbs (provides Breadcrumbs for the Enterprise Investments Site)
 rffSnEISiteMap (provides a Site Map for the Enterprise Investments Site
 rffSnNavPreload (custom Template for FastForward)

For example, to add top navigation to the rffEnterpriseInvestmentsCommon, use the following code:
#slot("rffNav" "" "" "" "" "template=rffSnEiTop")

Figure 130: Adding top navigation to the rffGtEnterpriseInvestmentsCommon Global Template

 Chapter 6 Creating Slots and Templates 179

This code produces the following output:

Figure 131: Preview of rffGtEnterpriseInvestmentsCommon Global Template with top navigation added

Note that the page now includes a banner, and that a navigation bar is included immediately below the
banner.

180 Rhythmyx Rhythmyx Implementation Guide

We can add the left (side) navigation and bottom navigation the same way.
#slot("rffNav" "" "" "" "" "template=rffSnEINavLeft")
#slot("rffNav" "" "" "" "" "template=rffSnEINavBottom")

Converting References to Static Files
The header of the Enterprise Investments Global Template includes references to Cascading Stylesheet
and JavaScript files:

<link rel="stylesheet"
href="..\web_resources\enterprise_investments\css\rxs_styles.css"
type="text/css" />
<script psx-
src="..\web_resources\enterprise_investments\js\mouseover.js"
language="javascript" type="text/javascript">;</script>

Recall that the recommended cleanup of HTML files includes moving inline scripting and markup to
supporting files. This code links to the supporting files containing this supporting code. The supporting
files might not be in the same location in different output contexts, however. When previewing your
pages in Rhythmyx, these files are in the following locations:

..\web_resources\enterprise_investments\css\rxs_styles.css

..\web_resources\enterprise_investments\js\mouseover.js
When the output is published, however, these files will likely be in a different location. For example, the
defined locations for these files when the Enterprise Investments Site is published locally on the
Rhythmyx server are:

\EIHome\resources\css\rxs_styles.css
\EIHome\resources\js\mouseover.js

To allow the flexibility to produce different paths to these files in different output contexts, Rhythmyx
allows you to define a set of Context Variables that resolve to the different locations when an output is
generated.

A Context Variable is a string that resolves to a particular value for each output context. When Rhythmyx
is processing output for a specific context, it replaces the Context Variable with the value defined for that
context.

Defining Context Variables
To demonstrate the process of creating and using Context Variables, we will illustrate how the standard
$rxs_navbase Context Variable was created for the Preview Output Context for the Enterprise Investments
Site, and how to define additional values for this Context Variable. Other Context Variables can be
created easily by copying existing Context Variables.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create the $rxs_navbase Context Variable:

1 Log in to Content Explorer and open the Enterprise Investments Site registration.

2 In the Menu bar, choose Action > Add Context Variable.

Rhythmxy returns the Add Context Variable page

3 In the Context Variable Name field, enter rxs_navbase.

 Chapter 6 Creating Slots and Templates 181

4 In the Context Variable Value field, enter ../web_resources/enterprise_investments. This path
points to the location where static files for the Enterprise Investments site are located for
previewing within Rhythmyx.

5 In the Context drop list, choose Preview.

6 The Context Variable definition should resemble the following screenshot:

Figure 132: Defining the rxs_navbase Context Variable

7 In the Menu bar, click Add.

Rhythmyx adds the Variable to the Enterprise Investments Site.

Figure 133: rxs_navbase Context Variable defined

We also need a value for this Context Variable for the Site Folder Assembly Context. We can create this
additional value by copying the Context Variable and defining a new value for the Site Folder Assembly
Context. To create the Site Folder Assembly value for the rxs_navbase Context Variable:

1 Open the Enterprise Investments Site registration.

2 In the Menu bar, choose Action > Add Context Variable.

182 Rhythmyx Rhythmyx Implementation Guide

Rhythmxy returns the Add Context Variable page. Note that the All Context Variables table
includes the original value that we defined.

Figure 134: Add Context Variable page showing the rxs_navbase Context Variable with the valeu defined

for the Preview Context

3 Click the copy button in the row of the rxs_navbase Context Variable.

Rhythmyx copies the values of the rxs_navbase Context variable to the fields.

4 Change the Context Variable Value to /EI_Home/resources.

5 In the Context drop list, choose Site_Folder_Assembly.

6 In the Menu bar, click Add.

Rhythmyx saves the new value for the rxs_navbase Context Variable and adds it to the
Enterprise Investments Site registration.

Adding a Context Variable to the Global Template
We can now update the URL of the location of the static files in our Global Template with the Context
Variable. To add the Context Variable, we must use the $sys.variables Binding Variable.

Thus the URL of the cascading stylesheet files
..\web_resources\enterprise_investments\css\rxs_styles.css

becomes
$sys.variables.rxs_navbase\css\rxs_styles.css

Thus, the header references become:
<link rel="stylesheet"
href="$sys.variables.rxs_navbase\css\rxs_styles.css" type="text/css" />
<script psx-src="$sys.variables.ResourcePath\js\mouseover.js"
language="javascript" type="text/javascript">;</script>

This produces a Preview that uses all of the correct Cascading Stylesheets and JavaScript files.

 Chapter 6 Creating Slots and Templates 183

Adding Linkback
Linkback is a Percussion CM System feature that allows a user that is viewing an HTML page to access
the Percussion CM System Content Item from which that page was generated.

To add linkback to a Global Template, add the macro #linkback_head to the header in the Global
Template HTML code. The following screenshot illustrates the macro added to the
rffEnterpriseInvestmentsCommon Global Template.

Figure 135: rffGtEnterpriseInvestmentsCommon Global Template with linkback macro highlighted

Implementing a Page Template Without a Global Template
Some individual Page Templates produce a look and feel that is different from any other page in the Site.
Home pages are a typical example. For pages that have such a unique structure, there is no point to using
a Global Template. You would have to use two Templates to produce the output when one Template
would suffice.

The Enterprise Investments Home Page Template (rffPgEIHome) illustrates this technique.

Name: rffPgEIHome

Label: P-EI Home

Content Type: Home

Assembler: Velocity Assembler

Output: Page

Global Template: None

Publish: Default

Active Assembly Format: Normal

MIME Type: Text/HTML

184 Rhythmyx Rhythmyx Implementation Guide

Character Set: <null>

Location Prefix: <null>

Location Suffix: <null>

Bindings: None

Communities: Enterprise Investments

Contained Slots: rffHomeImage, rffHomeList, sys_inline_link

Sites: Enterprise Investments

Included Fields: Display Title. Body

We will assume that the HTML for this Snippet is stored in an HTML file named rffPgEIHome.html,
which was created during the modeling and design process.

Creating a Page Template Object Without a Global Template
NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create the rffPgEIHome PageTemplate object:

1 In the Menu bar of the Rhythmyx Workbench, choose File > New> Template.

The Rhythmyx Workbench displays the Type dialog of the Template wizard.

2 Choose the Type-specific radio button. In the Content Type field, choose Home. Click the
[Next] button.

 Chapter 6 Creating Slots and Templates 185

The Rhythmyx Workbench displays the Output format dialog of the Template wizard.

Figure 136: Output dialog for a Page Template with no Global Template specified

3 In the Assembler drop list, choose Velocity Assembler (this is the default option). In the
Output section of the dialog, choose the Page radio button. Under Global Template, select
None, which specifies that the Template will not use a Global Template. Click the [Next]
button.

The Rhythmyx Workbench displays the General properties dialog of the Template wizard.

4 In the Template name field, enter rffPgEIHome. Modify the value in the Label field to P - EI
Home.

5 In the Description field, enter EI Home Pages.

6 Click browse button next to the Source field, and use the browse dialog to find the file
rffPgEIHome.html, and add it to the field.

7 In the Available Communities field, select Enterprise Investments and click [>] button to make
this Template available to those Communities.

8 Click the [Next] button.

The Rhythmyx Workbench displays the Contained Slots dialog of the Template wizard.

9 Select the rffHomeImage, rffHomeList, and sys_inline_link Slots and the click [>] button to
add them to the Template.

186 Rhythmyx Rhythmyx Implementation Guide

10 Click the [Finish] button.
Rhythmyx creates the Template and displays the Template editor for the rffPgEIHome Template.

Adding Velocity to the EIHome Page Template
To ensure that Active Assembly works correctly in a Page Template that does not use a Global Template,
you must add the following markup:

 #startAAPage after the <body> tag in the Template and before any page content markup
that you want to access in Active Assembly; and

 #endAAPage before the closing (</body> tag after all page content markup that you want to
access in Active Assembly.

So you would modify HTML markup of the rffEIHome Template as illustrated in the following
screenshot:

Figure 137: Page Template showing the #startAAPage and #endAAPage macros used when the Template

does not have a Global Template

Note that the #startAAPage macro is highlighted in this screenshot.

If you open the rffEIHome Template in the Rhythmyx Workbench, you will notice that it uses embedded
Velocity code. For details about using this code, see "Embedding Velocity Code in Templates" in the
Rhythmyx Technical Reference.

 Chapter 6 Creating Slots and Templates 187

Adding Linkback to a Page Template
If you want to include linkback functionality in a Page Template that does not use a Global Template, you
must add the linkback macro (#linkback_head) to the header section of the Template, as illustrated in the
following screenshot of the rffEIHome Template:

Figure 138: rffPgEiHome Page Template with linkback macro highlighted

Dispatch Templates
A Dispatch Template is a Template that calculates a result to select the Template used to format an output.
Dispatch Templates do not include any formatting themselves. The bindings of the Template are used to
calculate the result.

The calculations are typically performed using the JEXL if....else function.
if (condition) {truevalue} else {falsevalue}

where

condition is a boolean condition you are testing

truevalue is the value used if the boolean expression evaluates to true

falsevalue is the value used if the boolean expression evaluates to false.
In the FastForward implementation, the rffDsEIGenericSelector Template illustrates the implementation
of a Dispatch Template. This Template selects the correct Template to publish depending on whether a
Content Item is specified as a Category Landing Page. If so, the rffPgEIGenericCategoryPage is
published. Otherwise, the rffPgEIGeneric Template is published.

188 Rhythmyx Rhythmyx Implementation Guide

The Generic Content Type includes a field, Usage, that specifies whether the page is a landing page. The
value of this field can be either Landing Page (the value "L" is stored in the Repository) or Normal (the
value "N" is stored in the Repository).

The rffDsEIGenericSelector Template is only available to the Enterprise Investment Community and is
only available on the Enterprise Investments Site.

Creating the Dispatch Template Object
NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create the rffDsEIGenericSelector Template object:

1 In Menu bar of the Rhythmyx Workbench, choose File > New> Template.

The Rhythmyx Workbench displays the Type dialog of the Template wizard.

2 Choose the Shared radio button and click the [Next] button.

The Rhythmyx Workbench displays the Output format dialog of the Template wizard.

Figure 139: Specifying the Output properties of the Dispatch Template

3 In the Assembler drop list, choose dispatch Assembler. Click the [Next] button.

 Chapter 6 Creating Slots and Templates 189

The Rhythmyx Workbench displays the General properties dialog of the Template wizard.

4 In the Template name field, enter rffDsEIGenericSelector. In the Label field, change the

value to D - EI Generic.

5 In the Description field, enter Dispatch to the appropriate page template for the given generic
item.

190 Rhythmyx Rhythmyx Implementation Guide

6 In the Available Communities field, select Enterprise Investments, then click the [>] button to
make this Template available to the Enterprise Investment Community.

7 Dispatch Templates do not include any markup, so ignore the Source field. Click the [Next]
button.

The Rhythmyx Workbench displays the Contained Slots dialog of the Template wizard.

8 Dispatch Templates cannot include Slots, so click the [Next] button.

The Rhythmyx Workbench displays the Content Types dialog of the Template wizard.

9 Move the Generic Content Type to the Associated Content Types field.

10 Click the [Finish] button.

Rhythmyx creates the Template and displays the Template editor for the
rffDsEIGenericSelector Template.

Defining the Dispatch Binding
Since we want to select a Template, we will bind the variable $sys.template.

The condition we want to test is the value of the usage field:
if usage=L, use rffPgEiGenericCategory, else use rffPgEIGeneric

We will need two bindings to implement this selection. (NOTE: In the FastForward Implementation, the
two bindings are combined into one script. Here, we separate the bindings for clarity.)

The first binding retrieves the value of the usage field and assigns it to a variable; we will use $usage:

Figure 140: $usage binding for Dispatch Template

 Chapter 6 Creating Slots and Templates 191

The second binding tests the value of $usage to determine which Template to select.

Figure 141: Condition Binding for Dispatch Template

To avoid an error in case the Usage field has a null value, the binding includes a script to assign a default
value of "N" to $usage)

The following screenshot illustrates the combined into one script:

Figure 142: Dispatch binding as a script

Multiple conditions can be nested. For example, suppose a third option, "F" was available for the usage
field; if the value of this field is "F", we want to use the rffPgEIGenericFund Page Template. The
condition we want to test is:

if usage=L, use rffPgEiGenericCategory,
if usage=F, use rffPgEIGenericFund
else use rffPgEIGeneric

The binding expression would be:
 if ($usage == 'L') {'rffPgEiGenericCategoryPage'; } else {if
($usage=='F') {'rffPgEiGenericFund';} else { 'rffPgEiGeneric';}; }

192 Rhythmyx Rhythmyx Implementation Guide

Creating an Automated Slot
In some cases, you may want to generate a list of Content Items for a Slot automatically rather than
requiring Content Contributors to assign related Content Items to the Slot manually. You may want to use
this practice if the criteria for including Content Items in the Slot are fixed and easy to define and
automate. For example, if you want to select all the Press Release Content Items created in a specific
year, you can define an expression that would select Content Items where the value of the Created Date
Field is in that year. Sometimes automation may be the only way to achieve the desired result. For
example, if you want to select the last five Press Releases to go Public, it is unlikely that you can find a
practical method that allows a Content Contributor to update the list, but you can easily define a query that
selects the required Press Release Content Items.

Automated Slots differ from Standard Slots in two ways:

 The Content Finder specified for an Automated Slot is the sys_AutoSlotContentFinder. One
of the required parameters of this Content Finder is the query parameter, which specifies the
query used to select the Content Items added to the Slot.

 During incremental publishing, all Content Items assembled using a Template that includes an
Automated Slot are republished. This processing ensures that changes to related Content
Items in the Slot are current on the published page.

Creating a Simple Automated Slot
The rffAutoPressReleases2005 Slot in FastForward is a Simple example of an Automated Slot. This Slot
has the following characteristics:

Slot Name Description Allowed Relationship
Type

Content Finder

rffSnPressReleases2005 Lists all Press
Release Content
Items created
during 2005

Active Assembly sys_AutoSlotContentFinder

The Allowed content for the Slot is defined as:

Content Type Template

Press Release rffSnDateAndTitleLink

Press Release rffSnTitleLinkBullet

In pseudocode, the query for this slot resembles the following:
select Press Release Content Items from the current Site where the
sys_contentcreatedate=2005 and order them by start date

 Chapter 6 Creating Slots and Templates 193

The query is written in JSR-170 query language, which does not include a date function or an IN operator
(for additional details, see Writing Automated Slot Queries on page 196). We can circumvent this
problem by specifying that the Content Start Date falls before January 1, 20006 and after December 31,
2004.

SELECT rx:sys_contentid, rx:sys_contentstartdate FROM rx:rffpressrelease
WHERE rx:sys_contentstartdate < '2006/1/1' AND rx:sys_contentstartdate >
'2004/12/31'

Specifying the current Site and the ordering results in the following query:
SELECT rx:sys_contentid, rx:sys_contentstartdate FROM rx:rffpressrelease
WHERE rx:sys_contentstartdate < '2006/1/1' AND rx:sys_contentstartdate >
'2004/12/31' AND jcr:path like :site_path ORDER BY
rx:sys_contentstartdate

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create the Press Releases 2005 Auto Slot:

1 In the Rhythmyx Workbench, from the Menu bar, choose File > New > Slot.

The Rhythmyx Workbench displays the New Slot wizard.

2 In the Slot name field, enter ffAutoPressReleases2005. This value is also entered in the Label
field. Change the value in the Label field to All Press Releases 2005.

3 In the Description field, enter All press releases with a start date in 2005.

4 In the Content finder drop list, choose sys_AutoSlotContentFinder.

Figure 143: Creating the rffAutoPressReleases2005 Slot

194 Rhythmyx Rhythmyx Implementation Guide

This Content Finder defines the list of Content Items for the Slot automatically. The criteria
for selecting the Content Items are defined in the parameters of the
sys_AutoSlotContentFinder extension. To specify the criteria for selection Content Items:

a) Click the browse button to display the Extension Parameters dialog.

b) Enter the following values for the parameters of the extension:

Parameter Value

query SELECT rx:sys_contentid, rx:sys_contentstartdate FROM rx:rffpressrelease
WHERE rx:sys_contentstartdate < '2006/1/1' AND rx:sys_contentstartdate >
'2004/12/31' AND jcr:path like :site_path ORDER BY rx:sys_contentstartdate

type sql (can leave unspecified; if unspecified, defaults to sql)

template rffSnDateAndTitleLink

max_results (Leave null)

c) When you finish entering values for the parameters, click the [OK] button to save your
edits.

Figure 144: rffAutoPressReleases2005 Query

5 Click the [Finish] button.

 Chapter 6 Creating Slots and Templates 195

6 Rhythmyx saves the Slot and displays it in the Slot editor.

Figure 145: rffAutoPressReleases2005 Editor

7 The Slot Type will remain Regular and the Allowed relationship type will remain
ActiveAssembly.

8 The Content Types and Templates are specified in the parameters of the
sys_AutoSlotContentFinder extension, so we can leave the Allowed content table empty or
specify the Press Release Content Type and the rffSnDateAndTitleLink Template as
illustrated..

9 In the Button bar of the Rhythmyx Workbench, click the save button.

196 Rhythmyx Rhythmyx Implementation Guide

Writing Automated Slot Queries
The value of the query parameter of the sys_AutoSlotContentFinder is written using JSR-170 Query
Language. JSR-170 Query Language is a language similar to Structured Query Language [SQL] used to
query content Repositories.

NOTE: For additional details, see the JSR-170 spec at http://www.jcp.org/en/jsr/detail?id=170.

If you are familiar with the use of Structured Query Language (SQL) to interact with relational databases,
the format of a JSR-170 Query Language query will look familiar:

select rx:sys_contentid,rx:sys_folderid from rx:contenttype
[,rx:contenttype…] where conditional expression order by fieldname

Note that all Rhythmyx elements in the query must be prefixed by the string rx:. If you do not prefix a
Rhythmyx element with this string, the output of the query will generate errors. Also, all Rhythmyx
elements should be formatted in lowercase (for example, to select Content Items of the Press Release
Content Type, you would specify from rx:press_release). Note that spaces are not valid and
should be replaced by underscores.

The select clause in the expression must include the fields rx:sys_contentid and
rx:sys_folderid. All data for the Content Items is returned. The specific fields used are defined by
the Template used to render the output.

The from clause specifies one or more Content Types for which to return data. Each Content Type
specified must be prefixed with the rx: string. Use commas to separate Content Types. To return all
Content Types, specify nt:base.

The where clause specifies the conditions used to select specific Content Items. The following operators
can be used:

 < (less than)
 > (greater than)
 = (equals)
 <= (less than or equal to)
 >= (greater than or equal to)
 <> (does not equal)
 LIKE

Multiple conditions can be specified using the following operators (in order or precedence):

 NOT

 AND

 OR

If a condition clause includes more than two conditions, use parentheses to group conditions. Parentheses
override the usual precedence order.

http://www.jcp.org/en/jsr/detail?id=170

 Chapter 6 Creating Slots and Templates 197

The LIKE operator matches the pattern string specified with the operator. The pattern string must be
enclosed in single quotation marks and can use the wildcards “%” (matches 0 or more characters) and “_”
(matches one character). When using the LIKE operator, use jcr:path to return Folder paths. For
example, the statement

select rx:sys_contentid, rx:sys_revisionid from rx:generic where
jcr:path like '//Sites/EnterpriseInvestments/Invest%'

returns all Content Items of the Generic Content Type that have a path that starts with
//Sites/EnterpriseInvestments/Invest, such as //Sites/EnterpriseInvestments/InvestmentAdvice and
//Sites/EnterpriseInvestments/InvestmentPlans.

Use the order by clause to specify the order of the returned results, specifying the field to use when
determining the order. For example, to order by Content Creation Date, you would add the clause

order by rx:sys_contentcreatedate

To return the first or last of a set of Content Items, combine the order by clause with the max_result
parameter of the sys_AutoSlotContentFinder. For example, if you wanted to publish the last five Press
Release Content Items to go public, you might add the following order clause to your query:

Order by rx:sys_startdate

Then specify max_results = 5.

You can use the Query Debugger (see below) to test your query once you write it.

Testing JSR-170 Queries
Rhythmyx provides a Query Debugger page where you can test JSR-170 queries. To access the query
debugger, start a browser and enter the following URL:

http://<RhythmyxServerName:RhythmyxPort/Rhythmyx/test/search.jsp
Where

 RhythmyxServerName is the name or IP address of the machine where you installed
Rhythmyx; and

 RhythmyxPort is the port the Rhythmyx server listens on.
You can also access the query debegger by logging in to the Rhythmyx Application Server Home

Page (start a browser and enter http://<RhythmyxServerName:RhythmyxPort in the
Address field), clicking on the Testing and Debugging tools for implementers link to go to the
Debugging and Testing Page, then clicking on the Test JSR-170 searches link.

The query box displays a default query. Modify it to match the query you want to use and click the
[execute] button to execute the query. If your query includes any variable parameters derived from JEXL
functions, use the Parameters table to specify sample values for each. Because sample values and values
calculated when processing Templates may not match exactly, the results of the query debugger may
differ slightly from the results generated when previewing a Template.

198 Rhythmyx Rhythmyx Implementation Guide

Automated Slots with Variable Parameters
In many cases, when defining an Automated Slot, you will want to query Slot Contents based on variable
data rather than based on constants. The variables must be defined in the bindings of the Template that
calls the Slot.

Variable parameters are used in the where clause of the Automated Slot select query. Variable
parameters are formatted with a colon before the name of the parameter:

:variablename
For example, suppose we wanted a richer Funds section of the Site, with subsections categorizing funds in
different ways (by type, such as REITs, Index Funds, and so forth; by fund size; by date established). To
implement this behavior, we would need two Content Types:

 A Funds Content Type that includes fields for the various categorizations we want. For the
purposes of this exercise, we will assume that this Content Type contains the following fields:
 Fund Type has the following options: REIT, S&P 500 Index, High Income, High

Growth

 Status has the options Open and Closed.
 A Funds Category Content Type that would render the index of Funds Content Items of each

combination of Fund Type and Status (in other words, REIT Open, S&P 500 Index Closed,
and so forth. This Content Type shares the Fund Type field with the Funds Content Type; the
same set of values will be available for the field in both Content Types.

Setting Up Bindings for an Automated Slot
The variables for an Automated Slot are defined in the Bindings of the Template that calls the Slot. You
must use a compound variable to define the variables for the Automated slot query. The "parent" variable
is added to the Slot definition in the Velocity markup. The "child" variables are used in the Automated
Slot query.

For example, to implement the behavior we want for our Funds section, we need two variables. We will
call the "parent" variable $fundselector. The child variables are

 $fundselector.ftype is used to pass the value of the Fund Type field to the Automated
Slot query. The binding for this variable is
$fundselector.ftype=$sys.item.getProperty(“fund_type”).string

 $fundselector.fstatus is used to pass the value of the Status field to the Automated
Slot query. To ensure that only open funds are selected, we will set the value of the Status
variable to open:
$fundselector.fstatus=”open”

When adding the Automated Slot to the Page Template, in the parameters parameter of the #slot macro,
specify the $fundselector parameter.

#slot (“rffFundsAutomatedList” ”” ”” ”” ”” $fundselector)

This call passes the ftype and fstatus variables to the Automated Slot.

 Chapter 6 Creating Slots and Templates 199

Adding Variables to an Automated Slot Query
When defining the where clause of an Automated Content query, compare the value of the Content Type
fields to the value of the variable:

rx:contenttypefield=:variablename
In our example, we want to select Funds Content Items where the value of the Fund Type field on the
Fund Content Item matches the value of the Funder Type field on the Funds Category Content Item and
where the value of the Status field of the Fund Content Item is open. The query would resemble the
following code:

select rx:sys_contentid,rx:sys_folderid from rx:funds where
rx:fund_type=:ftype and rx:fund_status=:fstatus

200 Rhythmyx Rhythmyx Implementation Guide

Troubleshooting Templates
When developing Templates, you may encounter one of the following common errors. This section
describes these common errors, how to diagnose the cause of the error, and how to resolve it.

Property Not Found Error
When previewing a Template, an error page is returned with the “Error reported” stating “property:
<name> not found”:

Figure 146: Error page showing "property not found"

This error indicates that the Content Item field was incorrectly spelled (“firstnme”, which probably should
have been “firstname”).

To resolve this problem, open the Template and correct the spelling of the field. To find the correct
spelling of the field, open the Content Type associated with the Template and find the field you intended
to add. In the Rhythmyx Workbench, you can display the Template Editor and the Content Type Editor
side-by-side, as illustrated in the screenshot below, making it easy to find the field you need. To display
the editors side-by-side, select one of the editors and drag it to the bar between the navigation view and
the other editor.

 Chapter 6 Creating Slots and Templates 201

Macro Rendered as Plain Text
When previewing a Template, you may see a Velocity macro rendered as plain text, as in the following
screenshot:

Figure 147: Assembled Content Item showing macro rendered as plain text

This output indicates that the macro was specified incorrectly. The following errors in specifying macros
may occur:

 The macro was misspelled (as in the example)
 The macro was specified using one or more characters of the wrong case (in other words, an

upper-case letter where a lower-case letter should have been used, or a lower-case letter where
an upper-case letter should have been used).

 The macro was specified without the “#” character before the macro name.

You can usually determine the error in specifying the macro by looking at the output. To address this
error, specify the macro correctly:

 Ensure that you included the “#” character before the macro.
 Ensure that all characters use the correct case.
 Ensure that the macro is spelled correctly.

To confirm the spelling and formatting of macros, check the .vm files where the macros are defined.
Macros shipped by Percussion Software are defined in the file
<Rhythmyxroot>/sys_resources/vm/sys_assembly.vm. Custom macros should be defined
in the file <Rhythmyxroot>/rx_resources/vm/rx_assembly.vm. (NOTE: Custom macros
should only be defined in the file <Rhythmyxroot>/rx_resources/vm/rx_assembly.vm.
The file <Rhythmyxroot>/sys_resources/vm/sys_assembly.vm is overwritten during
upgrade and any modifications to it will be lost.)

202 Rhythmyx Rhythmyx Implementation Guide

Invalid Argument
When previewing a Template, an error page is returned with the “Error reported” stating “Invalid
argument #<n> in VM #macroname”:

Figure 148: Error page showing "invalid argument" error

This error typically means that at least one parameter of the macro that requires a literal value was
specified without quotation marks. All literal values must be specified with quotation marks (best practice
is to use double quotation marks), while objects must be specified without quotation marks. In general, it
is safe to assume that anything that begins with the character “$” is an object and must not be encased in
quotation marks. Any other value is a literal value that must be encased in quotation marks.

Review all instances of the specified macro in the Template and ensure that all literal value arguments are
encased in quotation marks.

 Chapter 6 Creating Slots and Templates 203

Problem Assembling Output: Value is Badly Formed
When previewing a Template, an unformatted or partially formatted page is returned with an error
message stating that there was a problem assembling output for a Content Item, and that “This value
<name> is badly formed for a url parameter.

Figure 149: Partially assembled page showing incorrectly formatted object Template macro

This error indicates that the macro parameter, which is being specified as an object, was defined with
quotation marks. Objects must be specified without quotation marks, while literal values must be
specified with quotation marks. In general, it is safe to assume that anything that begins with the character
“$” is an object and must not be encased in quotation marks. Any other value is a literal value that must
be encased in quotation marks.

Review all instances of the specified macro in the Template and ensure that all object value arguments are
not encased in quotation marks.

204 Rhythmyx Rhythmyx Implementation Guide

Parameter Not Defined
When previewing a Template, an error page is returned with the “Error reported” stating "parameter not
defined:

Figure 150: Error page showing "parameter not defined error"

This error typically occurs when you have defined a compound variable (such as $circle.diameter and
$circle.radius) and have specified the "root" variable (in this example, $circle) with quotation marks (for
example, #slot ("template" "" "" "" "" "$circle"). The leaf variable you were using would be reported as
not defined (so in this case, if we were using $circle.radius, the message would read that "parameter radius
not defined".

Binding variables are objects and should be specified without quotation marks. In general, it is safe to
assume that anything that begins with the character "$" is an object and must not be encased in quotation
marks. Any other value is a literal value that must be encased in quotation marks.

To resolve this problem, check the bindings for the leaf variable reported in the error message and note the
root variable. On the Source tab, find the macro where the root variable is defined and remove the
quotation marks from it.

 Chapter 6 Creating Slots and Templates 205

Lexical Error
When previewing a Template, an error page is returned with the “Error reported” stating “Lexical error”:

Figure 151: Error page showing "lexical error"

The log returns a result similar to the following:

Figure 152: Velocity log showing output for a lexical error

Typically, this error indicates that the macros in the Template have been specified with a mix of single
quotation marks and double-quotation marks. In general, best practice is to use double quotation marks
for the parameters of all macros.

206 Rhythmyx Rhythmyx Implementation Guide

Velocity Code in Output
When previewing a Template, the assembled output includes Velocity code:

Figure 153: Assembled Template showing Velocity code in output

This output occurs if you have specified $sys.template as the value of a Template parameter in a macro.
The value of a Template parameter of a macro should be either the name of a Template or a binding that
resolves to the name of a Template. The system binding $sys.template should not be used as the value of
a macro parameter.

 Chapter 6 Creating Slots and Templates 207

Illegal Argument Exception: Target Template May Not be
Null
When previewing a Snippet Template that includes a link, an error page is returned with the “Error
reported” stating “java.lang.illegalargumentexception: targetTemplate many not be null.”:

Figure 154: Error page showing "target Template may not be null"

This error indicates that you have included the $rx.location.generate function with the targetTemplate
parameter, but have specified the Template incorrectly, usually by misspelling the name. Correct the
name of the Template in the binding. To find the correct name, use the Assembly View.

208 Rhythmyx Rhythmyx Implementation Guide

Problems Assembling Binary Outputs
When previewing a binary Content Item, such as an image file or a .pdf file, an error is reported:

 When previewing an image file, an error such as “The image <URL> cannot be displayed
because it contains errors.”

 When Previewing a .pdf file, Acrobat Reader displays an error stating that "The files does not
begin with '%pdf-'.

 When previewing a Microsoft Word document, the system offers to open a document called
“/render”. When opened, the document only contains the text “assembly/render”.

These outputs indicate that you have specified an invalid data type for the $sys.binary binding in the
Binary Template. The value of the $sys.binary binding must be a binary value. A common error is
specifying the wrong field, such as the sys_title field, which returns a string. Correct the value of the
binding to the name of a binary field.

 Chapter 6 Creating Slots and Templates 209

Could Not Find Method <Name> for Object [null]
When previewing a Template, an error page is returned with the “Error reported” stating “Could not find
method <name> for object [null]”:

Figure 155: Error page showing "could not find method <name> for object [null]

210 Rhythmyx Rhythmyx Implementation Guide

This error usually indicates that the name of a binding function has been specified incorrectly. The
method has generally been specified correctly. To address this problem, review your bindings and find
the ones that use the specified method, and correct the spelling of the function. If you are using a binding
function shipped by Percussion Software, check the Binding Variables section of the Workbench Help or
the Javadoc for the correct spellings. If you are using a custom binding function, check your code or your
own Javadoc.

 Chapter 6 Creating Slots and Templates 211

Java.lang.RuntimeException: Could not find method
<name> for object <bindingfunction>
When previewing a Template, an error page is returned with the “Error reported” stating
“java.lang.RuntimeException: Could not find method <name> for object [bindingfunctionclass]”:

Figure 156: Error page showing "Java.lang.RuntimeException: Could not find method <name> for

object <bindingfunction>"

212 Rhythmyx Rhythmyx Implementation Guide

This message may occur for two reasons:

 The name of the specific binding function method was specified incorrectly. The class of the
binding function is listed, and the incorrect method name is also indicated. To resolve this
problem, review your bindings for the ones that use the specified function. The method is
typically misspelled, so you can probably determine which method you intended based on the
information in the error message.

 The binding function was specified with the wrong number of parameters (either too many or
too few). The binding function and the parameters passed are listed. Look up the Javadoc for
the function to determine the correct number of parameters to pass to the function and correct
the specification of the function in the bindings.

You may also see the Java.lang.runtimeexception specifying that the method does not exist for object
[null]. This error indicates that you have specified both the function and the method incorrectly. Isolate
the incorrect method first; the incorrect function is in the same binding.

Problem Parsing Expression
When previewing a Template, an error page is returned with the “error reported” stating “Problem parsing
expression” <function>”.

Figure 157: Error page showing "problems parsing expression"

This error indicates that you have specified the parameters of the function incorrectly. A common error is
incorrect separators between parameters. Parameters should be separated by commas with no spaces.
Spaces, dots, or other separators will result in a parsing error. Another common error is including a stray
comma after the last parameter.

 Chapter 6 Creating Slots and Templates 213

Java.lang.NullPointerException
When previewing a Template, an error page is returned with the “Error reported” stating
“java.lang.NullPointerException”

Figure 158: Error page showing "null pointer exception"

Null pointer exceptions occur whenever a null value is passed to the Assembly engine. Null values could
occur for a variety of reasons. Common causes of null pointer exceptions include:

 Specifying a non-existent object as the value of a binding;
 Specifying a null as the value of a binding function parameter where nulls are not valid;

The error message does not give any details regarding the cause of the null pointer exception. To debug,
carefully examine all binding functions and macros to assess which is causing the exception.

 215

C H A P T E R 7

Creating Content Types

A Content Type defines a specific group of Content Items. A Content Type's definition consists of the
fields that make up the Content Type and their properties, and the Workflows and Communities associated
with the Content Type. The Content Type's definition also includes any validation, transform, and pre- and
post-processing extensions assigned to it. A Content Type can include local fields that are specific to its
definition as well as shared fields that are common to multiple Content Types, and system fields that the
CMS defines. Most Content Types have a specific function; for example, the FastForward Image Content
Type stores image files and the Calendar Content Type includes data for creating a calendar. A Content
Type includes the Content Editor that displays its fields to users for creating or editing a Content Item.

In this chapter, we will demonstrate how to create some of the Content Types that you specified in the
Modelling and Design section of this document:

 First we will create the Generic Content Type. We will begin with this Content Type because
it is basic: it includes fields that already exist (except for a required dummy local field) and
includes no special features. The Generic Content Type is a good example for demonstrating
the basic procedure for creating a Content Type.

 Then we will create the Image Content Type. We include this Content Type because most
systems require one or more Content Types that upload images. Furthermore, it includes a
single local field, which allows us to introduce the concept of creating local fields in a Content
Type.

 Finally, we will create a modified version of the Events Content Type that includes a child
field set. A child field set is a field that stores a table of data. We have included the modified
Events Content Type because implementers of Content Types that require child field sets must
know the procedure for configuring them.

216 Rhythmyx Rhythmyx Implementation Guide

Note that you most likely have the FastForward Generic, Image, and Event Content Types on your system
as part of Rhythmyx so we are using them in this chapter for demonstration purposes only. You would use
the information in your implementation plan as substitute for the data used in the instructions in this
chapter (or duplicate the Content Types we are creating but give them different names).

In most cases, we will only discuss Content Type fields when the information has not already been
covered in Creating Shared Fields (see page 81). Some of the information that we will discuss includes
how to create child field sets and how to override shared fields. We will also review some of the fields
used to upload an image file since their functions are integral to the Image Content Type.

 Chapter 7 Creating Content Types 217

Summary of Content Types
The three topics in this section outline the specifications for the Content Types that we will create in this
chapter.

 Generic Content Type (see page 217)
 Image Content Type (see page 219)
 Event Content Type (see page 220)

Generic Content Type
The Generic Content Type specification shows the fields in the FastForward Generic Content Type and
their properties. Review this table now to see the fields included in the Content Type. Note that internally
the FastForward name for this Content Type is rffGeneric.

Notice that the system fields sys_title, sys_communityid, sys_lang, sys_currentview, sys_workflowid, and
sys_hibernateVersion are listed. By default, they are included in every Content Type because Rhythmyx
uses them for internal processing of Content Items.

The Generic Content Type is intended to serve a variety of purposes, so its other fields serve common
functions. They are all system or shared fields and are included in many Content Types. The displaytitle
(Title) field holds the Content Item title that is visible to users. Three date fields, sys_contentstartdate,
sys_contentexpirydate, and sys_reminderdate hold the dates for publishing and removing the content from
a Web site, and a date for sending notifications (for any purpose). Keywords and description fields hold
search words and phrases for locating the Content Item (in general, words and phrases that are not
included in the text content of the item). Callout and body fields hold a summary of the body content and
the body content, respectively. A filename field stores the filename of the Content Item, and the sys_suffix
field stores the suffix portion of the filename. These fields are used to publish the Content Item to the
correct location.

A local field named Usage, which lets the content contributor specify whether or not the item holds
information about a product category, is included. This field enables a Dispatch Template (see page 187)
to determine the correct Page Template to be applied to an item.

Below the table, the Default Values, Allowed Workflows, Default Workflow, and Communities that can
view the Content Type are listed.

218 Rhythmyx Rhythmyx Implementation Guide

Notice that most required fields have a default value. This is recommended to simplify the process of
creating a new item in the Active Assembly interface. When a user creates a new item in Active
Assembly, the following dialog opens:

Figure 159: Create Item dialog

The only fields available are the Title and the Content Type. Rhythmyx places the value entered into the
Title field into the sys_title field and the displaytitle field (if the displaytitle field exists). With some
exceptions in binary Content Type fields, if you mark fields other than sys_title and displaytitle as
required, but do not give them a default value, the user is required to open the content editor and fill in the
field before creating the item. If you enter default values during implementation, the user can avoid this
extra step. (Notice that the sys_workflowid field appears to have no default value, but when the content
item is created, Rhythmyx gives it the value of the default Workflow for the Content Type.)

 Chapter 7 Creating Content Types 219

 We will continue to refer to the Generic Content Type specification when we create the Generic Content
Type in the section Basic Content Type Creation (on page 222).

Image Content Type
The Image Content Type specification (see page 467) shows the fields in the FastForward Image Content
Type and their properties. We will refer to this table when we create the Image Content Type in the
section Image Content Type Creation (see page 239). Internally in FastForward, this is referred to as the
rffImage Content Type.

Review this table now to see the fields included in the Content Type. Below the table, the Default Values,
Allowed Templates, Allowed Workflow, Default Workflow, and Communities that can view the Content
Type are listed.

In the preceding discussion of the Generic Content Type (see page 217), we explained that most of the
required fields have default values in order to simplify the process of creating a new content item in
Active Assembly. In the Image Content Type, the fields img1 and img1_ext are required but do not have
default values. The system makes an exception for these fields for the ease of creating an Image content
item in Active Assembly, but no further Workflow processing of them can be completed until an image is
uploaded.

As in the Generic Content Type, the system fields sys_title, sys_communityid, sys_lang, sys_currentview,
sys_workflowid, and sys_hibernateVersion are include by default for internal processing of Content Items.

Notice that some of the other fields used in the Generic Content Type for common functions are used in
the Image Content Type for the same functions. The displaytitle (Title) field holds the Content Item title
that is visible to users. Three date fields, sys_contentstartdate, sys_contentexpirydate, and
sys_reminderdate hold the dates for publishing and removing the content from a Web site and a date for
sending notifications (for any purpose). The description field holds search phrases for locating the Content
Item (in general, phrases that are not included in the text content of the item). A filename field stores the
filename of the Content Item, and the sys_suffix field stores the suffix portion of the filename. These
fields are used to publish the Content Item to the correct location.

Most of the remaining fields in the Image Content Type are taken from the sharedimage field set and are
used to upload images. Two versions of the same fields are included, one for uploading full size images
(the full size image fields are prefixed with img1) and one for uploading a thumbnail graphic of the same
image (the thumbnail image fields are prefixed with img2). Since many systems do not require the
thumbnail image, the img2 fields are hidden by default. The fields that are used to store the uploaded
image are img1 and img2. The other fields that begin with the img1 and img2 prefixes are used to store
metadata associated with the image: img1_filename and img2_filename store the filename; img1_ext and
img2_ext store the extension portion of the filename; img1_type and img2_type store the MIME type;
img1_height, _width, and _size and img2_height, _width, and _size store the height, width, and size of the
images; img_alt stores text to display if image display fails for img1 or img2.

The img_category field is local to the Image Content Type and is used to assign a category to the image.
The category has various functions, including finding the image in a search and determining whether to
display the image on a Web page.

The webdavowner field stores the user who has a lock on the Content Item when content is uploaded
through Rhythmyx's WebDAV feature. This document does not cover WebDAV. See the document
Implementing WebDAV in Rhythmyx for information about WebDAV.

220 Rhythmyx Rhythmyx Implementation Guide

The shared filename and webdavowner fields and the sharedimage img1_size and img1_ext fields are
hidden because they are used for Rhythmyx's internal processing.

In FastForward the Image Content Type is visible to the Enterprise Investments, Enterprise Investments
Admin, Corporate Investments, and Corporate Investments Admin Communities. In our example, we will
assume that content contributors only enter text and reserve the creation of Image Content Types for
administrators. Therefore we will change the visible Communities to Enterprise Investments Admin and
Corporate Investments Admin only. The purpose of this change is to demonstrate why you might choose
to make a Content Type visible to certain Communities only.

Event Content Type
The Event Content Type specification (see page 457) shows the fields in the FastForward Event Content
Type and their properties. We will refer to this table when we create the Event Content Type in the section
Creating a Content Type with a Child Field Set (see page 250). Internally the FastForward name for this
Content Type is rffEvent.

Review this table now to see the fields included in the Content Type. Below the table, the Default Values,
Allowed Templates, Allowed Workflow, Default Workflow, and Communities that can view the Content
Type are listed.

As in all Content Types, the system fields sys_title, sys_communityid, sys_lang, sys_currentview,
sys_workflowid, and sys_hibernateVersion are include by default for internal processing of Content Items.

Notice that some of the other fields used in our other Content Types for common functions are used in the
Event Content Type for the same functions. At this point, the practicality of using system and shared fields
should be evident; all three of our Content Types have largely reused existing fields. The displaytitle
(Title) field holds the Content Item title that is visible to users. Three date fields, sys_contentstartdate,
sys_contentexpirydate, and sys_reminderdate hold the dates for publishing and removing the content from
a Web site and a date for sending notifications (for any purpose). The keywords and description fields
hold search words and phrases for locating the Content Item (in general, words phrases that are not
included in the text content of the item). Callout and body fields hold a summary of the body content and
the body content, respectively. A filename field stores the filename of the Content Item, and the sys_suffix
field stores the suffix portion of the filename. These fields are used to publish the Content Item to the
correct location.

The Event Content Type uses four local fields that hold event information. event_start and event_end hold
the start and end dates for an event. event_type lets the content contributor choose a type of event; the
contents of this field can be used for searching Event Content Items or determining which should be
included on a Web page. In FastForward, the event_location field uses a sys_EditBox control that lets the
content contributor enter a simple location for the event. We have changed event_location to use a
sys_Table control. When the implementer chooses the sys_Table control the entry is no longer referred to
as field but is called a child field set. We have done this to demonstrate how to create and use a child field
set. Our event_location child field set has four entries as shown in the following table:

 event_location child field set:

Name Label Control Name Occur Data Type Format

event_city Event City: sys_EditBox optional text 50

event_state Event State: sys_EditBox optional text 50

event_address Event Address: sys_TextArea optional text 255

 Chapter 7 Creating Content Types 221

Name Label Control Name Occur Data Type Format

event_contact Event Contact: sys_TextArea optional text 255

We have also modified the shared/callout field to use sys_EditBox control instead of the default
sys_EditLive control so that we can demonstrate how and why to override the properties of a shared field.

222 Rhythmyx Rhythmyx Implementation Guide

Basic Content Type Creation
You create Content Types using the Rhythmyx Workbench's New Content Type Wizard and Content
Type Editor. Once Content Type objects are created, you can access them in the Content Design view of
the Rhythmyx Workbench to edit or view them in the Content Type Editor. See the Rhythmyx Workbench
Online Help for information about the New Content Type Wizard and Editor.

You create and access Content Types from the Rhythmyx Workbench's Content Design view. You can
create any number of user-defined sub-folders for storing your Content Types, however, you cannot add or
modify Content Types in the Navigation folder; its Content Types are defined in the navigation.properties
file. See the chapter Managed Navigation (see page 279) for more information about managed navigation.

Figure 160: Content Design View

This section will show you how to create the FastForward Generic (rffGeneric) Content Type, which
provides a good starting point because it is composed of previously created shared and system fields
(except for the local field, Usage) and includes no special features. Its main fields are Display Title, Body,
and Callout (summary).

The Generic Content Type can be used for a range of purposes because many varieties of content simply
require a display title, a body, and a summary.

 Chapter 7 Creating Content Types 223

Note: You cannot create a Content Type named Generic, since it already exists in FastForward. Instead,
create a similar Content Type included in your implementation plan or copy our steps but give your
Content Type a different name.

This section includes the following steps for creating and viewing the Generic Content Type.

1 Creating the Generic Content Type object (see page 223).

2 Including fields (see page 227).

3 Specifying an Icon for the Generic Content Type. (see page 229)

4 Making the Generic Content Type Visible to Another Community (on page 231).

5 The Generic Content Editor (see page 235).

6 Viewing Generic Content Items (see page 236).

Creating the Generic Content Type Object
In this topic we will initially create your version of the Generic Content Type object using the New
Content Type wizard. We will assume that this is the first of your modeled Content Types that you are
creating, and we will begin by creating a subfolder below the Content Types node for holding the
modelled Content Types, which will all be used on your customer site. We will call the folder
CustomerSite.

To create your Generic Content Type:

1 In the Rhythmyx Workbench, make Content Design the visible view.

2 Right-click the Content Types folder and choose New > Folder.

A sub-folder named New Folder appears under the Content Types folder.

3 Right-click on New Folder and choose Rename.

The folder name is highlighted.

4 Type CustomerSite and press ENTER.

The folder is now named CustomerSite.

5 Click the CustomerSite folder and in the menu bar choose File > New > Content Type.

The Rhythmyx Workbench displays the New Content Type wizard.

6 In Content Type name, enter the name Generic for the Generic Content Type.

The wizard automatically enters the name in Label. Leave the value in Label.

7 In Description, optionally enter a description of the Generic Content Type.

224 Rhythmyx Rhythmyx Implementation Guide

8 To make the Generic Content Type visible to all Communities except Default, click Default
under Visible to these communities and click to move it to the Available communities
list box.

Figure 161: New Content Type wizard, first screen

Note: The Default Community is included with Rhythmyx and is not part of the FastForward sample;
therefore it is not usually given access to FastForward components.

9 Click [Next].

The Workflow dialog of the wizard opens.

10 To enable the arrow buttons, click one of the Workflows in the Available workflows list box.
Since you want to Allow users to assign either the Simple or the Standard Workflow to the

Generic Content Type, click to move them both from the Available workflows list box
to the Allowed workflows list box.

 Chapter 7 Creating Content Types 225

11 Under Default, choose Standard Workflow.

Figure 162: New Content Wizard, second dialog

12 Click [Finish].

The wizard closes. The Content Type editor opens in a window in the Workbench so that you
can add fields to the Content Type.

226 Rhythmyx Rhythmyx Implementation Guide

Your Generic Content Type object is created and appears under the CustomerSite folder in
Content Design view. Since you have established the Workflows available to the Content
Type, they are listed below it under the Allowed Workflows folder. At this point, you have
not created any templates that are local to the Content Type so they are not listed below the
Allowed Templates and XSL Variants folder.

Figure 163: New Content Type in Content Design View

 Chapter 7 Creating Content Types 227

Including Shared and System Fields
After you complete the New Content Type wizard and click [Finish], the Content Type editor
automatically opens to the Content Type tab in a Workbench window. The Content Type already displays
the following mandatory system fields in the Fields and Field Sets table:

 sys_title - Rhythmyx's internal title for Content Type
 sys_communityid - Community assigned to Content Type; by default, the Community of the

login user.
 sys_lang - Locale assigned to Content Type; by default, the Locale of the login user.
 sys_currentview - (used internally by system)
 sys_workflowid - Default Workflow assigned to Content Type.
 sys_hibernateVersion - (used internally by system)

Figure 164: Content Type Editor

You can move the position of these fields in the table to insert other fields above or below them.

For the Generic Content Type, you simply include additional existing shared and/or system fields. One
local field is required; we will also add the local field usage.

To include fields in the Generic Content Type:

1 Refer to the rffGeneric Content Type specification to identify the first field to insert into the
Generic Content Type. The first field in the table is sys_title. Since sys_title is included by
default, identify the next field, shared/displaytitle. Since you will be using shared fields that
you have created, they will have slightly different names than the fields in the specification.

2 On the Content Type editor's Content Type tab in the Shared and system fields box, expand
Shared. The two shared field sets that you have added, shared and sharedimage appear.

228 Rhythmyx Rhythmyx Implementation Guide

3 Expand the field set shared.

Figure 165: Expanded Shared Field Set in Content Type tab

4 Select displaytitle and click to move it to the first empty row in the Fields and field sets
table.

5 Since you want displaytitle to appear directly under sys_title, select the row for displaytitle in

the Fields and field sets table and click until displaytitle appears directly under
sys_title.

6 Leave the default values for displaytitle.

7 Repeat steps 1 through 6 for each of the fields listed in the table in the rffGeneric Content
Type specification. Since some of the fields are system fields, expand System instead of
Shared in the Shared and system fields box to locate the field. For each field, leave the default
values and settings.

If you need help adding the local usage field, see Including a Local Field (see page 241).

When you are done, the Content Type tab should appear as follows. Note that not all of the
fields are visible in the portion of the Fields and Field Sets table shown.

8 To save the changes you have made in the editor, click the Save icon in the Menu bar.

9 Click the Properties tab at the bottom of the Content Type editor to specify an icon to
represent the Content Type (see page 229).

 Chapter 7 Creating Content Types 229

Specifying an Icon for the Generic Content Type
The Property tab should appear as follows:

Figure 166: Properties Tab

By default, the Content Type Icon field is set to None, indicating that the default icon will represent
Generic content items in interfaces that use icons. Rhythmyx already includes a custom icon for the
Generic content item, rffGeneric.gif, in the folder <Rhythmyx
root>\rx_resources\images\ContentTypeIcons. During an actual implementation, once you select an icon
file, Rhythmyx moves it to this folder if it is not already located there.

To specify the custom icon for the Content Type:

1 Change the value in the Content Type Icon drop list from None to Specified. (A third option is
File Extension Field; we will cover its use in the Image Content Type topic Entering Content
Editor Properties (see page 243)).

230 Rhythmyx Rhythmyx Implementation Guide

The Properties tab opens a search dialog and displays a blank field next to the Content Type
Icon field.

Figure 167: Choosing a Content Type Icon

2 If the search dialog does not open to ...\rx_resources\images\ContentTypeIcons, browse to the
location. Choose rffGeneric.gif and click [Open].

3 The search dialog closes and the blank field now stores the filename rffGeneric.gif.

Figure 168: Generic Icon selected

The rffGeneric.gif icon will now represent Generic content items in interfaces that use
icons.

4 Save your changes.

 Chapter 7 Creating Content Types 231

Making the Generic Content Type Visible to Another
Community
In the Workbench, look at Community Visibility view. Your Generic Content Type is listed under
Communities that it is visible to.

Figure 169: Community Visibility view

If you want to make the Generic Content Type visible to another Community, for example, Default, add
the Default Community to the Object's ACL.

To add the Default Community to the Generic Content Type's ACL:

1 In Content Design View, right-click on Generic and choose Security.

232 Rhythmyx Rhythmyx Implementation Guide

The Object ACL dialog opens for Generic.

Figure 170: Object ACL dialog

Although a Default user has access to the object, the Default Community is not listed.

2 Click [Add ACL Entry].

 Chapter 7 Creating Content Types 233

The Add ACL Entry dialog opens.

Figure 171: Add ACL Entry dialog

3 In the Communities table select Default and click the right arrow.

4 Default moves to the Add to ACL table.

5 Click [OK].

234 Rhythmyx Rhythmyx Implementation Guide

The Add ACL Entry dialog closes and the Default Community is added to the Entries table in
the Object ACL dialog.

Figure 172: Object ACL dialog

6 Click [OK].

The Default Community can now access the Generic Content Type.

NOTE: You could also have dragged and dropped the Generic Content Type onto the Default Community
in Community Visibility view to give the Default Community access to the Generic Content Type. This
method is especially useful for giving a Community access to multiple objects; instead of accessing the
ACL for each object, you can multi-select the objects and drag and drop them onto the Community.

 Chapter 7 Creating Content Types 235

The Generic Content Editor
At least one Template must be associated with a Content Type to view the Content Editor correctly. From
Assembly Design view, drag the shared rffPgEiGeneric Template on top of the Generic Content Type's
Allowed Templates and XSL Variants folder.

Since the Generic Content Type is complete, a user in Content Explorer can open the Generic Content
Editor if the user is a member of a Community associated with the Content Editor. You do not have to
restart the Rhythmyx Server to make the new Content Editor available in Content Explorer.

Figure 173: New Content Type in drop menu

236 Rhythmyx Rhythmyx Implementation Guide

The following graphic shows a Content Item entered in your new Content Editor.

Figure 174: Generic Content Editor

If you refer back to the table in the Generic Content Type specification, you can see that the
fields appear in the order in which you entered them. The Content Editor displays the Labels
and controls specified for each field. Note that the required fields have an asterisk next to
them.

Since the filename, sys_contentview, and sys_hibernateVersion fields are hidden, they do not
appear.

Viewing Generic Content Items
In the recommended implementation roadmap, we create local templates after creating Content Types.
However, in this document, the chapter that explains creating local templates precedes this chapter.
Therefore, to understand how to create local templates for your new Generic Content Type, refer back to
the chapter Creating Slots and Templates (see page 113).

 Chapter 7 Creating Content Types 237

When FastForward is installed, the Generic Content Type's references to Templates that the Generic
Content Type can use appear under the Content Type's Allowed Templates and XSL Variants subfolder in
Content Design view.

Figure 175: Allowed Templates for Generic Content Type

Once the templates are assigned to the Content Type, its Content Items can be published or previewed in
the format of the template.

Here, we will preview a Generic Content Item using three different templates assigned to it. The templates
shown below are rffPgEIGeneric, rffSnCallout, and rffSnTitleLink. rffPgEIGeneric and rffSnTitleLink are
explained in detail in the chapter Creating Slots and Templates (see page 125).

The rffPgEIGeneric template displays the Generic Content Type in the following page format. Note that
the graphics and navigation links on the top and left side are part of the global template. The local
template only shows the Generic Content Item's displaytitle field (Variable Rate Mortgage) and the body
field (the text below displaytitle).

Figure 176: Generic Content Item formatted by page template

238 Rhythmyx Rhythmyx Implementation Guide

The rffSnCallout template displays the Generic Content Type in the following snippet format. This
template only shows the callout (summary) field. To display this snippet on your Web site, you would
have to include it on a Page template.

Figure 177: Generic Content Item formatted with s-Callout template

The rffSnTitleLink template displays the Generic Content Type in the following snippet format. This
template only shows the displaytitle field as a link to the item in the rffPgEIGeneric format. You might
include this snippet in a list of links to related topics on a page in your Web site.

Figure 178: Content assembled in s-TitleLink template

 Chapter 7 Creating Content Types 239

Image Content Type Creation
This section shows you how to create a typical Content Type for uploading an image that you can use on
pages in your Web site. Since FastForward includes the Image Content Type for this purpose, we will
demonstrate how to create this Content Type.

We demonstrate the Image Content Type because most systems require one or more Content Types that
upload images.

The Image Content Type consists of shared and system fields, like the Generic Content Type. In addition
to including shared fields from the shared field set, the Image Content Type includes fields from the
sharedimage field set, which defines fields that are used to upload an image. The Image Content Type
also includes a local field, which we will add in the topic Including a Local Field (see page 241).

In the chapter Creating Shared Fields (see page 81), the topic sharedimage Field Set (see page 84)
explains how image fields upload images. Let us review the process again here:

The field that uploads the file is assigned the sys_File control. In our Image Content Type, the field will be
img1. The sys_file control lets the user select a file and uploads it into the img1 field. When the sys_File
control is used, a Java extension (Java plugin) that extracts and inserts metadata from the uploaded file
into other fields in the Content Type is included. The extension looks for fields that are prefixed with the
name of the upload field (in this case, img1) and suffixed with specific metadata labels. For example, it
looks for the field img1_filename and, if it finds it, inserts the uploaded file's file name into
img1_filename. In FastForward's Image Content Type, both the sys_FileInfo and sys_imageInfoExtractor
extensions are used to perform this extraction of metadata, but in our example, we only use
sys_imageInfoExtractor since it encompasses the functionality of sys_FileInfo. For a full list of the fields
sys_imageInfoExtractor looks for and the content that it inserts into them, see the topic
sys_imageInfoExtractor in the Rhythmyx Technical Reference. Note that the sharedimage Field Set does
not include all of the fields that sys_imageInfoExtractor looks for, but only the ones that implementers
most commonly use in Content Types. You may include any fields with sys_imageInfoExtractor metadata
suffixes that are not included in the sharedimage Field Set as local fields. We will demonstrate how to add
the sys_imageInfoExtractor java extension in Adding Pre-processing Extensions (see page 272) instead
of in this section.

This section includes the following steps for creating and viewing the Image Content Type:

1 Creating the Image Content Type object (see page 240).

2 Including a local field (see page 241).

3 Entering Properties. (see page 243)

4 The Image Content Editor (see page 246).

5 Image Content Items (see page 248).

6 WebImageFX (on page 249).

240 Rhythmyx Rhythmyx Implementation Guide

Creating the Image Content Type Object
In this topic we will initially create your version of the Image Content Type object using the New Content
Type wizard. We will place the object in the CustomerSite folder along with the Generic Content Type.

To create your Image Content Type:

1 In the Rhythmyx Workbench, make Content Design the visible view.

2 Click the CustomerSite folder and in the menu bar choose File > New > Content Type.

The New Content Type wizard opens.

3 In Content Type name, enter a name for your Image Content Type, such as Image.

The wizard automatically enters Image in Label. Leave the value in Label.

4 In Description, optionally enter a description of the Image Content Type.

5 In this example, you only want to make the Image Content Type visible to Communities
assigned to administrators, since your other users are only responsible for entering text. Under
Visible to these communities, click Corporate Investments and click to move it to the
Available Communities list box. Then, under Visible to these communities, click Default and
click to move it to the Available communities list box. Repeat the procedure for
Enterprise Investments. (You could also use CTRL-click to select all three Communities and
then click to move them all at once to the Available communities list box.)

6 Click [Next].

The Workflow dialog of the wizard opens.

7 Since you want to allow users to assign either the Simple or Standard Workflow to the Image

Content Type, click to move them both from the Available workflows to the Allowed
workflows list box.

8 Under Default, choose Standard Workflow.

9 Click [Finish].

 Chapter 7 Creating Content Types 241

The wizard closes. The Content Type editor opens in a window in the Workbench so that you
can add fields to the Content Type. Your Image Content Type object is created and appears
under the CustomerSite folder in Content Design view. Since you have established the
Workflows available to the Content Type, they are listed below it under the Allowed
Workflows folder. At this point, you have not created any templates that are local to the
Content Type so they are not listed below the Allowed Templates and XSL Variants folder.

Figure 179: Image_Test Content Type

10 The Content Type editor opens so that you can add fields to the Content Type.

Including a Local Field
After you complete the New Content Type wizard and click [Finish], the Content Type editor
automatically opens to the Content Type tab. The Fields and Field Sets table on the Content Type tab
includes the mandatory system fields. See Including Shared and System Fields (see page 227) for a list
of these mandatory fields.

When we created the Generic Content Type, we added shared and system fields that already existed, so we
will not cover how to add these types of fields in this topic. Here, we will show how to add a local field.

To include fields in the Image Content Type:

1 Refer to the topic rffImage Content Type specification to identify the first field to insert into
the Image Content Type. The first field in the table is sys_title. Since sys_title is included by
default, identify the next field, shared/displaytitle. Remember to use the shared and
sharedimage shared field sets and their fields that correspond to those in the
rffImageContentType specification.

2 Include the shared/displaytitle field in the Image Content Type as described in steps 1 through
6 in the topic Including Shared and System fields (see page 227).

3 Continue to add shared and system fields to the Image Content Type as described in the topic
Including Shared and System fields (see page 227) until you reach the local field
img_category.

4 To add the img_category field complete the following steps.

NOTE: Local fields are entered in the same manner that shared fields are entered into shared field sets.
For in depth discussions about field properties and the values that you can enter into them, in the
chapter Creating Shared Fields, see the topics Implementing the "shared" Field Set (see page 87)
and Implementing the "sharedimage" Field Set (see page 98).

242 Rhythmyx Rhythmyx Implementation Guide

a) In the first empty row in the Fields table, under Name, click in the cell and enter
img_category. You may have to click if the next available column is hidden
from your view. img_category is the internal name Rhythmyx uses for the field. It is best
practice to enter all field names in lower case. The editor automatically enters
Img_category: under Label.

b) Change the entry in Label to Image category:

c) Click the cell under Control to access a drop list of control options. At this point, all of
controls (except sys_table) are available, including array controls (sys_checkBoxGroup,
sys_checkBoxTree, and sysDropDownMultiple) as well as non-array controls (all others).
However, once you save the Content Type, if you want to edit the control associated with
the field, you will only see array or non-array control options depending on your initial
choice. In other words, if you initially choose an array control, you can only change the
field to use another array control; but if you initially choose a non-array control, you can
only change the field to use another non-array control.

Choose sys_DropDownSingle. Populate the control with the choices from the Keyword FF
Image Category. For information about the sys_DropDownSingle control and how to
populate it with keyword choices, see the topic Implementing a List Control (see page
95) in the chapter Creating Shared Fields. For instructions on creating a Keyword and
Keyword Choices, see the topic Creating and Using Keywords (see page 291) later in this
chapter.

d) Under Field Properties, choose G in Mnemonic, and leave all of the other properties at
their default values.

e) Use to move the img_category field under the img_alt field.

5 Add the remainder of the shared and system fields. Move them into the order specified in the
rffImage Content Type specification (see page 467). You can use ALT + click to choose a
group of fields and move them up or down together.

 Chapter 7 Creating Content Types 243

When you are done, the Content Type tab should appear as:

Figure 180: Content Type tab, Image Content Type

6 Now, to enter additional properties (see page 243), click the Properties tab of the Content
Type editor.

Entering Content Editor Properties
Most of the fields on the Properties tab of the Content Type editor are filled in with values entered in the
New Content Type wizard. These fields (Label, Description, Allowed workflows and Default workflow) are
duplicated on the Properties tab so that implementers can edit them after the Content Type is created. We
will not discuss these fields because you have already given them values when you entered your Image
Content Type in the New Content Type wizard.

By default, Enable Searching for this Content Type is checked. Since only administrators use our version of
the Image Content Type, we do not want it available for searching. Our administrators plan to keep the
few Image Content Items that they create in a single folder where they can always find them. Therefore,
uncheck Enable Searching for this Content Type.

244 Rhythmyx Rhythmyx Implementation Guide

The Properties tab includes the Content Type Icon field, set to None by default. When we entered the
Generic Content Type, we set this field to Specified and indicated a location where a specified file was
stored. For the image Content Type, choose File Extension Field in the Content Type Icon drop list. The
Properties tab now displays a drop list of all text fields in the Image Content Type next to the Content
Type Icon field. In the drop list, choose the field in the Content Type that holds the uploaded file's
extension. In this case, choose the field img1_ext:

Figure 181: File Extension Field option

When you choose File Extension Field, Rhythmyx locates the icon filename in one of two files that map
extensions to icon files. First Rhythmyx looks at the file <Rhythmyx
root>\rx_resources\images\ContentTypeIcons\FileIcons\FileIcons.properties, and if it does not find a
mapping for the extension, it looks in the file <Rhythmyx
root>\sys_resources\images\ContentTypeIcons\FileIcons\FileIcons.properties. The FileIcons.properties
file in the sys_resources folder holds Rhythmyx-provided extension/icon mappings. The
FileIcons.properties file in the rx_resources folder holds user-provided extension/icon mappings. These
mappings are for additional extensions or override the mappings for extensions in the sys_resources file.
The rx_resources FileIcons.properties file may also contain Content Type/icon mappings for Content
Types that have no matching extension/icon mapping. If neither of these types of mappings is found in
one of the files, the system uses the default icon to represent the content item. Note that the files that
store the icons must be present in the same folder as the FileIcons.properties file that maps them. For
example, the <Rhythmyx root>\rx_resources\images\ContentTypeIcons\FileIcons folder holds the
following contents:

Figure 182: FileIconProperties folder

For more information about configuring icons to represent Content Types, see the section Adding Custom
Icons for Content Types in the document Customizing the Active Assembly and Content Explorer
Interfaces.

The Properties tab also includes a tabbed box for entering item transforms or validations and pre-
processing and post-processing extensions (java plugins)

 Chapter 7 Creating Content Types 245

Since the Image Content Type requires several pre-processing extensions, we will add them to the Pre-
Processing tab. You can move ahead to the section for adding the pre-processing extensions now, or
proceed to close and save the Content Editor, and reopen it and add them later.

 See Item Transformation, Validation,and Pre- and Post-processing (see page 271) for
definitions of item transforms, validations, and pre and post-processing extensions.

 See Adding Pre-processing Extensions (see page 272) for instructions on adding the pre-
processing extensions that the Image Content Type requires.

Figure 183: Image Content Type Properties Tab

Once you have completed the Properties tab, creation of the Image Content Type is complete.

To save changes you have made and close the Content Type editor:

1 In the Menu bar, choose File > Close.

The Save Resource dialog opens:

Figure 184: Save Resource Dialog

246 Rhythmyx Rhythmyx Implementation Guide

2 Click [Yes].

The Save Resource dialog closes and the Content Type editor closes.

The Image Content Type appears in the Community Visibility view under the Communities
that you made it visible to, Enterprise Investments Admin and Corporate Investments Admin:

Figure 185: Communities with Image Content Type

Now, an administrator in Content Explorer can open your Image Content Editor.

The Image Content Editor
At least one Template must be associated with the Image Content Type to view the Image Content Editor
correctly. From Assembly Design view, drag the shared rffSnTitleLink Template on top of the Image
Content Type's Allowed Templates and XSL Variants folder.

 Chapter 7 Creating Content Types 247

The Image Content Type is still not complete, because the pre-processing extension that uploads the
image file had not yet been added. If you want to be able to view the Image Content Type as it is shown
below, perform the steps in Adding Pre-processing Extensions (see page 272) now. Otherwise, you can
open the Content Editor in Content Explorer, but you cannot upload an image.

In the following graphic, an image is already uploaded into the Content Editor and pre-processing
extensions have filled in metadata. To initially upload a file, a user clicks [Browse] and chooses an image.
The user must click [Insert] to enter the metadata properties in the Image File Name, Image Mime Type,
Image Height, and Image Width fields.

Figure 186: Image Content Editor

Notice that the fields appear in the order that you entered them, with asterisks next to required fields.
Since the sys_file control has already uploaded the image, the text box beside the image field no longer
holds the file name. The sys_imageInfoExtractor extension has located the Image Mime Type, Image
Height, and Image Width fields and filled them with the appropriate values.

Field visibility rules (see page 104) associated with the Image Extension, Image File Size, Filename, and
webDAVOwner fields as well as all of the thumbnail fields prevent them from appearing in the Content
Editor. The internal sys_currentView field does not appear because it is assigned a sys_hiddenInput
control.

If a user clicks Preview File beside Image, a preview of the image pops up.

248 Rhythmyx Rhythmyx Implementation Guide

To change the uploaded file, the user clicks [Browse] and chooses a new image. The user must click
[Update] to enter the new metadata properties in the Image Mime Type, Image Height, and Image Width
fields.

Viewing Image Content Items
When FastForward is installed and the Image Content Type's local templates are included, the Content
Type appears as follows in the Content Design view:

Figure 187: Allowed Templates for Image Content Type

Here we will preview an Image Content Item through the rffSnImage snippet template. The rffSnImage
template simply displays the uploaded image. You would most likely include this image on a page
template that includes related text content.

Figure 188: Image Content Item formatted with S-Image template

 Chapter 7 Creating Content Types 249

WebImageFX
If you use the sys_File control to upload your images, you cannot modify them in Rhythmyx. If you want
to modify the images, you must use a third-party application and upload the modified image to Rhythmyx,
overwriting the original image file.

You can provide users with a limited capability of editing images if you use the sys_WebImageFX control
instead of the sys_File control. The sys_WebImageFX control provides access to Ektron's WebImageFX
graphics editor. For technical details about the WebImageFX editor and the sys_WebImageFX control,
including information about customizing and upgrading the WebImageFX editor, see the Rhythmyx
Technical Reference.

The following limitations apply to Content Editors that use the sys_WebImageFX control:

 The field containing the sys_WebImageFX control must be named uploadfilephoto.
 Due to the restriction on the name of the field, a Content Type cannot have more than one

field that uses the sys_WebImageFX control. Only the first field that uses the control will be
able to upload and edit graphics. The other controls will not be able top upload any file.

 A Content Type that uses the sys_WebImageFX control cannot use the sys_File control. If
any field has the sys_File control, it will not be able to upload any file.

 When you add the sys_WebImageFX control to a Content Type, the sys_FileInfo pre-
processor extension is automatically added to the Content Type. The fields that store the data
returned by this extension must be prefixed with the string uploadfilephoto.

NOTE: The first time a user opens a Content Editor that uses the sys_WebImageFX control, the browser
will prompt them to install WebImageFX. Users should follow the instructions in the WebImageFX
installation wizard.

250 Rhythmyx Rhythmyx Implementation Guide

Creating a Content Type with a Child Field
Set
This section demonstrates the process of creating a Content Type with a child field set, as well as some
other features you can include in your Content Editors.

A child field set is a table with any number of sub-fields; the child field data is stored in a separate table
from the table used to store the data of the parent Content Editor. The following graphic illustrates the
Content Editor with the example child field set we will create in this section. The child field set is
rendered as a table with entries in the Content Editor.

Figure 189: Content Editor with child field set

To illustrate the implementation of a child field set, we will replace the event_location field in the
FastForward Event Content Editor with a child field set detailing the location. The child field set consists
of four fields: event_city, event_state, event_address, and event_contact.

 Chapter 7 Creating Content Types 251

The specification for the event_location child field set is:

event_location child field set:

Name Label Control Name Occur Data Type Format

event_city Event City: sys_EditBox optional text 50

event_state Event State: sys_EditBox optional text 50

event_address Event Address: sys_TextArea optional text 255

event_contact Event Contact: sys_DropdownSingle required integer 4

The data for the event_contact drop down will be retrieved from an external repository. The Northwind
database available for Microsoft SQL Server provides a convenient source for this data. We will use data
from the Employees table to populate this field. We must set up a connection to the Northwind database
and create a Rhythmyx application to look up the data to populate the field.

To demonstrate how to override a shared field, we will also change the shared/callout field to use a
different control. In the FastForward version of the Event Content Type, the shared/callout field uses the
sys_EditLive control, but in our version, we assign it the sys_EditBox control since we do not want to
give users the ability to format its content.

See the specification of the Event Content Type (see page 457) for details about the implementation of
this Content Type in FastForward.

Since you have already created two Content Type objects using the New Content Type wizard, we will not
repeat the process here. See Creating the Generic Content Type Object (see page 223) and follow the
same instructions using the specifications in the Event Content Type (see page 220) topic instead. Once
you have created the Content Type object, work through the other topics in this section.

Note: The data included in the following procedures is example data. Substitute the data from your own
implementation plan when implementing your Content Editors.

This section includes the following steps for completing and viewing the Event Content Type:

1 Overriding a shared field (see page 251)

2 Including a child field set (see page 252)

3 Populating a field from an external lookup (see page 256).

4 Viewing the Event Content Editor (see page 267).

5 Viewing Event Content Items (see page 270).

Overriding a Shared Field
After you create the initial Event Content Type object by completing the New Content Type wizard and
clicking [Finish], the Content Type editor automatically opens to the Content Type tab. The Content Type
already includes the mandatory system fields. See Including Shared and System Fields (see page 227) for
a list of these fields.

252 Rhythmyx Rhythmyx Implementation Guide

In this topic, we will demonstrate that you can override the properties of a shared or system field in the
local definition of a Content Type. Override a shared field if you want the field to have a different
property only within a specific Content Type. If you want a shared field to have a different property in all
Content Types that use it, change the value directly in the shared field. If you want a system field to have a
different property in all Content Types, create a shared field with the new property and use that shared
field in all Content Types instead of the system field. Note: Changing a system field directly is not
recommended, even if you want the field's properties to be permanently different, because your changes
will be overwritten when you upgrade your system. Changes to shared fields are not overwritten when you
upgrade your system.

In the FastForward version of the Event Content Type, the shared/callout field uses the sys_EditLive
control, but in our version, we want to assign it the sys_EditBox control since we do not want to give
users the ability to format its content.

To include the other fields in the Event Content Type follow the same procedures you used to add shared
and system fields to the Generic Content Type (see page 227) and add a local field to the Image Content
Type (see page 241). When you reach the shared/callout field, follow the steps below.

To override the properties of the shared/callout field:

1 Add the shared/callout field as you would enter any other shared field.

2 Click in the Control column and change the control from sys_EditLive to sys_EditBox.

You can make a change like this to the properties of any system or shared field that you
include in your Content Type. Your change only affects the field locally in the Content Editor;
it does not change the default properties of the actual shared or system field.

3 Continue to add the next few fields in the table in the Event Content Type specification (see
page 457). Stop when you reach the field event_location and proceed to the next topic,
Including a Child Field Set (see page 252).

Adding a Child Field Set
At this point, we will demonstrate how to add the event_location child field set to the Event Content Type.

Let's review the repeat the definition of the event_location field set:

event_location child field set:

Name Label Control Name Occur Data Type Format

event_city Event City: sys_EditBox optional text 50

event_state Event State: sys_EditBox optional text 50

event_address Event Address: sys_TextArea optional text 255

event_contact Event Contact: sys_DropDownSingle required int 4

Note: For simplicity, in this procedure, the event_contact field will be created with the default
sys_EditBox control. We will change to the sys_DropDownSingle control in a later procedure.

To add the event_location child field set:

1 In the rffEvent Content Editor, click in the first available row in the Fields table, and click

.

 Chapter 7 Creating Content Types 253

The editor enters a field set with the Name Child1 and the Control sys_table in the row. It adds
a tab for Child1 at the bottom of the editor.

If you select the row, the lower portion of the dialog says Field Set Properties instead of Field
Properties and a different set of properties is displayed. Whenever the row for the field set is
selected the lower portion of the dialog displays these properties.

2 Change the Name to event_location. Change the Label to Event Location:.

Figure 190: Event Content Type with Child Field Set Added

3 Under Field Set Properties:

a) In Mnemonic, choose L since the field set stores location information.

b) Leave Enable searching for this field set checked, since users may search for the Content
Item by its location.

c) Uncheck Allow user to order entries, since you want the location fields to be ordered
consistently in all Event Content Items.

254 Rhythmyx Rhythmyx Implementation Guide

d) Since you want users to enter at least one event_location entries, choose Required in
Occurrence.

Count is not enabled; it is only enabled if you choose Count in Occurrence.

4 Now click the event_location tab to enter the fields in the child field set.

The tab is nearly identical to the Content Type tab except that it does not include the list box
of shared and system fields to add to the table. Once you add an entry and click on the row,
the Field Properties section appears below the Fields in event_location table.

Figure 191: Child Field Set Editor

5 Enter the child field set entries and their properties (as defined in the table above) into the
Fields in event_location table. For most properties, enter values exactly as you would enter
values for local fields. For help, see Including a Local Field (see page 241).

6 For event_address and event_contact click [All Properties] and uncheck Show in summary.
Then, click [OK] to return to the event_location tab.

The Show in summary field is specific to entries in child field sets. If you want an entry name
and its values in a child field set to display in the main Content Editor when users open it,
leave Show in summary checked. If you uncheck Show in summary, users must click [Edit
Table] in the Content Editor to view the entry (and all other entries in the field set) in a table.
See Event Content Editor (see page 267) for a more detailed explanation.

7 Clicking the [Validation] button opens the Field Visibility dialog, as with fields on the parent
Content Editor. For details about adding field visibility rules, see Field Visibility, Validation,
Read Only, and Transform Rules (see page 104). You can also add validation, read-only,
and transform rules to child fields.

 Chapter 7 Creating Content Types 255

When you finish entering the field definitions, the event_location tab should resemble the
following screenshot:

Figure 192: Event Child Field Set

8 To finish entering the other fields in the Content Type, click the Content Type tab.

9 The next field that you enter is the local field event_type. Enter this as you would enter any
local field. Note that the control is sys_DropDownSingle. You must click [...] beside the
control to open the Control Properties editor to enter Choices. In the Control Properties editor,
click the Use a Keyword radio button and choose FF_Event_Types. For information about
creating the FF_Event_Types Keyword and adding its Keyword Choices, see Creating and
Using Keywords (see page 291).

10 Add the remaining fields in the table in the rffEvent Content Type specification (see page
457) to the Content Type tab.

256 Rhythmyx Rhythmyx Implementation Guide

When the Content Editor is complete, it should resemble the screenshot in the topic Creating
a Content Type with a Child Field Set (see page 250).

11 Click the Properties tab. The only property that you want to change is the Content Type Icon.
Change the value of this field to Specified. In the search dialog that opens, navigate to the icon
<Rhythmyx root>/rx_resources/Images/ContentTypeIcons/FileIcons/rffEvent.gif and click
[Open] to choose the rffEvent.gif icon to represent the Event Content Type.

12 Save and close the Content Type editor.

Populating a Field from an External Lookup
When implementing a list control (such as sys_DropDownSingle, sys_RadioButtons, or
sys_CheckBoxGroup), you must specify the source of the choices for the list. While it is common to use a
Rhythmyx Keyword to define the choices, often the choices are stored in an external repository and must
be retrieved when editing and assembling a Content Item.

In our example, we will use the Employees table in the Northwind database available with Microsoft SQL
Server. Among the columns in this table are:

 Last Name
 First Name
 Phone Number
 Country

 Chapter 7 Creating Content Types 257

One option when retrieving data from a remote repository is to select the Retrieve from Table option on the
Choices tab of the Control Properties dialog.

Figure 193: Retrieving data from a table in a remote repository

258 Rhythmyx Rhythmyx Implementation Guide

In this example, the control will display the value in the Last Name column in the Content Editor, but will
store the value in the Employee ID column in the Repository.

Figure 194: Using data from a remote repository

While using the Employee ID as the key to the data in the Northwind repository works for retrieving the
data, the Retrieve from Table option only allows one column value for the Label. When you want to
display data in multiple columns, you need to use the Retrieve from xml application option, which uses a
Rhythmyx XML application to retrieve the data from the external repository. For our example, it would
be more useful to display the full name of the contact along with a phone number. That is the information
that would be included in the published pages, so it would be more useful to the business users to see this
information.

Creating a Connection to an External Repository
Before you can retrieve data from an external repository, you must create a connection to it. Use the
Datasources tab of the Rhythmyx Server Administrator to create the connection.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

1 Start the Rhythmyx Server Administrator and log in. For details about starting and logging in
to the Rhythmyx Server Administrator, see Starting the Rhythmyx Server Administrator (on
page 18).

2 Click on the Datasources tab at the top of the dialog.

3 Click on the Connection tab at the bottom of the dialog.

4 Click the [Add] button.

The Rhythmyx Server Administrator displays the Connection Configuration dialog.

5 In the Name field, enter NorthwindData.

6 In the JNDI Datasource drop list, leave jdbc/RhythmyxData selected.

7 In the Database field, enter Northwind.

8 In the Schema/Origin field, enter dbo.

9 Click the [OK] button.
To test your connection

1 Log in to the Rhythmyx Workbench.

2 Open the Database Explorer view.

You should see the connection to the Northwind connection listed. If the connection is not
listed, the connection data is incorrect. Check the connection and correct the data.

3 Double-click on the Northwind connection expand it. Double-click on the TABLES node to
expand it.

 Chapter 7 Creating Content Types 259

You should see the tables defined in the Northwind database. If you do not see the tables
listed, the connection data is incorrect. Check the connection and correct the data.

Creating a Lookup Application
When you want to use data from multiple fields in a list control, you must use a Rhythmyx XML
application to lookup and concatenate the data. In our example, we will create an application that will
retrieve the following data:

 EmployeeID (Choice value, stored in the Rhythmyx Repository)
 LastName
 FirstName
 HomePhone

The values in the LastName, FirstName, and HomePhone fields will be concatenated as the Choice Label:
Davolio, Nancy, at (206) 555-9857

In a Rhythmyx XML application, data from a database table is mapped to an XML DTD. When the
application is running, it can be queried to produce an XML document containing the database data
structured as specified in the mapping. We will use a Rhythmyx UDF extension to retrieve and
concatenate the data for the label. We also want to return only Employees from the US, so we will create
criteria to ensure that only rows where the value of the Country column is USA will be returned.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create the lookup application:

1 In the Rhythmyx Workbench, click on the XML Server tab.

2 Right-click the Applications Folder and from the popup menu, choose New > Application.

The Rhythmyx Workbench displays the New Application dialog

3 In the Application Name field, enter rffLookupNameAndNumber. Optionally, enter a
Description.

4 Click the [Finish] button.

Rhythmyx opens the rffLookupNameAndNumber application in the Workbench.

5 Create the lookup resource.

a) Change to the File Explorer tab. Expand the drive where you installed Rhythmyx, then
expand the DTD Folder.

b) Find the sys_Lookup.dtd. Click and drag it to the application window.

c) From the popup menu, choose Query.

Rhythmyx creates the new query resource.

6 Change the resource name.

a) Right-click on the resource and from the popup menu, choose Request Properties.

b) In the Request Name field change the default value, sys_Lookup, to
EmployeeLookupNameAndNumber.

260 Rhythmyx Rhythmyx Implementation Guide

c) Click the [OK] button to save your change.

7 Double-click the EmployeeLookupNameAndNumber resource to display the Data Pipe.

A Data Pipe consists of a Back End Data Tank (not included when the resource is first
created), a Selector, a Mapper, and the Front End Data Tank (which contains the DTD).

8 Add the Employees table and Back End Data Tank to the resource.

a) In the Rhythmyx Workbench, change to the Database Explorer tab.

b) Expand the Northwind Data node.

c) Expand the TABLES node.

d) Click on the Employees table and drag it to the left end of the Data Pipe.

The table should attach to the Data Pipe, adding the Back End Data Tank.

9 Define the Selection criteria

The Selector is used to define the query that selects data from the tables in the Back End Data
Tank. (Although we added only one table in this exercise, multiple tables can be added, and
joins can be defined between the tables in the Back End Data Tank.) We will define a query
that selects rows from the Employee table where Country = USA.

a) Double-click on the Selector .

b) The Rhythmyx Workbench displays the Selector Properties dialog.

Two options are available to define the selector query. Our query is simple enough to use
the WHERE table, which is most often the case. If you need to use a complex SQL
statement to select the data (for instances, if you need to use inner or outer joins between
tables) you can enter the SQL manually. The WHERE table is the default option.

c) In the first empty row of the WHERE table, click in the Variable column, then click on the
arrow button. From the popup menu, choose Single Value.

The Rhythmyx Workbench displays the Value Selector dialog.

d) In the Type drop list, select Backend Column.

The Value Selector displays a list of columns from the Back End Data Tank.

e) Select the Employees.EmployeeId column. Selecting the column adds it to the Value field.

f) Click the [OK] button to save your choice.

g) Click in the Op column of the same row and from the drop list, choose the equals sign
("=").

h) Repeat Step "c" in the Value column.

i) In the Type drop list of the Value Selector dialog, choose Literal

j) In the Value field of the Value Selector dialog, enter USA.

k) Save your choice.

 Chapter 7 Creating Content Types 261

l) In the Selector Properties dialog, click the [OK] button to save the selection criteria.

Figure 195: Selector for lookup application

The selection defined here is equivalent to the following SQL statement:
select * from Employees where Employees.Country = 'USA'

10 Click on the Mapper .

The Rhythmyx Workbench displays the Mapper Properties dialog. This dialog is used to map
the data returned by the Selector to the elements and attributes of the DTD.

11 Map the EmployeeID column from the Back End Data Tank to the Value element of the
sys_Lookup DTD.

a) Click on the EmployeeID column in on the left side of the mapper and drag it to the first
empty row of the Backend column.

262 Rhythmyx Rhythmyx Implementation Guide

b) Click on the Value node on the right side of the mapper and drag it to the XML column of
the same row.

Figure 196: Mapping Employees.EmployeeID to the Value node

12 Use the sys_Concat UDF to concatenate the Employee.LastName. Employee.FirstName, and
HomePhone columns with appropriate text, then map the result to the PSXDisplayText
Element.

a) On the left side of the Mapper Properties dialog, choose User Defined Functions.

b) Expand the Global Folder, then the Generic Subfolder. In the Generic Subfolder, click
sys_Concat and drag it to the first empty row of the Backend Column.

The Rhythmyx Workbench displays the Function Properties dialog.

c) Click in the Value column of the p1 row and use the Value Selector to add the Backend
Column Employees.LastName.

d) Click in the Value column of the p2 row and use the Value Selector to add the Literal
value ", " (comma<space>).

e) Click in the Value column of the p3 row and use the Value Selector to add the Backend
Column Employees.FirstName.

f) Click in the Value column of the p4 row and use the Value Selector to add the Literal
value " at " (<space>at<space>).

 Chapter 7 Creating Content Types 263

g) Click in the Value column of the p5 row and use the Value Selector to add the Backend
Column Employees.HomePhone.

Figure 197: Lookup UDF definition

h) Click the [OK] button to save the UDF definition.

i) On the right side of the Mapper Properties dialog, click on the PSXDisplayText Element
and drag it to the same row as the sys_Concat UDF.

Figure 198: Completed lookup mappings. Only the mappings are illustrated.

j) Click the [OK] button to save the mappings.

13 Close the Data Pipe tab at the bottom of the editor.

14 Click the save button in the Rhythmyx Workbench to save the application.

15 Click the green arrow to start the application.
Once the application has started, it is loaded into memory and can respond to requests. It is a good idea to
test the application at this point to ensure that it is returning the results you expect. To test the application:

1 Open the Rhythmyx application (if it is not already open).

264 Rhythmyx Rhythmyx Implementation Guide

2 Right-click on the rffEmployNameAndNumber query and from the popup menu, choose
Request Properties.

The Rhythmyx Workbench displays the Request Properties dialog.

3 Click the [Copy to clipboard] button.

4 Open a browser window or tab and past the copied URL into the Address or URL field. Press
the <Enter> key. Log in to Rhythmyx using your standard credentials.

The browser displays the output document with default formatting.

Figure 199: Lookup output formatted as HTML

 Chapter 7 Creating Content Types 265

Change the extension in the address field from html to xml to see the XML document.

Figure 200: Lookup output formatted as XML

266 Rhythmyx Rhythmyx Implementation Guide

Populating a Control with Results from an Application
Now that we have a lookup application to return data from the external repository, we can use that data to
populate the list control. We will modify the event_contact field in the Event Content Type to use the
sys_DropDownSingle control, with the choices populated by the lookup application we created.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

1 In the Rhythmyx Workbench, open the rffEvent Content Type.

2 Click on the tab for the event_location child editor.

3 Select the event_contact field and click the [All Properties] button.

The Rhythmyx Workbench displays the Field Properties dialog.

4 In the Control field, select sys_DropDownSingle.

5 Click the browse button next to the Control field.

The Rhythmyx Workbench displays the Control Properties dialog.

6 Click on the Choices tab.

7 Click the Retrieve from xml application radio button.

8 Click the browse button next to the associated field.

The Rhythmyx Workbench displays the Create Choice Lookup Request dialog.

9 In the Application Name drop list, choose rffLookupNameAndNumber.

10 In the Resource drop list, choose EmployeeLookupNameAndNumber.

Figure 201: Specifying a lookup application for a list control

11 Click the [OK] button to save the request definition.

12 On the Control Properties dialog, click the [OK] button. On the Field Properties dialog, click
the [OK] button.

13 Save the rffEvent Content Type.
To confirm your changes, create a test Content Item and verify that the drop list includes the expected
values.

 Chapter 7 Creating Content Types 267

The Event Content Editor
At least one Template must be associated with the Event Content Type to view the Event Content Editor
correctly. From Assembly Design view, drag the shared rffSnTitleLink Template on top of the Event
Content Type's Allowed Templates and XSL Variants folder.

Since the Event Content Type is complete, a user in Content Explorer can open the Event Content Editor.
Note that the Event Location field does not display a control for entering data until you enter any required
fields in the Content Editor and click [Insert].

In the following graphic of the Content Editor, some fields have been entered, and the user has clicked
[Insert], so the [Add new item] button is visible for the Event Location field. Since Show in Summary is
checked for the fields event_city and event_state but not for the fields event_address and event_contact,
the Content Editor displays the event_city and event_state fields, but the event address and event contact
fields cannot be viewed until the user clicks [Edit Table].

Note that the Callout field appears with the sys_EditBox control which you specified should override the
sys_EditLive control.

Figure 202: Event_Test Content Editor

268 Rhythmyx Rhythmyx Implementation Guide

The user clicks [Add new item] to view the entire table for Event Location:

Figure 203: Child Table editor

After the user inserts one new location, the Content Editor provides a page for adding and editing
additional ones:

 Chapter 7 Creating Content Types 269

Figure 204: Child Table editor

The user clicks Return to parent to save the information entered and return to the parent editor, or [Close]
to save the information and close the Content Editor.

In the parent Content Editor, the table appears as:

Figure 205: Event Location table

270 Rhythmyx Rhythmyx Implementation Guide

Viewing Event Content Items
In the chapter Creating Slots and Templates, in the topic Adding Child Data to a Page Template (see
page 164) you created a Page template for our version of the Event Content Type, that displays the child
field set.

The following graphic shows a preview of an Event Content Item through this template.

 Figure 206: Preview of Event Content Item showing child data table

 Chapter 7 Creating Content Types 271

Item Transformation, Validation, and Pre-
and Post-Processing
An item transform or validation is an extension that operates on multiple fields in a Content Item.

 Item input transformers - Modifies or reformats data in a Content Editor field or fields before
it is uploaded to the Rhythmyx repository. For example, if City and State fields are filled in,
an item input transform could use them as keys for reading an external file and then filling in a
Zip Code field. Item input transformers run after field transformers but before generic pre-
processing extensions.

 Item output transformer - Modifies or reformats data in the Rhythmyx repository after it is
retrieved from the Repository and before it is displayed or assembled. For example, if the
Content Editor includes an expiration date, an item output transform could compare the
expiration date to the current date and enter a value in a Days Remaining field. Item output
transformers run after field output transformers but before generic post-processing extensions.

 Item validation - Runs during Transitions (excluding check in and check out) to confirm that
data entered into one or more Content Editor fields meets specified criteria. If any validations
fail, Rhythmyx displays an error message in the Content Editor and prevents further
processing of the Content Item until the error is corrected. For example, an item validation
could require that a start date precedes an end date. Note that in many cases you can use field
validations to achieve the same goal. If you have to run multiple field validations, running an
Item validation instead may result in improved system performance.

Pre-processing and Post-processing extensions perform more generic item processing.

 A pre-processing extension performs processing on a Content Item after item input
transformers but before the Content Item (or data lookup document) is created. For example,
the sys_imageInfoExtractor extension is a pre-processing extension that extracts and inserts
data into fields before the system updates a new Content Item to the Repository.

 A post-processing extension performs processing on a Content Item after a data is retrieved
from the Repository. For example, the sys_ceDependencyTree extension adds child and parent
items of the Content Item to the result XML document so that users can view the Content
Item's relationships using the Impact Analysis option.

The tabs for adding item input and output transforms, validations, and pre- and post-processing extensions
on the Properties tab of the Content Type editor are nearly identical. We could demonstrate how to add
any of these, and the process would be nearly the same. For details about adding the extensions that we do
not demonstrate here, see the corresponding topic in the Rhythmyx Workbench Online Help.

272 Rhythmyx Rhythmyx Implementation Guide

Figure 207: Item Transforms and Validations section

Adding Pre-processing Extensions (see below), shows you how to add the pre-processing extensions that
are typically added to Image Content Types.

Adding Pre-processing Extensions
Here, you will add the following three item pre-processing extensions to your Image Content Type. These
extensions are commonly included in image Content Types:

 sys_imageInfoExtractor - Extracts an uploaded image's metadata and inserts it into fields in
the Content Editor

 sys_CopyParameter - Copies the value of a source parameter into the destination parameter.
This is used twice.
 In the first instance, the source parameter is the value that sys_imageInfoExtractor

stores in img1_filename (or in our case, img1_filename). It is copied into the content
editor's shared/filename field.

 In the second instance, the source parameter is the value that sys_imageInfoExtractor
stores in img1_ext (or in our case, img1_ext). It is copied into the content editor's
sys_suffix field.

sys_CopyParameter copies values into fields that are used in FastForward's default location scheme.
Location Schemes are discussed in the chapter Configuring Publishing (see page 309).

To add pre-processing extensions to your Image Content Type:

1 Open the Image Content Type.

2 In the Content Type editor's Properties tab, click the Pre-processing tab.

 Chapter 7 Creating Content Types 273

3 In the Extension table, click in the first row to activate a drop list of pre-processing
extensions.

4 Choose sys_imageInfoExtractor. This extension does not require any parameters.

5 In the Extension table, click in the next row to activate the drop list.

6 Choose sys_CopyParameter.

7 Click [...] beside the extension name to open the Parameters dialog.

The parameters source and destination are listed in the first two rows of the Name column.

8 Beside source parameter, enter img1_filename under Value.

9 Beside destination parameter, enter filename under Value.

Figure 208: Extension Parameters dialog

10 Click [OK].

11 In the Extension table, click in the next row to activate the drop list.

12 Choose sys_CopyParameter again.

13 Click [...] beside the extension name to open the Parameters dialog.

The parameters source and destination are listed in the first two rows of the Name column.

14 Beside the source parameter, enter img1_ext under Value.

15 Beside the destination parameter, enter sys_suffix under Value.

16 Click [OK].

17 The Conditional Property dialog closes.

274 Rhythmyx Rhythmyx Implementation Guide

The pre-processing extensions are now entered. The Pre-processing tab should appear as:

Figure 209: Preprocessing Tab

 Chapter 7 Creating Content Types 275

Implementing Text Extraction
Text extraction is a Rhythmyx feature that provides the capability of pulling text from binary files created
in third-party applications (such as Microsoft Word documents or .pdf files) and inserting it into a
Rhythmyx Content Editor. A pre-processing extension, sys_textExtractor, extracts the text as simple text
with no formatting and inserts the text into a field in the Rhythmyx Content Editor. You can develop and
add more extensions to transform the text or parse it into different Rhythmyx fields.

The text extraction feature uses the functionality of the Rhythmyx full-text search engine. The search
engine must be installed before you can use text extraction, but it need not be enabled. If you override the
default text extractor for a file type in the Server Administrator's full-text search sub-tab, the new text
extractor is also used with the sys_textExtractor exit. For additional information about overriding default
text extractors in the full-text search engine, see the Rhythmyx Server Administrator online help.

You can use text extraction to upload files individually or you can perform bulk conversions by defining a
WebDAV-enabled folder where users can add files. For additional information about WebDAV, see
Implementing WebDAV in Rhythmyx. Bulk conversion can be used either to facilitate migration of content
into Rhythmyx or to allow continuous update of extracted content by uploading modified files.

The sys_textExtractor extension does not limit the size of text extracted from the files, but settings in the
Repository database, JDBC driver, Content Editor field, or users browser may limit the amount of text that
can be uploaded. If an error occurs during text extraction because the amount of text exceeds some limit,
these settings should be checked.

Creating a Text Extraction Content Type
To illustrate the creation of a Content Type that uses text extraction, we will create a Bio Content Type to
store the biographies of executives at Enterprise Investments and Corporate Investments. The Bio Content
Type includes the following fields:

Source Name Label Control Name Occur Data
Type

Format

system sys_title System
Title:

sys_EditBox required text 50

shared shared/displaytitle Label: sys_EditBox required text 512

system sys_contentstartdate Start Date: sys_CalendarSimple optional datetime none

system sys_contentexpirydate Expiration
Date:

sys_CalendarSimple optional datetime none

system sys_reminderdate Reminder
Date:

sys_CalendarSimple optional datetime none

shared sharedbinary/item_file
_attachment

File: sys_file required binary max

shared sharedbinary/item_file
_attachment_filename

Binary File
Name:

sys_EditBox required text 512

276 Rhythmyx Rhythmyx Implementation Guide

Source Name Label Control Name Occur Data
Type

Format

shared sharedbinary/item_file
_attachment_size

File Size: sys_EditBox optional integer none

shared sharedbinary/item_file
_attachment_type

File Type: sys_EditBox required text 256

shared sharedbinary/item_file
_attachment_ext

Extension sys_EditBox required text 50

shared shared/body Body: sys_EditLive optional text max

shared shared/webdavowner WebDAV
Owner:

sys_EditBox optional text 256

local extraction_error Extraction
Error

sys_EditBox optional text 256

For details about adding fields, see Basic Content Type Creation (see page 239) and Image Content Type
Creation (see page 239).

Once you define the fields, you must add the sys_textExtractor post-processing extension:

1 On the Content Type editor, choose the Properties tab.

2 Under Item Transforms and Validations, choose the Pre-Processing tab.

3 Double-click in the first empty row and from the drop list, choose the sys_textExtractor
extension.

Rhythmyx displays the Extension Parameters dialog with a list of parameters for the
sys_textExtractor extension.

4 Enter values for the extensions. (NOTE: The values in the following table assume that the
Content Type uses the fields defined above. Substitute the correct values for your own
implementation.)

Name Description Value

Source Required.

Specifies the file containing the data to
extract. If the value of this parameter is a File
object, text is extracted from that file.
Otherwise, the value is used to construct a
path to a file. In general, the value of this
parameter is populated by a file upload control
on the Content Editor.

NOTE: Binary fields are not available as
parameter values as Content Item Fields
(PSXContentItemData). You must specify the
name of the field as a
PSXSingleHTMLParameter.

PSXSingleHTMLParameter/
item_file_attachment

 Chapter 7 Creating Content Types 277

Name Description Value

OutputParam Required.

The name of the Content Type field in which
the extracted content will be stored.

NOTE: Large text fields that are treated as
binary are not available as parameter values as
Content Item fields (PSXContentItemData).
You must specify the name of the field as a
PSXSingleHTMLParameter.

body

FileTypeParam Optional.

The name of the Content Type field in which
the file type identified for use in the extraction
will be stored as text. This parameter allows
the Content Editor store the file time in a
Content Item field.

item_file_attachment_type

ErrorMessageParam Optional.

The name of the Content Type field in which
any error messages are to be stored as text. If
this parameter does not have a value, the
extension will display any error messages to
the user in the Content Editor. If the
parameter has a value, any errors encountered
will be written to the specified field and the
exit will return silently.

Typically, if the files will be uploaded
manually, no value will be specified for this
parameter so the user can see and respond to
any errors that occur. If the files will be
uploaded in bulk, this field typically has a
value so processing will not be interrupted
when a processing error occurs.

extraction_error

OutputEncoding Optional.

Specifies the character encoding to use for the
text output.

If no value is specified for this parameter, the
text is output in WINDOWS-1252.

The following encodings are also valid:

 Shift_JIS (Japanese)
 EUC_KR (Korean)
 GB2312 (Simple Chinese)
 Big5 (Traditional Chinese)

If the input text includes characters outside of
the specified character set, that text may be
lost.

278 Rhythmyx Rhythmyx Implementation Guide

5 Click the [OK] button to save the parameter specifications.

6 Save the Content Editor.

 279

C H A P T E R 8

Managed Navigation

280 Rhythmyx Rhythmyx Implementation Guide

Seamless and intuitive navigation through a web site promotes a successful interaction for site visitors.
Site navigation is typically comprised of a combination of the following navigation elements:

 top navigation bar
 side navigation
 bottom navigation
 breadcrumbs
 a Site map

Figure 210: Press Release with Side Navigation Menu and Breadcrumbs

Effective employment of these elements adds to a site's ease of use.

The About Corporate Investments Generic page Content Item, for example, contains a top navigation
menu, a left navigation menu, breadcrumbs, and a bottom navigation menu. The Rhythmyx Managed
Navigation system automatically generates these elements during assembly.

Note that Managed Navigation relies on Site Folder Publishing to deliver the Items organized with a Site's
set of folders. Managed Navigation will not function if you have not used a Site Folder to structure your
content.

 Chapter 8 Managed Navigation 281

How Managed Navigation Works
Managed Navigation is based on three specially-designed navigation Content Types:

 Navon
Navons are the basic unit of Managed Navigation, and are used to create navigation menus.
Each Navon should be linked to a Landing Page, which is a Content Item in its Folder not
used for Navigation (such as a Generic Content Item or a Category Content Item) where users
will land when they click on the Navon in the navigation.. A Navon may also be associated
with a NavImage (see below). A Navon has three essential attributes:

 Label

The Label is the source of the "clickable" text for the output.

 Landing Page

The Content Item that generates the HTML page the user jumps to when clicking on
the Managed Navigation. The Landing Page can also be an external URL.

 Image Link

The Image Link specifies an image that can be used to represent the Navon in the
output.

 NavTree
Similar to a Navon, NavTree Content Items reside at the root of a Site and define the root of
the navigation structure for the Site. NavTree Content Items propagate Navon's to each
Subfolder created in the Site Tree. The NavTree Item is generally linked to the Site's Home
Page Item.

NavTrees also have the Label, Landing Page, and Image Link attributes of a Navon.
 NavImage

Images used by Navons to replace text links for navigation elements.
Most Folders in a Site will contain at least one navigation Content Item, either a NavTree Content Item if
it is the root Folder, otherwise a Navon). A Folder may also contain one or more NavImage Content
Items.

During assembly, Rhythmyx uses NavTrees and Navons to build an XML document that represents the
Folder hierarchy of the Site. The XML document defines

 the Site's hierarchy;
 the location of each Navigation Content Item within that hierarchy;
 The relationship between an individual Managed Navigation Content Item to the other

Managed Navigation Content Items in the Site; and
 whether an image is associated with the Navigation Content Item.

282 Rhythmyx Rhythmyx Implementation Guide

Figure 211: Relationships between Navigational Elements

Every node in the XML document is categorized by its relationship to the node where the assembly starts,
which is called its axis. The axis can take one of the following values:

 Root
 Ancestor
 Ancestor-Sibling
 Sibling
 Self
 Descendent
 Other

 Chapter 8 Managed Navigation 283

The following diagram illustrates an example tree showing the axis of each node in relation to a selected
node:

Figure 212: Navigation Relationships

The node where the assembly of the Item starts is the SELF node. All predecessors of the SELF node in
the path to the root are known as ANCESTOR nodes. (The immediate predecessor in this path is referred
to as the PARENT) Other nodes that share the same PARENT as the SELF node are SIBLING nodes.
Nodes that share the same PARENT as an ANCESTOR are ANCESTOR-SIBLING nodes. The top node
of the tree is the ROOT node. All nodes in the path branching from the SELF node are DESCENDANT
nodes.

Typically, only the nodes discussed are represented in a navigation bar. Any node that does not share one
of the associations described is designated an OTHER node and is not used in the navigation bar.

A special case occurs when the SELF node is the same as the ROOT node (as in a Site Map Template, for
example). In this situation, only two axes are used: SELF and DESCENDENT.

The different levels in the tree are accounted for in two ways: Absolute level and Relative level. The
Absolute level starts at the ROOT (0) and increases as a positive integer as the tree grows downward. The
Relative level starts at the SELF node (0). This level is counted as a negative integer (-1, -2, and so on)
along the path of ancestors to the ROOT and as a positive integer along the path of DESCENDANTS
from the SELF node. These levels are used by rendering Templates to control the number of levels
displayed and the styles used to render the different levels in the navigation bars.

Managed Navigation Templates process the Managed Navigation XML document to produce an HTML
output that is merged with a Cascading Stylesheet to produce the final formatted navigation content for the
page. The Breadcrumb Template (rffNavBreadcrumb), for example, renders a relatively format-free
HTML document when previewed separately.

Figure 213: Breadcrumbs Without Formatting

284 Rhythmyx Rhythmyx Implementation Guide

When integrated into a Page, this Template inherits the look and feel of the page that includes it:

Figure 214: Page with Breadcrumbs

 Chapter 8 Managed Navigation 285

Maintaining Managed Navigation Content
Items
In the chapter Setting Up the Publishing Site and Basic Navigation (on page 67), we described how to
add a NavTree to a Site root Folder and how Navons propagate. To ensure that Managed Navigation
works properly, however, Navigation Content Items require some maintenance. We also need to address
how to create NavImage Content Items and how to associate them with Navons. Finally, we need to
address how to maintain Managed Navigation when your Site structure changes.

Navigation Communities
Typically, Managed Navigation Content Items are maintained by the users responsible for administering
Rhythmyx content, such as a Web Master or site producer, rather than by content contributors. To isolate
Managed Navigation content, an administrative Community is typically implemented for each Site, in
addition to the Site's content contributor Community. Managed Navigation Content Types are assigned to
the admin Community, while non-navigation Content Types are assigned to the Site's content contributor
Community.

For example, the FastForward implementation includes the following administrative Communities:

 Enterprise Investments Admin
 Corporate Investments Admin

The Managed Navigation Content Types are associated with these Communities. The EI_Admin Role is
assigned to the Enterprise Investments Admin Community and the CI_Admin Role is assigned to the
Corporate Investments Admin Community. A user that is a Member of the EI_Admin Role can log in to
the Enterprise Investments Admin Community and maintain the navigation content for that Site.

Assigning a Landing Page to a Navon
Navons represent the Folder in which they reside in any piece of navigation (breadcrumb, top navigation,
site map, etc). When a site visitor selects a link in a piece of navigation, they are directed to a particular
page, referred to as the "landing page". You must manually associate a landing page with each Navon.

To assign a landing page to a Navon:

1 Navigate to the Navon to which you want to add the landing page.

2 Right click the Item and from the popup menu choose Active Assembly Table Editor. (If the
Navon is already Public, you may have to Transition it to the Quick Edit State before this
option is available.)

Rhythmyx displays the Active Assembly Table Editor for the Navon.

3 Click on the nav_landing_page link.

Rhythmyx displays the Active Assembly Search dialog.

286 Rhythmyx Rhythmyx Implementation Guide

4 Find the Content Item you want to assign as the landing page for the Navon, check the box for
that Content Item, and click the [Link to Slot] button.

5 Close the Active Assembly Table Editor

6 If the Navon was edited in a Public State, Transition it back to the Public State.

Creating a NavImage
NavImage Content Items support the use of images in navigation. If you want to represent a section of
your site with an image, you must create a NavImage Content Item and include it as related content in the
nav_image Slot on the NavTree or Navon Content Item. It is usually easier to find a NavImage if it
resides in the same Site Folder as the Navon or NavTree that uses it, but it is not required to reside there.

A NavImage Content Item requires an Image file. You must assign this file to the NavImage.

If any given navigation element uses text links instead of images, you do not need to create a NavImage
for it.

To create a NavImage

1 Log into the Content Explorer.

2 Locate the Site Folder where you want to create the NavImage.

3 Right click the Site Folder and from the popup menu, choose New Item > NavImage.

Rhythmyx displays the NavImage Content Editor.

4 Fill in the fields for the new NavImage Content Item.

5 Insert the Item and close the Content Editor.

Assigning a NavImage to a Navon
Once you have created a NavImage, you can assign it to a Navon. NavImages are assigned to the
nav_image Slot on the Navon. In the default FastForward installation, NavImages are used in the top_nav
Template to represent the Navon's Folder, and are a hotspot link to the Navon's landing page.

The top_nav Template is the only Navigation Template in the default FastForward implementation that
supports images, but you can modify other Templates to support images as well. You could also
implement new Templates to support combinations of images, text, and Flash.

Note that you can use essentially the same procedure to assign a NavImage to a NavTree.

To assign a NavImage to a Navon:

1 Log into the Content Explorer.

2 Locate the Site Folder containing the Navon to which you want to assign the NavImage.

3 Right-click the Navon and from the popup menu choose Active Assembly Table Editor. (If the
Navon is already Public, you may have to Transition it to the Quick Edit State before this
option is available.)

Rhythmyx displays the Active Assembly Table Editor for the Navon.

4 Click on the nav_image link.

Rhythmyx displays the Active Assembly Search dialog.

 Chapter 8 Managed Navigation 287

5 Find the NavImage Content Item you want to assign to the Navon.check the box for that
NavImage, and click the [Link to Slot] button.

6 Close the Active Assembly Table Editor

7 If the Navon was edited in a Public State, Workflow the Item back to the Public State.

Splitting Navigation Sections
As you add content to your Site, you may find that some Folders contain so many Content Items that they
become unwieldy. In that situation, you may want to subdivide one Folder into several Subfolders. You
may also want to subdivide a Folder to accommodate marketing needs, such as spinning off a new product
line, or simply to make it easier for Content Contributors to manage the content assigned to them.

In the following graphic, an administrator has split the Mortgages folder into two subfolders, Commercial
and Residential.

Figure 215: Splitting navigation sections

If you leave the Navon in the parent folder, Mortgages, and remove the Navons from the subfolders
Commercial and Residential, only a link to item that the Mortgages Navon appears in the Navigation
sections of the Web Site. In the following graphic, the Navon is left in the Mortgages folder.

Figure 216: Subdivided folders with Navon in parent folder

288 Rhythmyx Rhythmyx Implementation Guide

One of the navigation sections of Web site appears as follows. There is a link to a Mortgages page, but no
links to Commercial Mortgages or Residential Mortgages pages.

Figure 217: Navigation without Split Sections

Another option is to add the two sub-folders and remove the Navon from the Mortgages parent folder, but
leave the Navons in the Commercial Mortgages and Residential Mortgages sub-folders so that the
navigation sections of your Site can link to a page in the subfolders.

To split a Site Folder and include navigation links to the subfolders only:

1 Log into Content Explorer under and administrative Community and find the Site section you
want to split (Mortgages in this case).

2 Create the necessary sub folders as descendants of the original Site Folder.

In our example, we create two sub-folders, Commercial Mortgages and Residential
Mortgages. When we create these Folders, a Navon is added to each of them automatically.

3 Delete the Navon Item from the parent Folder (the Mortgages Folder in this case). Also
delete or move any other Navigation Content Items, such as any NavImage Content Items in
the Folder.

4 Drag and Move the Content Items from the parent Folder to the new descendant Folders.

5 Edit the Navon in each sub-folder. At the bottom of the page, click [Edit All] and assign
landing pages (pages in the sub-folder) to the Nav Landing Page Slot of each new Navon.

6 Create any new NavImage Items for the new Navons and assign them to the appropriate Nav
Image Slot.

At this point, you should have the original Site Folder (Mortgages) with no currently
associated Content Items. The Mortgages Folder contains two Subfolders, Commercial
Mortgages and Residential Mortgages. Each of these Folders contains a single Navon and
several Content Items, and possibly one or more new NavImage Content Items.

 Chapter 8 Managed Navigation 289

We want the navigation to skip the Mortgages Folder. We will have to add the new Navons
to the Nav Submenu Slot of the Navon in the parent Folder of the Mortgages Folder (Products
and Services in our example).

7 Open the Products and Services Folder and locate its Navon.

8 Right-click on the Navon and from the popup menu choose Active Assembly Table Editor.

Rhythmyx displays the Active Assembly Table Editor.

9 Click the Nav Submenu link and search for Content Items with the word "mortgages" in the
title.

10 Check the boxes for the Commercial Mortgages and Residential Mortgages Navons, then
click the [Link to Slot] button.

Figure 218: Adding Navon Items to the nav_submenu Slot

11 Close the Active Assembly Table Editor.

12 Transition the new Navons the Public State.

13 Reset the navigation.

14 Preview the landing pages in each new descendant section. The navigation should not show
the old Mortgages Section, but instead display each of the new descendant sections.

Figure 219: Navigation with New Split Sections

290 Rhythmyx Rhythmyx Implementation Guide

Merging Navigation Items
It is no less common to merge sections of a Web site than to split them. When you merge several Folders,
you also need to merge their Navigation Content Items as well. For example, originally, we organized
Press Releases by year:

Figure 220: Press Releases by Year

After gathering five years worth of Items, we decided that any Press Release two years or older would be
managed in an Archives Site Folder.

Figure 221: Press Releases by Year with Archive Folder

These Items would be represented by a single Navigation Item and sorted with an Auto Index by creation
date. So we need to merge the originally separate yearly press releases Folders into the Archives Folder.

To merge Folders and navigation:

1 Log into the Content Explorer.

2 Create a new Folder to merge the existing Folders. In our example, create an Archives
Folder. When the new Folder is created, a new Navon is created automatically. If desired,
you can also create and associate a NavImage Content Item as well.

3 Move the necessary Content Items from the old Site Sections to the newly created Site Folder
by selecting them, dragging them into the new Site Folder and choosing Move from the popup
menu.

4 Specify a Landing page for the new Navon.

5 Delete the now stale Navigation Items from the old Site Folders.

6 Delete the now empty Site Folders.

7 Reset the Navigation.

 Chapter 8 Managed Navigation 291

Reordering a Submenu
By default, when a Navon or NavTree Item is created, the nav_submenu slot is populated with links to the
Navon Items in the directories immediately below the current one. These Relationships build a list of
links to the Subfolders contained in a Folder. In the published output, when you choose certain navigation
links (such as the left navigation), it expands to show links to the subsections. This list of sub menu Items
is assembled in the order that the Folders appear in the Navigation pane of Content Explorer. However,
you may want to modify this order.

To reorder a submenu:

1 Locate the Navon whose submenu you want to reorder.

2 Right-click on the Navon, and from the popup menu choose Active Assembly Table Editor.

Rhythmyx displays the Active Assembly Table Editor.

3 Use the up and down arrow icons to the right of the Navon Items displayed in the
nav_submenu Slot to adjust the order of the Navons.

Figure 222: Active Assembly Table Editor

4 Close the Active Assembly Table Editor.

Creating and Using Keywords
A Keyword defines a category of choices that are used in a drop list control or another selection
mechanism in Rhythmyx. You define Keyword objects in the Rhythmyx Workbench and add Keyword
Choices to them.

Using a Keyword Choice in a field can serve a few different purposes:

 A template can display the Keyword Choice in an output for informational purposes.
 An automated list slot can look for a specific Keyword Choice value when determining

whether or not to include a Content Item.
 A custom search can look for Content Items that contain specific Keyword Choice values.

FastForward provides the FF_Event_Types Keyword with several choices for populating the
sys_DropDownSingle control used with the Event Content Type's event_type field. Here we will
demonstrate how you can create your own version of the FF_Event_Types Keyword and Keyword
Choices.

Note: You cannot create a Keyword named FF_Event_Types, since it already exists in FastForward.
Instead, create a similar Keyword included in your implementation plan or copy our steps but give your
Keyword a different name.

292 Rhythmyx Rhythmyx Implementation Guide

To create an FF_Event_Types Keyword and Keyword Choices:

1 In the Rhythmyx Workbench, open Content Design view.

2 Right-click the Keywords node and choose New > Keyword.

The New Keyword wizard opens.

3 In Keyword name, enter FF_Event_Types.

4 In Description, enter Different types of events.

Figure 223: New Keyword Wizard, first dialog

5 Click [Next].

The next wizard screen opens.

 Chapter 8 Managed Navigation 293

6 In the Choices table, enter the information in the following table:

Figure 224: Keyword Wizard, second dialog

7 Click [Finish].

294 Rhythmyx Rhythmyx Implementation Guide

The Keyword object appears under the Keywords node in Content Design View, and the
Keyword Choices appear below the Keyword.

Figure 225: Keyword and choices added

The Keyword editor opens, but since the editor only duplicates the information in the wizard,
click X in its tab to close it. When you are prompted to save it, click [Yes].

Now you can assign the Keyword to a list control or another component in Rhythmyx that
uses Keywords. Refer to the topic Including a Child Field Set (see page 252), which explains
how to assign the FF_Event_Types Keyword to the event_type field. In the Content Editor,
the field and drop list appear as:

Figure 226: Keywords in drop list

For more information about assigning Keywords to list controls, in the chapter Creating
Shared Fields, see the topic Implementing a List Control (see page 95).

 Chapter 8 Managed Navigation 295

Managed Navigation Slot
The Managed Navigation Slot is used to assign Managed Navigation to a Template. In most cases, you
should be able to use the standard Managed Navigation Slot provided with Rhythmyx.

Figure 227: Managed Navigation Slot

The key feature of the Managed Navigation Slot is the Content Finder,
sys_ManagedNavigationContentFinder. This Content Finder is used exclusively to assemble Managed
Navigation.

296 Rhythmyx Rhythmyx Implementation Guide

Customizing Navigation Look and Feel
You can customize the look and feel of Managed Navigation in two ways:

 Create new Managed Navigation Templates. You can use Dispatch Templates to select
different Templates in different circumstances.

 Modify the Cascading Stylesheets used to define the specific formatting of the tagged output.
You can also define several different CSS files and apply different stylesheets to different
sections of your site using a Variable Selector.

Creating Managed Navigation Templates
Managed Navigation Templates process the navigation tree XML to produce an HTML output. This
output is merged with the Cascading Stylesheets to produce the final formatted output.

Managed Navigation Templates often include some HTML markup, but most of the code in these
Templates consists of Velocity macros. For details about writing Velocity macros, see either of the
following resources:

 Joseph D. Gradecki, Mastering Apache Velocity
 Rob Harrop, Pro Jakarta Velocity

 Chapter 8 Managed Navigation 297

Left-Navigation Template
A left-navigation bar is among the most common forms of navigation in Web sites. In the FastForward
implementation, the left-navigation bars are all text, so they provide a good starting point for examining
navigation Templates. We will examine the rffSnEINavLeft Template.

Figure 228: Page fragment calling out left navigation

A large chunk of HTML markup in this Template is the header, which is used only for previews:
<head>
 <!-- head is for preview only -->
 <title>EI Left Nav</title>
 <link href="$rxs_navbase/css/rxs_styles.css"
 rel="stylesheet" type="text/css">
 <script src="$rxs_navbase/js/mouseover.js"
 language="javascript" type="text/javascript">;</script>
</head>

298 Rhythmyx Rhythmyx Implementation Guide

This markup matches what we have seen earlier when defining the header for a Global Template. The
main difference is the use of the $rxs_navbase Context Variable. This variable is used specifically with
Managed Navigation to allow for the use of variable Cascading Stylesheets. For additional details, see
Using Variable Selectors (on page 306). Note that you must still define a binding for the Context
Variable. In this case, the binding $rxs_navbase=$sys.variable.rxs_navbase has been defined.

The body of the Template consists predominantly of four macros:

 #rootlevel
 #firstlevel
 #secondlevel
 #rendersectionimage

The body also includes some additional Velocity markup:
 #renderSectionImage($nav.self)
 #if ($imageurl)
 <div>

 </div>
 #end
#rootlevel($nav.root)

This code does three things:

1 Calls the #renderSectionImage macro with the self node.
 #renderSectionImage($nav.self)

This macro generates the navigation image used at the top of the navigation bar.

2 Builds the image tag to display the navigation image.
 #if ($imageurl)
 <div>

 </div>
 #end

This code tests whether the $imageurl variable has a value. If it has no value, processing
continues without building the image tag. If it does have a value, an image tag is generated
with an anchor tag linking it to the associated landing page. See the discussion of the
#renderSectionImage macro below for detail about how the values of the variables in this
code are generated.

3 Calls the #rootlevel macro to begin building the navigation bar.
#rootlevel($nav.root)

The #rootlevel macro builds the top image and builds the first level of the navigation bar. The macro
consists of the following code:

#macro(rootlevel $node)
 #set($submenu = $node.getNodes("nav:submenu"))
 #if ($node)
 #foreach ($navon in $submenu)
 #firstlevel ($navon)

 Chapter 8 Managed Navigation 299

 #end
 #end

This macro has one parameter, $node, which takes the $nav.root passed from the macro call. The
macro then sets the value of the variable $submenu as the set of Navon children of the navigation root.
Finally, it tests that the $node parameter passed into the macro contains a value. If it contains no value,
processing terminates. If it does contain a value, the macro iterates over the set of Navon children of the
navigation root and calls the #firstlevel macro for each one.

The #firstlevel macro defines the formatting of the first level of the navigation.

Figure 229: Left Navigation with first-level Navons highlighted

The code for this macro is:
#macro(firstlevel $node)
 ##<!-- "navon[@absolute-level='1']" -->
 ##<!-- xsl:variable name="indentclass" select="@relation"/ -->
 ##<!-- this macro processes the first level navons -->
 #set($title = $node.getProperty("rx:displaytitle").String)
 #set($landing_page = $node.getProperty("nav:url").String)
 #set($submenu = $node.getNodes("nav:submenu"))
 #set($axis = $node.getProperty("nav:axis").String)

300 Rhythmyx Rhythmyx Implementation Guide

 #set($indentclass = $axis.toLowerCase())

 #if ($landing_page)
 <!-- don't process this nav if there is no Landing page -->
 <h3 class="$indentclass">
 $title
 </h3>
 #if ($submenu)
 <ul class="$indentclass">
 #foreach ($navon in $submenu)
 #secondlevel ($navon)
 #end

 #end
 #end
#end

This macro also has the $node parameter, which is the navon passed from the #rootlevel macro. First, the
macro sets values for a number of parameters:

 $title is set to the Display Title of the Navon
 $landing_page is set to the URL of the landing page of the Navon
 $submenu is set to the set of Navon children of the Navon currently being processed by the

macro
 $indentclass is set to the lower-case value of the axis of the Navon being processed by the

macro in relation to the Navon that called the macro.

If the Navon being processed does not have a landing page, the macro terminates. If the Navon does have
a landing page, the macro builds the HTML for the navigation link. The CSS class of the link is set to the
value of the axis of the Navon being processed by the macro (<h3 class=$indentclass>). When defining
the link, the href attribute of the anchor tag is set to the URL of the landing page (href=$landing_page)
and the text of the link is set to the Display Title of the Navon the macro is processing(<a>$title).

If the Navon has children, the macro then iterates over them, creating an unordered list of additional links.
For each Navon child, the #secondlevel macro is called.

 Chapter 8 Managed Navigation 301

The #secondlevel macro defines the formatting for the second level of the navigation.

Figure 230: Left Navigation with second-level Navons highlighted

The code for this macro is:
 #set($title = $node.getProperty("rx:displaytitle").String)
 #set($landing_page = $node.getProperty("nav:url").String)
 #set($submenu = $node.getNodes("nav:submenu"))
 #set($axis = $node.getProperty("nav:axis").String)
 #set($indentclass = $axis.toLowerCase())
 #if ($landing_page)
 <li class="$indentclass">
 $title

 #end
 #end

Like the other macros in this Template, this macro requires the $node parameter, which is passed from the
#firstlevel macro when calling the #secondlevel macro. The macro beings by setting the same set of
parameters as the #firstlevel macro.

 $title is set to the Display Title of the Navon

302 Rhythmyx Rhythmyx Implementation Guide

 $landing_page is set to the URL of the landing page of the Navon
 $submenu is set to the set of Navon children of the Navon currently being processed by the

macro
 $indentclass is set to the lower-case value of the axis of the Navon being processed by the

macro in relation to the Navon that called the macro.

Again, it tests whether the Navon has a landing page and terminates if it does not. If the Navon does have
a landing page, the macro creates a list item whose contents are a link to the landing page of the Navon.
The CSS class of the list item is specified by the $indentclass (<li class=$indentclass). The URL of the
anchor tag is the URL of the Navon's landing page (href=$landingpage) and the text of the link is Display
Title of the Navon being processed($title).

Having reviewed the other macros, let us now examine the #renderSectionImage macro, which
provides the values for the variables used to build the section image tag that we examined earlier:

Figure 231: Left Navigation with Section Image highlighted

The code for this macro is:
#macro(renderSectionImage $navnode)
 #set($images = $navnode.getNodes("nav:image"))

 Chapter 8 Managed Navigation 303

 #foreach($image in $images)
 #if ($image.getProperty("selector").String == "section")
 #set($sectionImage = $image)
 #end
 #end
 #if (! $sectionImage)
 #if ($navnode.getParent())
 #renderSectionImage($navnode.getParent())
 #end
 #else
 #set($imageurl = "#imageurl($sectionImage 'active')")
 #set($sectionlink = $navnode.getProperty("nav:url").String)
 #set($sectiontitle =
$navnode.getProperty("nav:landingPage").Node.getProperty("displaytitle")
.String)
 #end
#end

The macro starts by setting the value of the $images variable to set of navigation images in the Navon
passed in when calling the macro. It then iterates over the set to find an image where the value of the
Selector field is section and sets that image as the value of the value of the $sectionImage variable. If
none of the images have the value section in the Selector field, the macro calls the parent Navon to find
one. Once a value has been defined for $sectionImage, the macro sets the variables that are used to define
the tags adding the navigation image:

 $imageurl is set to the URL of the active version of the image.
 $sectionlink is set to the URL of the Navon's landing page.
 $sectiontitle is set to the value of the Display Title field of the Navon.

Customizing Navigation CSS
All installations need to adapt the look and feel of the navigation to conform to the overall site design.
The FastForward implementation relies on a Cascading Stylesheet file
(<Rhythmyxroot>\web_resources\rxs_nav\css\rxs_styles.css) to define the output
look and feel. Thus, when invoked, the left navigation Template we examined earlier (see page 297)
produces the following HTML when previewed:

<img
src="http://10.10.10.100:9662/Rhythmyx/assembler/render?sys_revision=2&

 sys_siteid=301&sys_authtype=0&sys_contentid=482&sys_variantid=516&sys
_folderid=482&sys_context=0"
 id="img_a482" class="sectionImage" alt="About Enterprise Investments"
border="0"/>
 <h3 class="self">
 <a href="http://10.10.10.100:9662/Rhythmyx/assembler/render?

 sys_revision=3&sys_siteid=301&sys_authtype=0&sys_contentid=335&
 sys_variantid=505&sys_folderid=306&sys_context=0">About
 Enterprise Investments
 </h3>
 <ul class="self">
 <li class="descendant">

304 Rhythmyx Rhythmyx Implementation Guide

 <a href="http://10.10.10.100:9662/Rhythmyx/assembler/render?

 sys_revision=4&sys_siteid=301&sys_authtype=0&sys_contentid=494&
 sys_variantid=505&sys_folderid=511&sys_context=0">Press
 Release

 <h3 class="sibling">
 <a href="http://10.10.10.100:9662/Rhythmyx/assembler/render?

 sys_revision=2&sys_siteid=301&sys_authtype=0&sys_contentid=476&
 sys_variantid=538&sys_folderid=307&sys_context=0">Investment
 Advice
 </h3>
 <ul class="sibling">
 <li class="none">
 <a
href="http://10.10.10.100:9662/Rhythmyx/assembler/render?
 sys_revision=4&sys_siteid=301&sys_authtype=0&
 sys_contentid=344&sys_variantid=538&sys_folderid=311&
 sys_context=0">Insurance Advice

 <li class="none">
 <a
href="http://10.10.10.100:9662/Rhythmyx/assembler/render?
 sys_revision=4&sys_siteid=301&sys_authtype=0&
 sys_contentid=339&sys_variantid=538&sys_folderid=310&
 sys_context=0">Estate Planning

 <li class="none">
 <a href="http://10.10.10.100:9662/Rhythmyx/assembler/render?
 sys_revision=2&sys_siteid=301&sys_authtype=0&
 sys_contentid=350&sys_variantid=538&sys_folderid=312&
 sys_context=0">Retirement

 <li class="none">
 <a href="http://10.10.10.100:9662/Rhythmyx/assembler/render?
 sys_revision=2&sys_siteid=301&sys_authtype=0&
 sys_contentid=356&sys_variantid=538&sys_folderid=313&
 sys_context=0">Tax

 <h3 class="sibling">
 <a href="http://10.10.10.100:9662/Rhythmyx/assembler/render?
 sys_revision=1&sys_siteid=301&sys_authtype=0&
 sys_contentid=485&sys_variantid=538&sys_folderid=308&
 sys_context=0">Mortgages and Home Finance
 </h3>
 <ul class="sibling">
 <li class="none">
 <a
href="http://10.10.10.100:9662/Rhythmyx/assembler/render?
 sys_revision=1&sys_siteid=301&sys_authtype=0&
 sys_contentid=371&sys_variantid=538&sys_folderid=315&
 sys_context=0">Home Purchase

 Chapter 8 Managed Navigation 305

 <li class="none">
 <a
href="http://10.10.10.100:9662/Rhythmyx/assembler/render?
 sys_revision=1&sys_siteid=301&sys_authtype=0&
 sys_contentid=366&sys_variantid=538&sys_folderid=314&
 sys_context=0">Home Equity

 <h3 class="sibling">
 <a href="http://10.10.10.100:9662/Rhythmyx/assembler/render?
 sys_revision=3&sys_siteid=301&sys_authtype=0&
 sys_contentid=487&sys_variantid=538&sys_folderid=309&
 sys_context=0">Products and Services
 </h3>
 <ul class="sibling">
 <li class="none">
 <a
href="http://10.10.10.100:9662/Rhythmyx/assembler/render?
 sys_revision=2&sys_siteid=301&sys_authtype=0&
 sys_contentid=408&sys_variantid=538&sys_folderid=318&
 sys_context=0">Mortgages

 <li class="none">
 <a
href="http://10.10.10.100:9662/Rhythmyx/assembler/render?
 sys_revision=3&sys_siteid=301&sys_authtype=0&
 sys_contentid=376&sys_variantid=538&sys_folderid=316&
 sys_context=0">Funds

 <li class="none">
 <a
href="http://10.10.10.100:9662/Rhythmyx/assembler/render?
 sys_revision=3&sys_siteid=301&sys_authtype=0&
 sys_contentid=402&sys_variantid=538&sys_folderid=317&
 sys_context=0">Insurance Products

Note the class attributes, which specify style classes defined in the rxs_styles.css stylesheet. Thus, you
have substantial control over the format of the final output of the navigation by modifying the stylesheet
or defining your own stylesheet and pointing your output to that file. You could even implement a
different CSS convention, although you would have to use it for all of your Global Templates.

Variable Selectors
Context Variables allow you to populate different values into a page depending on the output Context
(preview, publish, etc.). These values are generally used to define the location of static, non-managed
design resources such as CSS and images. Variable Selectors provide Web Masters with a greater amount
of flexibility when working with Context Variables within a Site. Once the necessary Context Variables
are defined, the Web Master has the ability to:

 Define a single Context Variable to be used throughout an entire Site;
 Define different Context Variables to be used in different Site Sections.

306 Rhythmyx Rhythmyx Implementation Guide

For example we could modify the Products and Services section of the Corporate Investments Site to use a
different look and feel from the rest of the Site by applying a different set of static images and CSS for
that section than we use for the rest of the Site. To implement this, we would need to define the additional
set of images and CSS, then define a Variable Selector, which we would choose for the Navons in the
Products and Services Folder and its Subfolders.

Figure 232: Defining an Alternate Variable for a Site Section

This section of the Site would use the same Content Types as the rest of the Site, but applying different
CSS and static images would result in a different look and feel for the output in this section.

Default Variable Selector Variables
FastForward comes with a pre-defined Variable Selector Variable: rxs_navbase. Use this Context
Variable in any Site in which you want to use Variable Selectors. You should define a value for this
Context Variable for each output Context for each Site. The values you define for this Context Variable
should specify a generic location where the CSS, JavaScript, and static images for each Site will be stored.

The rxs_navbase Context Variable is specified as the Variable Selector value in the Navigation.properties
file (<Rhythmyxroot>\rxconfig\server\Navigation.properties).

Figure 233: Variable Selector Value as Defined in navigation.properties

If you want to use a different Context Variable name, you must change the value of the navtree.variable
entry in this file.

Using Variable Selectors
For the purposes of this procedure, we will assume that you are using the default Variable Selector
Context Variable, rxs_navbase.

1 Create the CSS files, static images, and JavaScript files you want to use create the look and
feel for your Site section, and copy them in the appropriate web resources directories.

2 In any Templates used on the Site, substitute the Variable Selector Context Variable for any
existing Context Variable (usually ResourcePath). For example, change
$sys.variables.ResourcePath\css\rxs_styles.css

 Chapter 8 Managed Navigation 307

to
$sys.variables.rxs_navbase\css\rxs_styles.css

3 Register a new Context Variable pointing to the new design elements you want to use for your
Site section. For example, to implement a different look and feel for the Products and
Services Site section as discussed earlier, we might define the Context Variable
ProductServices:

Figure 234: Context Variables for the Products and Services Site Section

4 Start Content Explorer and find the Navon in the Products and Services Folder. Edit the
Navon (use Quick Edit if the Navon is already Public), specifying name of your Context
Variable in the Selector drop list. Update and close the Content Item, Transitioning it back to
Public if necessary.

Preview an Item in the Products and Services section. These pages now use the look and feel created by
the CSS, static images, and JavaScript you created. The same templates are simply using different CSS
and design images to format the output.

Navon Properties
Navons have several unique properties and child nodes that play an important role in implementing
Managed Navigation.

Navon properties are only used in Templates.

Variable Data Type Description

nav:axis String The axis of the Navon being processed in relation to the Navon
from which processing was initiated. Available options include:

 ANCESTOR: a node in the path of the Navon higher than
the PARENT Navon node

 DESCENDANT: A node in the path after the Navon
 NONE: No other category applies
 PARENT: The immediate predecessor of the Navon in its

path.
 SELF: The Navon itself.
 SIBLING: Another Navon that shares the PARENT of the

Navon.

nav:url String The URL of the Navon's landing page.

nav:landingPage Node The landing page Content Item.

308 Rhythmyx Rhythmyx Implementation Guide

Variable Data Type Description

nav:leaf Boolean Boolean specifying whether the Navon is a leaf (in other words, has
no children)

 True: The Navon is a leaf (has no children).
 False: The Navon is not a leaf (has children).

nav:submenu Node Iterator The variable contains all Navon children of the Navon being
processed.

nav:image Node Iterator This variable contains all NavImage children of the Navon being
processed.

nav:selectedImage Node The NavImage selected by the Selector

 309

C H A P T E R 9

Configuring Publishing

During the modelling and design process you examined how your current publishing process works, and
determined any changes that you want to make to the process in Rhythmyx. Now that you have determined
how you want publishing to function in your system, you can plan and implement the components
required.

You have already defined your publishing Site in the chapter Setting up the Publishing Site and Basic
Navigation (on page 67) by setting up the Site's folder hierarchy in Rhythmyx Content Explorer and
registering the Site, which involved specifying the root Site Folder, address, and other information.

Before you implement the other publishing components, let's review these components and explain how
publishing in Rhythmyx works. Then we will review how you want your publishing system to work, and
demonstrate how to implement the components necessary.

The main components of the Rhythmyx Publishing system are the Publishing engine in the Rhythmyx
server, Delivery Types, Sites, Content Lists, and Editions:

 A Content List specifies which Content Items to process for Publishing.
 An Edition specifies one or more Content Lists to publish and the order in which to publish

them.
 A Site defines a location where output will be published. A Site may be a file system or a

database or some other destination (for example, a Portal). Rhythmyx can manage multiple
Sites on the same machine.

310 Rhythmyx Rhythmyx Implementation Guide

 A Delivery Type handles the physical delivery of published content to the final output
location.

Other components of the Rhythmyx publishing system are Contexts, Location Schemes, and Variables.

 A Context is a location or environment in which content is published or assembled. For
example, the publishing location for Enterprise Investments content is one Context, and the
location for previewing assembled content before publishing it is another Context.

 Location Schemes are associated with specific Contexts. Location Schemes specify the rules
for configuring the addresses of content items. Location Schemes have various uses. Two of
the main uses of Location Schemes are:
 telling the Publisher where on a file system to publish content.

 creating URLs so that content items can link to each other when they appear in a
browser.

 Variables are used in Location Schemes to enable you to use the same Location Schemes for
different Sites and Contexts. For example, if a Content Item's URL includes the name of the
Site, the Site name can be specified in a variable.

Now that the components and their functions are defined, we will describe in more detail how publishing
works.

Publishing begins when a publishing request is submitted to the Rhythmyx server. A publishing request
may be generated automatically as a scheduled task, or it may be manually requested. When the
Rhythmyx server receives the publishing request, it generates a Publishing job. The Publishing job
processes the Content Lists to generate a list of Content Items to publish, and submits them to the
Assembly engine. When the Publishing job receives the assembled Content Items, it calls the Delivery
Type to deliver the assembled content to the final output location.

 Chapter 9 Configuring Publishing 311

Publishing Specifications
The following publishing specifications were created at the end of your Modelling and Design session.

 Site Folder hierarchy
We will use the FastForward Enterprise Investments Site folder hierarchy because it is
sufficiently detailed to demonstrate how the Site Folder hierarchy in Content Explorer is
duplicated on the publish Site after publishing. The procedure for creating a Site folder
hierarchy has already been demonstrated in the topic Setting up the Publishing Site and Basic
Navigation (on page 67), so we will not duplicate it in this section.

 Delivery Type
For the purposes of this chapter, we will be implementing delivery to a File System. The
Standard File System Delivery Type included with Rhythmyx meets the needs of most
implementations, so we will use it in this chapter. If you need to deliver your output via SSL,
see Setting Up SSL (on page 401). If you need to implement delivery to a database, see
Database Publishing in Rhythmyx (on page 363).

 Content Lists

The following Content Lists are specified in the example specification:

 A Content List that selects all binary Content Items that are ready to be published and
specifies that they should be delivered to the registered Site on the file system (Full
Binary Content List). Publishing binary Content Items typically takes longer than
publishing non-binary content, so in most implementations, a separate Content List is
implemented to publish them. This Content List is typically run less frequently than
the Content List that publishes non-binary content.

 A Content List that selects all non-binary Content Items that are ready to be published
and specifies that they should be delivered to the registered Site on the file system
(Full Non-binary Content List). As noted above, most implementations include
separate Content Lists to publishing binary and non-binary content. In most cases, the
non-binary Content List is run more frequently than the binary Content List because
non-binary content can usually be published more quickly.

 A Content List that selects all new and modified public Content Items (incremental
Content List) and specifies that they should be delivered to the registered Site on the
file system. This is another standard Content List in most implementations which
allows periodic updates to the published Site without taking the time and resources to
completely re-publish the Site.

Note: Earlier Versions of Rhythmyx (Version 6.5.2 and earlier) required a separate Content List to
unpublish expired Content Items. In Rhythmyx Version 6.6 unpublishing is handled by the Edition.

312 Rhythmyx Rhythmyx Implementation Guide

 Editions

The following Editions are listed in the example specification.

 An Edition scheduled to run once a week that publishes all items ready to be published
to the Enterprise Investments site, and unpublishes all Content Items that have been
removed or have entered the Archive State. Most implementations include an edition
that republishes the Site at intervals, though the frequency varies from one
implementation to another.

 An Edition scheduled to run twice a day that publishes all new and modified items in a
publish state to the Enterprise Investments site, and unpublishes all Content Items that
in an archive state. We include this type of edition because it is required by many
customers who need to update their Sites as soon as new content arrives (sometimes
several times a day).

 Contexts
The following Contexts are listed in the example specification:

 A preview Context

Rhythmyx includes this Context by default. It must exist so that users can preview
assembled content in Content Explorer before publishing it.

 A publishing Context

This Context tells the publishing engine where to deliver the Content Items that have
been generated. All implementations require at least one publishing Context.

 A Context for assembling items

In most cases, the URL for links between published Content Items is different from
the URL to which the individual Content Items are published (Most Web servers base
these links on the Site address rather than on the publishing root defined for the Site.)
A special Context is required to provide these URLs. In Rhythmyx, this Context is
generally referred to as an assembly Context. Note that there are some cases, (such as
publishing to a database target) where this Context is not necessary.

 Location Schemes

The following Location Schemes are listed in your specifications:

 A location scheme that generates the path for publishing each item on the file system.
We will associate this Location Scheme with the publishing Context. It will create the
delivery address for Content Items that are ready to be published.

 A location scheme that generates the URL for each item (so items can link to one
another). We will associated this Location Scheme with the Context for assembling
items. It will generate the Site address of published Content Items for the browser to
use.

 Chapter 9 Configuring Publishing 313

Content Explorer's Publishing DesignTab
The publishing components in your system, including Sites, Delivery Type Configurations, Content Lists,
Editions, Contexts, Location Schemes, and Variables are maintained or configured in the Publishing
Design tab of Content Explorer. This tab is only available to users with the correct access rights.

On the left side, the Publishing Design tab displays a navigation pane with links to the editors for adding
and modifying different publishing components. The right side of the Publishing Design tab is the Edit and
View pane, which displays the editor for the selected object.

Figure 235: Parts of the Publishing Design Tab

314 Rhythmyx Rhythmyx Implementation Guide

Defining Content Lists
A Content List is a Rhythmyx query that defines which Content Items are extracted from the database for
publishing.

Content Lists may query on any properties of Content Items, such as their Content Type, to determine
whether or not they are published. Content Lists can define whether Rhythmyx will publish all eligible
Content Items on the Site (a Full Publish) or only those content items that have been added or updated
since the last Publication run (a Normal Publish). Many customers perform a Full Publish every one or two
weeks, and an incremental publish one or more times a day.

Defining Content Lists makes them available to be included in an Edition. We will discuss Editions later in
this chapter but for now we will focus on defining Content Lists.

Your specifications require three Content Lists:

 one that selects all Public binary Content Items (EI_FullBinary)
 one that selects all Public non-binary Content Items (EI_FullNonBinary)
 one that selects new and modified Content Items (EI_Incremental)

The following topics describe how to implement these Content Lists. FastForward includes additional
Content Lists that we will not recreate in this section.

Note: The data in the following procedures is included as examples. Use the data specified in your
development plan when defining your own Content Lists.

Defining the Full Binary Content List
The first type of Content List we will illustrate is the Full Binary. Full Binary Content Lists publish all
binary content that is in a Public state within the specified Site Folder.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To define the Full Binary Content List:

1 Log in to Rhythmyx Content Explorer.

2 Click the Publishing Design tab.

3 In the Navigation pane on the left side of the dialog, double-click on the Unused Content Lists
link.

Content Explorer displays the List Content List dialog.

Note: Rhythmyx includes two versions of this dialog. The version accessed in this way lists only
Content Lists that are not currently included in an Edition. You can also access a version of the dialog
under the Editions node of the Navigations pane. That version lists only Content Lists that are
associated with an Edition.

4 In the Menu bar, choose Action > Create New Content List.

 Chapter 9 Configuring Publishing 315

Content Explorer displays the Content List editor.

.

Figure 236: Content List Editor when creating a new Content List

5 The Name field is mandatory and defaults to ContentList_0. This field is editable. It is a best
practice to give the Content List a unique Name. Content List names must begin with a letter,
and can contain letters, numbers, underscores, hyphens, or dots (periods), but cannot contain
spaces. Enter rffEiFullBinary as the name the Content List.

6 The Description field is optional; however it is a best practice to provide a description for the
Content List. For this example enter the following text: Site Root Full for Binary Content
Types - Enterprise Investments.

7 We want this Content List to publish all Public Content Items of the specified Content Types
for the Site, so leave the Incremental checkbox unchecked.

8 Choose the Delivery Type used for the Content List. The Delivery Type determines how
assembled content will be delivered to the target location. Options include all Delivery Types
defined in the system. The following Delivery Types are included in Rhythmyx installations
by default:

 filesystem

Delivers content to the local file system, including any mapped or mounted drive
locations.

 ftp

Delivers content via FTP.

 sftp

Delivers content via secure FTP

 database

Delivers content to a database.

For the purposes of this exercise, we will choose filesystem.

9 The Item Filter value specifies a filter for Content Items included on the Content List. The
following values are valid:

 unpublish - include all items in an archive State.

316 Rhythmyx Rhythmyx Implementation Guide

 preview - include all items.

 public - include all items in a public State.

 sitefolder - include all items in the specified site folder.

 Unassigned - indicates that no filter has been chosen. Not a valid value; will cause a
publishing error.

Choose Public. We want to publish all Content Items in a public State in the Content List.

10 The Generator field specifies the Content List Generator extension that creates the list of
Content Items to be published. The following Content List Generators are included in
Rhythmyx installations by default:

 Java/Global/percussion/system/sys_PublishedSiteItems

Outputs the list of Content Items currently published on the Site; must be used with
the sys_SiteTemplateExpander. Used primarily for unpublishing in legacy systems
implemented on Rhythmyx Version 6.5 or earlier.

 Java/Global/percussion/system/sys_SearchGenerator

Queries the repository for content matching the query that follows, and generates the
content list using the matching content.

 Java/Global/percussion/system/sys_SelectedItemsGenerator

Used for demand publishing. Locates the content item IDs from an HTTP parameter,
and generates the Content List using these Content Items.

Choose Java/Global/percussion/system/sys_SearchGenerator because we are creating a typical
Content List.

Notice that the editor displays a text field named Query when you make the selection in the
Generator field above.

11 In the Query field enter the following query text:

select rx:sys_contentid, rx:sys_folderid from rx:rfffile,rx:rffimage,rx:rffnavimage where
jcr:path like '//Sites/EnterpriseInvestments%'

This is a JSR-170 query (see page 196) that we can break down as follows:

 Expression in query Meaning

select rx:sys_contentid, rx:sys_folderid Return each content item and its folder (including
all of the content item and folder fields and
properties)

from rx:rfffile,rx:rffimage,rx:rffnavimage Query only the Content Types rfffile, rffimage,
and rffnavimage.

where jcr:path like '//Sites/EnterpriseInvestments%' Only look in the Content Explorer Site Folder
path //Sites/EnterpriseInvestments

In other words, the query tells the generator to return the content item and folder of all file,
image, and navimage content items in the folders and subfolders of the Site Folder path
//Sites/EnterpriseInvestments:

 Chapter 9 Configuring Publishing 317

12 The Template Expander field specifies the Template Expander extension that chooses templates
for assembling each Content Item chosen to be published. You must supply parameters to each
default Template Expander. The choices for Template Expanders are:

 sys_SiteTemplateExpander - Used for site folder publishing. Finds the default Page
Template or the binary template associated with each Content Item.

 sys_ListTemplateExpander - Lets user specify a list of Templates for assembling the
content item.

In the drop down list select Java/Global/percussion/system/sys_SiteTemplateExpander since
we are using Site Folder publishing. When you choose this option, the Content List Editor adds
the siteid and default_template fields below the Template Expander drop list.

13 In the siteid field below the Template Expander field enter 301, the site id for Enterprise
Investments.

14 The default_template field lets you specify which Templates to publish for a Content Item of a
certain Content Type. The Publish value for each Template is marked in the Template editor in
the Rhythmyx Workbench:

 all or unspecified (blank) - Use all Templates whose Publish value is Default.

 dispatch - Use all dispatch Templates assigned to the Content Item. Dispatch
Templates include conditions for choosing the correct Template.

 none - Use all Templates whose Publish value is Always.

Leave default_template blank to indicate that you want to use all Templates associated with the
Content Type for the Site whose Publish value is Default.

Your completed editor should resemble the following screenshot:

Figure 237: Enterprise Investments Full Binary Content List

15 To save the Content List, in the Menu bar, click Save.

318 Rhythmyx Rhythmyx Implementation Guide

Defining the Full Non-Binary Content List
The second Content List we define is a Full Non-binary Content List. This Content List publishes all non-
binary Content Items within the specified Site Folder. Standard practice is to implement separate Content
Lists for binary and non-binary content because binary content typically takes longer to publish. You can
thus schedule separate and more frequent publishing of non-binary content as well as including it with
binary content.

We can create this Content List by copying the Full Binary Content List (see page 314) and modifying the
appropriate data.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To define the Full Non-Binary Content List:

1 On the Publishing Design tab, click on the Unused Content Lists tab to display the list of
Content Lists not associated with an Edition.

2 Select the radio button next to the rffEiFullBinary Content List.

3 In the Menu bar, choose Action > Copy Selected Content List.

Rhythmyx copies the Content List and displays it in the Content List editor. The copied
Content List has the name Copy_of_rffEiFullBinary.

4 Change the Name to rffEiFullNonBinary.

5 Change the Description to Site Root Full for Non-Binary Content Types - Enterprise
Investments.

6 Change the Query to

select rx:sys_contentid, rx:sys_folderid from
rx:rffautoindex,rx:rffbrief,rx:rffcalendar,rx:rffcontacts,rx:rffevent,rx:rffexternallink,rx:rffgener
icword,rx:rffgeneric,rx:rffhome,rx:rffpressrelease where jcr:path like
'//Sites/EnterpriseInvestments%'

This JSR-170 query tells the generator to return the contentid and folderid of all Autoindex,
Brief, Calendar, Contact, Event, External link, Generic Word, Generic, Home, and Press
Release Content Items in the Site Folder path //Sites/EnterpriseInvestments and its Subfolders.

7 For the remaining fields, the Full Nonbinary Content List uses the same values as the Full
Binary Content List. Do not change any of these values.

 Chapter 9 Configuring Publishing 319

Your completed editor should resemble the following screenshot:

Figure 238: Enterprise Investments Full Non-binary Content List

8 In the Menu bar, click Save.

Defining the Incremental Content List
An Incremental Publish differs from a Full Publish in that it publishes only new Content Items and Content
Items that have changed since they were last published. Full Publishing publishes every Content Item in a
Public State.

Many customers perform a Full Publish infrequently (such as every one or two weeks), and an incremental
publish very frequently (one or more times a day). Since fewer items are published during Incremental
Publishing, fewer system resources are used, decreasing processing time.

We can create this Content List by copying an existing Content List (we will use the Full Binary Content
List) and changing the appropriate data.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To define the Incremental Publish Content List:

1 Copy the EI_FullBinary Content List. For details see steps 1-3 in Defining the Full Non-
Binary Content List (on page 318).

2 Change the Name field to rffEiIncremental.

3 Change the Description field to Site Root Incremental - Enterprise Investments.

320 Rhythmyx Rhythmyx Implementation Guide

4 Since this is an Incremental Content List, check the Incremental checkbox. Checking this box
triggers incremental publishing processing. This processing republishes Content Items that
were changed since the last publishing run, publishes Content Items that have become Public
since the last publishing run, and removes Content Items that expired since the last publishing
run. Any Content Items that link to newly published or unpublished Content Items will also be
republished.

5 Change the Query to:

select rx:sys_contentid, rx:sys_folderid from nt:base where jcr:path like
'//Sites/EnterpriseInvestments%'

This JSR-170 query tells the generator to return the contentid and folderid of content items of
all Content Types (nt:base represents all Content Types) in the Site Folder path
//Sites/EnterpriseInvestments and its Subfolders.

6 For the remaining fields, the Incremental Content List uses the same values as the Full Binary
Content List. Do not change any of these values.

 Your completed editor should resemble the following screenshot:

Figure 239: Incremental Content List

7 In the Menu bar, choose Save.

 Chapter 9 Configuring Publishing 321

Defining Contexts and Location Schemes
A Context is a location or environment in which a path to an assembled output is generated. For example,
the publishing location for Enterprise Investments content is one context, and the location for previewing
assembled content before publishing it is another context. Different paths are generated in each case.

Location Schemes are associated with specific contexts, and specify the rules for generating paths within
that Context. Location Schemes have various uses. Two of the main uses of location schemes are:

 telling the Publisher where to publish content on a file system.
 creating URLs so that content items can link to each other when they appear in a browser.

The FastForward specification requires three Contexts:

 A preview Context
This Context is included in Rhythmyx by default. It enables previewing of content by linking
to referenced content such as images and other pages. It cannot be modified or deleted.

 A publishing Context
This Context tells the Publisher where on the file system to deliver the assembled output
HTML files. Every system that publishes to a file system (either directly or via FTP), requires
such a Context. Such a Context is often referred to as a publish Context. In our example, we
will name this Context Publish.

 A Context for assembling items
This Context creates links to other Content Items. While some systems only need a publish
Context, most need an additional Context, often referred to as an assembly Context, for two
reasons. First, the URL for links between Content Items may be different from the location
where the output files reside, even for content published to a file system. Second, when
publishing to a database or other alternative output repository, content may be stored and
retrieved using a different approach than a pre-generated location; for example, a system might
pass a request parameter to a Web application to retrieve the correct content. In our example,
we will name this Context Site Folder Assembly.

Creating the Publish Context and its Generic Location
Scheme
To illustrate the creation of Contexts and Location Schemes, we will examine how the Publish Context and
its Generic Location Scheme were created.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create a Publish Context:

1 Log in to Rhythmyx Content Explorer.

2 Click the Publishing Design tab.

3 In the Navigation pane, double-click on the Contexts node.

322 Rhythmyx Rhythmyx Implementation Guide

Content Explorer displays the Context list.

4 In the Menu bar, choose Action > Create Context.

5 Content Explorer displays the Context editor.

Figure 240: New Context

6 In the Name field, enter Publish.

7 In the Description field, enter Create the appropriate path for the publishing location, related
to but not identical with the assembly location.

8 In the Menu bar, click the Save button.

Rhythmyx saves the Context and returns you to the Context List page.
Next, add a Location Scheme to the Context:

1 Click on the name of your new Context to open it.

Rhythmyx displays the Context in the View and Edit pane.

2 In the Menu bar, choose Action > Create Location Scheme.

 Chapter 9 Configuring Publishing 323

Content Explorer displays the Scheme Editor.

Figure 241: New Location Scheme

3 In the Name field, enter Generic.

4 In the Description field, enter Generic location generation for publishing.

5 In the Content Type drop list, choose Generic. This choice specifies that this Location Scheme
is the default Location Scheme for the Generic Content Type when it uses the Template
selected in the next field. However, we will make it the default Location Scheme for all
Content Types without a Location Scheme assigned in this Context.

6 In the Template Type drop list, choose D - EI Generic. Now this is the default Location Scheme
for the Generic Content Type when it uses the D - EI Generic Template.

7 In the Expression field, enter the JEXL expression:
$sys.pub_path + $sys.template.prefix + 'item' +
$sys.item.getProperty('rx:sys_contentid').String +
$rx.location.getFirstDefined($sys.item,'rx:activeimg_ext,rx:sys_su
ffix', '.html')

This JEXL expression uses bindings (variables or functions) already defined for Rhythmyx.
See Bindings (see page 141) for more information. Content Type names in Rhythmyx are
expressed in the JEXL expression with rx: preceding them.

324 Rhythmyx Rhythmyx Implementation Guide

The bindings used in the above expression have the following values and functions:

Binding Value

$sys.pub_path sys.pub_path holds the file system path to which
content is published. It consists of the path
assigned to the item's Content Explorer folder in
its folder properties or, if no path is assigned, the
actual folder path holding the Content Item under
the Site folder root in Content Explorer.

Note: Do not use $sys.site.path in place of
$sys.pub_path. $sys.site.path takes the value of
sys_siteid. If a user action causes sys_siteid to be
set to a different site immediately before a
publishing run, the edition will be published to
the wrong site.

$sys.template.prefix sys.template.prefix holds the default Template's
prefix value, if a prefix has been entered.

$sys.item Holds the current Content Item's fields and
children.

$sys.item.getProperty(rx:sys_contentid').String getProperty returns the value of the specified
property in the current Content Item. String
indicates that the value is returned as a text string.
Therefore this binding returns the Content ID of
the current content item in string format.

$rx.location.getFirstDefined($sys.item,'rx:activeimg_ext
, rx:sys_suffix', '.html')

$rx.location returns a hypertext link.
$rx.location.getFirstDefined returns the value of
the first defined property for $sys.item in the list
that follows it in the parenthesis. Therefore, if the
activeimg_ext field is filled, that value is
returned; otherwise, if the sys_suffix field is
filled, that value is returned; otherwise, the value
".html" is returned.

8 You should always test new and modified JEXL expressions to ensure that they produce the
desired results. We will use the About EI HomePage Image (NYSE Papers).jpg Content Item
to test the JEXL expression:

a) Click the Show Test Panel link.

The Location Scheme Editor expands to display the test panel.

b) In the Site drop list, choose Enterprise Investments.

c) Click the button below the Item Path field and browse to the About EI HomePage
Image (NYSE Papers).jpg Content Item.

d) None of the JEXL functions used in this expression require any Additional Parameters, so
leave this field blank. If any of the JEXL functions used in the expression did require
additional parameters, we would add them to the field as name=value pairs, using
ampersands ("&") to separate pairs; for example:
sys_contentid=301&sys_revision=1&sys_slotid=501.

 Chapter 9 Configuring Publishing 325

e) Click the [Evaluate JEXL Expression] button.

Rhythmyx evaluates the expression and returns the results. If the expression can be
evaluated, the Status indicates Success and the evaluated output is displayed in the Results
field:

Figure 242: Successful Location Scheme

326 Rhythmyx Rhythmyx Implementation Guide

If the JEXL expression cannot be evaluated successfully, the Status indicates Error and the
text describing the error is displayed in the Results field:

Figure 243: Test Panel showing an error in the JEXL expression. In this case the property

rx:sys_contentid was specified incorrectly without an underscore.

Note that a JEXL expression may return a Success status while the evaluated result does
not return expected results. Unexpected results may occur simply because the JEXL
expression needs additional work. For example, you may want to include a Template-
defined prefix or suffix in your output, but the JEXL expression you defined a JEXL
expression may not include that data. In some cases unexpected results may occur because
the JEXL expression includes an error, but the error does not prevent successful processing
of the expression. In the example below, the variable $sys.pub_path was defined without
the underscore (as $sys.pubpath). The expression was processed successfully, but the
result is incorrect.

Figure 244: Testing a JEXL showing a Status of success while producing an erroneous output

 Chapter 9 Configuring Publishing 327

Common Errors in JEXL Expressions
Some common errors that occur when creating JEXL expressions include:

 Misspelling a function.
For example, if the expression were coded as
...$rx.location.getFirstDefind($sys.item,'rx:activeimg_ext,rx:s
ys_suffix', '.html'), the system would return an error when testing the expression.
The correct function name is $rx.location.getFirstDefined.

 Not enclosing the test condition of an IF function in parentheses.
For example, if the expression were coded as if $sys.crossSiteLink..., the system
would return an error when testing the expression. The correct syntax is
if ($sys.crossSiteLink).

 When testing a string value, not enclosing the value in quotation marks.

For example, if the expression were coded as if
($sys.site.path=\\EnterpriseInvestments\InvestmentAdvice..), the
system would return an error when testing the expression. The correct syntax is if
($sys.site.path='\\EnterpriseInvestments\InvestmentAdvice').

 Not ending consequent statements with semicolons (;).

For example, the code if ($sys.crossSiteLink) $prefix = $sys.site.url
else $prefix = $sys.variables.rxs_urlroot results in an error when testing
the expression. The correct syntax is if ($sys.crossSiteLink) $prefix =
$sys.site.url; else $prefix = $sys.variables.rxs_urlroot;.

 Using an incorrect JEXL variable
For example, using $sys.site.path rather than $sys.pub_path. The two variables return different
results ($sys.site.path returns the Site ID, while $sys.pub_path returns the Folder path in
Content Explorer).

Be sure to review the Result when you test your JEXL expression. The returned results may not match
your desired output. Moreover, the system returns a Success status if the JEXL expression can be
processed without the JEXL processing engine returning an error. In some cases incorrect input may result
in erroneous output even though the Status is Success.

328 Rhythmyx Rhythmyx Implementation Guide

Creating Additional Contexts
Like Location Schemes, Contexts are often very similar. For example, the Site_Folder_Assembly Context
in FastForward has the same set of Location Schemes as the Publish Context, but with different JEXL
expressions to generate different results. Thus, you can often create a new Context quickly and easily by
copying an existing Context. When you copy a Context, all of the Location Schemes in the Context are
also copied.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create the Site Folder Context:

1 On the Publishing Design tab, click the Contexts link to display the list of Contexts.

2 Select the radio button next to the Publish Context.

3 In the Menu bar, choose Action > Copy Selected Context.

Rhythmyx copies the Context and displays it in the Context editor.

4 Change the Name to Site_Folder_Assembly.

5 Change the Description to Create the appropriate path for the site folder assembly location.

6 Each of the Location Schemes was copied with the Context with the name Copy_of_<Location
Scheme>, where Location Scheme is the name of the Location Scheme. Edit each Location
Scheme to change the JEXL expression to generate the desired results. You may also want to
modify the names of the Location Schemes, at least removing the "Copy_of_" text.

7 In the Menu bar, click Done.

Creating Additional Location Schemes
In many cases,. Locations Schemes are very similar, and you can create additional Location Schemes
quickly and easily by copying an existing Location Scheme. For example, the InactiveNavImage Location
Scheme in the Publish Context is used when publishing Content Items of the NavImage Content Type
using the B-Inactive Image Template, but the JEXL expression is very similar to the expression used in the
Generic Location Scheme:

$sys.pub_path + $sys.template.prefix + 'item' +
$sys.item.getProperty('rx:sys_contentid').String +
$rx.location.getFirstDefined($sys.item,'rx:inactiveimg_ext,rx:sys_suffix
', '.gif')

Compare this expression to the expression used in the Generic Location Scheme illustrated in the topic
Creating the Publish Context and its Generic Location Scheme (on page 321). Thus, we can quickly
create the InactiveNavImage Location Scheme by copying the Generic Location Scheme and modifying
the appropriate data.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create the InactiveNavImage Location Scheme:

1 In the Publishing tab, open the Publish Location Scheme.

2 Select the radio button next to the Generic Location Scheme.

 Chapter 9 Configuring Publishing 329

3 In the Menu bar, choose Action > Copy Selected Location Scheme.

Rhythmyx copies the Location Scheme and displays it in the Location Scheme editor. The
copied Content List has the name Copy_of_Generic.

4 Change the Name field to InactiveNavImage.

5 Change the Description field to Inactive navigation image publishing location.

6 In the Content Type field, choose Nav Image.

7 In the Template field, choose B - Inactive Image.

8 Modify the JEXL Expression using the example code illustrated above.

9 Test the expression to ensure that it returns the expected results.

10 In the Menu bar, click Done.

330 Rhythmyx Rhythmyx Implementation Guide

Creating Editions
Now that we have created Content Lists and Contexts we are ready to create Editions. An Edition specifies
the set of Content Lists to publish, which Site to publish them to, and the sequence in which to publish
them. The sequence is important for the following reasons:

 First, because a page is composed from multiple items, and these items themselves may be
groupings of other items, more elemental items should be published first, followed by higher
level items, and finally by pages. In other words, images should be published before articles
because articles will typically include images. Articles should be published before indices
because index items typically include article items.

 Second, different Content Lists typically have different publishing rules, which specify the
response to errors generated in earlier Content Lists, such as omitting an item if a child item is
not published, publishing the item without the child item, or publishing the item with an error
message.

You can also define one or more tasks to run with your Edition. You can run tasks either before the
Edition itself is run or after the Edition completes processing. For example, you can define a pre-Edition
task to establish a connection to the remote Web server before publishing the content and breaking the
connection after the Edition is complete; or you might define a post-Edition task to run a link checker.

The FastForward specification includes the following Editions:

 An edition scheduled to run once a week that publishes all items ready to be published to the
Enterprise Investments site, and unpublishes all items in an archive state. We will call this
Edition rffEIFull. It will include the following Content Lists:
 rffEiFullBinary

 rffEiFullNonbinary
 An edition scheduled to run twice a day that publishes all new and modified items in a publish

state to the Enterprise Investments site, and unpublishes all items in an archive state. We will
call this Edition rffEIIncremental. It will include the rffEiIncremental Content List.

We will add a task to each of these Editions to run a link checker after the Edition is finished to ensure that
none of the links in the Edition are broken. (Note: See the document Setting Up the Rhythmyx Production
Environment for details about defining a publishing schedule.)

FastForward includes additional Editions; the procedures to create those Editions are essentially the same
as for the Editions we illustrate.

Full Publish Edition
In this exercise we will define a full publish Edition. In general, full publish Editions publish all content
that is in a public state and remove all content that is in an archive state or has been purged from the
system.

For the purposes of this exercise, we will assume that the following design elements have been created:

 Content lists
 EI_Binary

 Chapter 9 Configuring Publishing 331

 EI_NonBinary

 Contexts
 Publish

 Site Folder Assembly

We will add both Content Lists to this Edition. Each Content List will be associated with both listed
Contexts.

We will also add a task that queries the W3C Link Checker to validate all of the links in the published Site.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create the Full Publish Edition:

1 Log in to Rhythmyx Content Explorer.

2 Click the Publishing Design tab.

3 Expand the Sites node. Expand the Enterprise Investments node. Click on the Editions node.

Content Explorer displays the Editions List. Since we have not yet defined any Editions, the
list is empty.

4 In the Menu bar, choose Action > Create New Edition.

Content Explorer displays the Edition Editor.

Figure 245: New Edition Editor

5 In the Name field, enter EI_Full.

6 In the Description field, enter Publishes all Content Items in a Public State on the Enterprise
Investments Site.

332 Rhythmyx Rhythmyx Implementation Guide

7 In the Priority field, choose Lowest. This option specifies that the Edition will not interrupt the
processing of other Editions, and that it will be interrupted by processing on Editions with a
priority of Low or higher. Typically, full Editions are specified with a priority of Low or
Lowest.

8 Select the Unpublish Then Publish radio button. This option removes any expired Content
Items from the Site, then publishes all Content Items in a Public State.

9 To add the rffEIBinary ContentList:

a) In the Menu bar, choose Action > Add Content List Association.

Context Explorer displays the Edition - Add or Edit Content List dialog.

b) In the Content List table, check the box of the rffEiFullBinary and rffEiFullNonBinary
Content Lists.

c) In the Assembly Context drop list, choose Site Folder Assembly.

d) In the Delivery Context drop list, choose Publish.

The AuthType field is used when maintaining legacy systems implemented in Rhythmxy
Version 5.7 and earlier. Do not enter a value in this field.

e) Click the [Save] button to save the associations.

The following graphic illustrates the Edition after the Content Lists have been added:

Figure 246: Edition with Content Lists

10 To add the link checker task:

a) In the Menu bar, choose Action > Add Post Task.

 Chapter 9 Configuring Publishing 333

Content Explorer adds the Post Tasks table to the Edition editor with a row for the new
task.

b) As checking links is a task we want to execute after publication of the Edition is complete,
leave the Continue on Failure box unchecked. This box is only useful for tasks run before
processing of the Edition begins. It indicates that processing of the Edition should
continue even if processing of the task does not complete successfully.

c) In the Extension drop list, choose sys_editionCommandTask. This is default task
extension that ships with Rhythmyx, but custom task extensions can be implemented. For
details, see the (Xref to appropriate location in Tech Ref.).

d) When you choose the sys_editionCommandTask, Content Explorer displays the Command
field. We will use the Firefox browser to run the linkchecker. Enter C:\Program
Files\Mozilla Firefox\Firefox.exe
http://validator.w3.org/checklink?uri=www.enterpriseinvestments.com&hide_type=all&de
pth=&check=Check. This command queries the W3C link checker application to check
the links in the Enterprise Investments Site using the Firefox Web browser.

11 To save the Edition, in the Menu bar, click [Save].

334 Rhythmyx Rhythmyx Implementation Guide

The completed Edition resembles the following screenshot:

Figure 247: Edition with Tasks

Incremental Edition Edition
In this exercise we will define an incremental Edition, EI_Incremental. An incremental Edition removes
any Content Items that have expired or been removed from the Site, publishes any Content Items that have
become Public since the last publishing run, and republishes any Content Items that changed since that run.

For the purposes of this exercise, we will assume that the following design elements have been created:

 Content lists
 rffEIIncremental

 Contexts
 Publish

 Chapter 9 Configuring Publishing 335

 Site Folder Assembly

The Edition will include the rffEiIncremental Content List, which will be associated with both Contexts.

When you want to create an Edition that shares configurations with an existing Edition, you can create the
new Edition quickly by copying the existing Edition and modifying the copy. We will use that technique
to create the EI_Incremental Edition, copying the EI_Full Edition we created previously (see "Full
Publish Edition" on page 330).

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create the EI_Incremental Edition:

1 Log in to Rhythmyx Content Explorer, and go to the Publishing Design tab.

2 Expand the Sites node. Expand the Enterprise Investments node. Click on the Editions node.

Content Explorer displays the Editions List.

3 Select the radio button next to the EI_Full Edition.

4 In the Menu bar, choose Action > Copy Selected Edition.

Rhythmyx copies the Edition and displays it in the Edition Editor. The new Edition has the
name Copy of EI_Full, but otherwise has the same data as the original Edition.

5 Change the Name to EI_Incremenal.

6 Change the Description to Publish only new and modified Items in a Public State.

7 Change the Priority to Medium. This option specifies that an Edition specified with a priority
of High or Highest will interrupt processing of this Edition, and that this Edition will interrupt
processing of Editions with a Low or Lowest priority. Typically, incremental Editions are
assigned a priority of Medium.

8 The Unpublish Then Publish radio button is already selected (this configuration is inherited
from the EI_Full Edition). This option specifies that expired Content Items will be removed
from the Site, and newly Public Content Items will be published, and Content Items modified
since the last publishing run will be republished. Do not change this configuration.

9 Remove the rffEIFullBinary and rffEIFullNonbinary Content Lists from the Edition:

a) Click in the radio button of the rrfEIFullBinary Content List.

b) In the Menu bar, choose Action > Delete Selected Row.

c) Repeat Steps a and b to remove the rffEIFullNonbinary Content List.

10 Add the rffEIIncremental ContentList to the Edition:

a) In the Menu bar, choose Action > Add Content List.

Context Explorer displays the Edition - Add or Edit Content List dialog.

b) In the Content List table, check the box of the rffEIIncremental Content List.

c) In the Assembly Context drop list, choose Site Folder Assembly.

d) In the Delivery Context drop list, choose Publish.

336 Rhythmyx Rhythmyx Implementation Guide

The AuthType field is used when maintaining legacy systems implemented in Rhythmxy
Version 5.7 and earlier. Do not enter a value in this field.

e) Click the [Save] button to save the association.

11 The post task to run the link checker was copied with the Edition. Do not modify this task
configuration.

12 To save the Edition, in the Menu bar, click [Save].

The completed Edition resembles the following screenshot:

Figure 248: Incremental Edition

 Chapter 9 Configuring Publishing 337

Testing your Content Lists
After you have added Content Lists to an Edition, you can preview the Content Lists to ensure they are
returning the Content Items you expect.

In this example, we will preview the rffEIFullNonbinary Content List associated with the EI_Full Edition.

To preview the rffEIFullNon-binary Content List:

To test your Content Lists:

1 Log in to Rhythmyx Content Explorer and go to the Publishing Design tab.

2 Expand the Sites node. Expand the Enterprise Investments node. Expand the Editions node.
Click on the EI_Full Edition

Content Explorer displays the EI_Full Edition editor.

3 Click on the Preview icon in the row of the rffEIFullNonbinary Content List

Content Explorer displays a preview of the output of the Content List.

Figure 249: Preview of Content List

If the Content List is empty (no content matches its criteria), the preview appears as:

Figure 250: Empty Content List

If your Content List preview does not resemble one of the above examples, or the Content List
is empty but should not be, go back and resolve the error in your Content List before testing
publishing of your content.

338 Rhythmyx Rhythmyx Implementation Guide

Testing Publishing of your Editions
We have now registered or configured the basic publishing components of the implementation, and can
publish the Editions we defined to verify that they will produce the output we expect. When testing in the
development environment Editions are run manually but in a production environment, publishing an
Edition is typically set up as a scheduled task. For details about implementing a scheduled task, see
"Scheduling Publishing" in Setting Up the Production Environment.

In the following exercises, we will publish both the EI_Full Edtion and the EI_Incremental Edition (see
page 340).

Publishing the Full Publish Edition
Your FastForward Content Items should all already be in a public State, so you simply have to publish the
Full Publish Edition to test it.

While you use the Publishing Design tab to define the configurations of your Publishing implementation,
you use the Publishing Runtime tab to run the Editions and access the logs for review.

To publish the Full Publish Edition:

1 Log in to Rhythmyx Content Explorer and click on the Publishing Runtime tab.

2 Expand the Sites node. Expand the EnterpriseInvestments Node. Click Editions.

3 Rhythmyx displays the Runtime Editions List.

Figure 251: Runtime Edition List

 Chapter 9 Configuring Publishing 339

4 You can run the Edition here by clicking the icon in the row of the EI_Full Edition:

Figure 252: Runtime Edition List showing the EI_Full Edition Running

5 For more details about the Edition, click on the EI_Full link.

Rhythmyx displays the Runtime Edition page.

6 To run the Edition, in the Menu bar, click Start.

Rhythmyx displays detailed information about the running edition, including a progress bar.

Figure 253: Edition Runtime showing status Information during a publishing run

340 Rhythmyx Rhythmyx Implementation Guide

A log for the new Editions is created and added to the Edition Runtime page as well. When
processing of the Edition is complete, you can access the log by clicking on its Job ID.

Figure 254: Publishing Job Log View

Using this view, you can review the overall success of the publishing run of the Edition. To
view details about a particular Content Item, click on the Content ID link. Rhythmyx returns
the Published Item Detail page with detailed information about the published Content Item.

Figure 255: PublishedI tem Details

Publishing the Incremental Edition
For the purpose of this exercise, we assume that all of the Content Items on the Enterprise Investments Site
are in a Public State.

To see results when you publish your Incremental Edition, you must modify Content Items that are in a
public State or add some new Content Items and move them to a public State.

In this example, assume the following changes have been made:

 A new Press Release Content Item has been created in the folder
Sites/EnterpriseInvestments/AboutEnterpriseInvestments/Press Releases/2008 with the
Content ID 703 and has been Transitioned to Public.

 Chapter 9 Configuring Publishing 341

 The Content Item About Enterprise Investments Generic Content Item (Content ID 335) has
been modified.

 The EI Reinsurance Generic Content Item (Content ID 406) has been Transitioned to the
Archive State.

Follow the same steps as when publishing the rffEIFull Edition. When the Edition is complete, check the
log. In this case, only five Content Items have been published and one was unpublished.

Figure 256: Incremental Edition Log Summary showing five Content Items published and one Content Item

unpublished

The log details which Content Items were processed:

Figure 257: Detailed log of the incremental publishing run

The Content Item that was moved to archive was unpublished (ID 406). The new Content Item (ID 703)
was published and the modified Content Item (ID 335) was republished. Two additional Content Items
(IDs 494 and 497) were republished because they included automated indices (all automated indices are
always published or republished to ensure that any modifications are included in the index).

342 Rhythmyx Rhythmyx Implementation Guide

Implementing Demand Publishing (Publish
Now)
Demand Publishing allows users to publish individual Content Items at their discretion. A Content Item
must be public to be eligible to be published using Demand Publishing. Users can initiate Demand
Publishing of a Content Item in two ways:

 In Active Assembly, choose Tools > Publish Now. Only the root Content Item in Outline
View is eligible to be published using this option.

 In Content Explorer, select the Content Item you want to publish, right-click, and from the
popup menu, choose Publish Now.

Publish Now processing looks for an Edition that includes only one Content List, which uses the
sys_SelectedItemsGenerator. To implement Demand Publishing for a Site

 Create a Content List that uses the sys_SelectedItemsGenerator. The following graphic
illustrates the configuration of the rffEiPublishNow Content List:

Figure 258: Publish Now Content List

 Chapter 9 Configuring Publishing 343

 Create an Edition that includes the Content List described in the previous bullet point. No
other Content Lists should be included in the Edition. In the Priority drop list, choose Highest
radio button; Demand Editions typically have a higher priority (either High or Highest) and
interrupt processing of other Editions. For Behavior, select the Publish radio button; the intent
of Demand Publishing is to publish the specified Content Item; no unpublishing processing
should be performed. The following graphic illustrates the configuration of the
EI_Publish_Now Edition.

Figure 259: Publish Now Edition

344 Rhythmyx Rhythmyx Implementation Guide

Setting Up the Corporate Investments Site
Once you have set up one Site, you can quickly set up additional Sites by copying and modifying the
configurations of the original Site. In the following exercises, we will create the CorporateInvestments
Site by copying and modifying the configurations of the EnterpriseInvestments Site.

Copying a Site is a two-phase process:

 copying the Site Folder Structure, or the Site registration, or both; and
 copying the Editions and Content Lists.

Copying a Site in the Content Tab
If you want to create a Site that uses the Folder structure of an existing Site, copy the Site Folder in the
Content tab of Content Explorer. The action launches a wizard that allows you to copy the Site registration
of the copied Site as well. In this exercise, we will create the CorporateInvestments Site by copying the
EnterpriseInvestments Site, including the Site registration.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To copy the EnterpriseInvestments Site Folder structure and Site registration:

1 Change to the Content tab of Content Explorer.

2 Select the EnterpriseInvestments Site. Right-click on from the popup menu choose Copy.

Figure 260: Copying the EnterpriseInvestments Site in the Content tab

 Chapter 9 Configuring Publishing 345

3 Select the Sites root node. Right-click and from the popup menu choose Paste > As New
Copy.

Figure 261: Pasting the Site Folder to create a new Site

Rhythmyx launches the Copy Site wizard.

Figure 262: Copy Site Wizard Intro Page

4 Click the [Next] button.

Rhythmyx displays the Copy Site Name dialog.

346 Rhythmyx Rhythmyx Implementation Guide

5 In the New Folder Name and New Site Name fields, enter CorporateInvestments. In the Site
Definition to Copy field, be sure EnterpriseInvestments is selected.

Figure 263: Specifying the Corporate Investments Site on the Copy Site Wizard. Note that the

EnterpriseInvestments Site is specified as the Site Definition to Copy.

6 Click the [Next] button.

Rhythmyx displays the Copy Site Folders dialog. On this dialog you can choose to copy only
the Site Folder structure, the Site Folder structure with navigation (Navtree, Navons, and
associated Managed Navigation Content Items) or the Site Folder structure with all Content
Items. For the purposes of this exercise, we will copy the Site Folder structure and the
navigation.

 Chapter 9 Configuring Publishing 347

7 Select the Copy Site Folders with Navigation radio button.

Figure 264: Copy Site Wizard Folders dialog with option selected to copy the Site Folder structure and the

navigation

8 Click the [Next] button.

Rhythmyx displays the Copy Site Wizard Community dialog. Use this dialog to specify the
Communities in which copied Content Items will be created. The default option is to create
the New Copy Content Items in the same Community as the Owner Content Item, but you can
create the New Copy Content Items in different Communities specifying a different Target
Community for each Source Community.

In our case, we want to create any Content Item copied from the Enterprise_Investments
Community to be created in the Corporate_Investments Community, and any Content Item
copied from the Enterprise_Investments_Admin Community to be created in the
Corporate_Investments_Admin Community.

348 Rhythmyx Rhythmyx Implementation Guide

9 In the row of the Enterprise_Investments Community, click the cell in the Target Community
column and from the drop list choose Corporate_Investments. In the row of the
Enterprise_Investments_Admin Community, click in the Target Community column and from
the drop list choose Corporate_Investments_Admin.

Figure 265: Copy Site Community Mapping dialog showing Enterprise Investments Communities mapped

to Corporate Investment Communities

10 Click the [Next] button.

 Chapter 9 Configuring Publishing 349

Rhythmyx displays the Copy Site Wizard summary dialog

Figure 266: Copy Site Wizard summary dialog showing the specifications for creating the Corporate

Investments Site

11 Click the [Next] button.

Rhythmyx copies the Site, creating the Site Folder structure you copied and the Content Items
you specified to copy. The Site registration you specified is also copied. This process may
take a few minutes depending on the options you specified in the wizard.

12 Fill out rest of topic when copy site wizard works correctly.

Copying a Site Registration
In some cases, you may want to create a different Folder Structure for a specific Site. In that case, you
may prefer to simply copy the Site registration and create the Site Folder, Subfolders, and navigation
separate. In this exercise, we will copy only the EnterpriseInvestements Site registration to create the
CorporateInvestments Site registration.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To copy the EnterpriseInvestments Site registration:

1 On the Publishing Design tab, click Sites.

Rhythmyx displays the Site List page.

2 Select the radio button in the EnterpriseInvestments row.

350 Rhythmyx Rhythmyx Implementation Guide

3 In the Menu bar, choose Action > Copy Selected Site.

4 Rhythmyx copies the Site registration and opens the Site Editor with the copied Site
registration.

Figure 267: Copy of Enterprise Investments Site registration

 Chapter 9 Configuring Publishing 351

5 Change the values to match the specifications of the Corporate Investments Site. Note that
you can edit the value of a Context Variable within the Site Editor. The following graphic
illustrations the Corporate Investments Site registration.

Figure 268: Corporate Investments Site Registration

6 In the Menu bar, click Save.

Copying Editions and Content Lists
Once you have created your new Site, you need to create the Editions and Content Lists used to publish the
content of the Site. Editions and Content Lists can be copied from an existing Site to a new Site. In this
exercise, we will copy the EI_Full Edition, with its Content Lists, to the CorporateInvestments Site that we
created.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To copy the EI_Full Edition and its Content Lists:

1 In the Publishing Design tab, expand the Sites node, expand the CorporateInvestments node
and click Editions.

Rhythmyx displays the Edition List page. Since we have not added Editions to this Site yet, it
will list no Editions.

2 In the Menu bar, choose Action > Copy Edition From Other Site.

352 Rhythmyx Rhythmyx Implementation Guide

Rhythmyx displays the Select Edition From Other Site page.

3 Select the radio button in the row of the EI_Full Edition. Check the Copy Content Lists of the
Selected Edition box.

Figure 269: Copying the EI_Full Edition and it's Content Lists

4 In the Menu bar, click Done.

Rhythmyx copies the EI_Full Edition and its Content Lists.

Figure 270: EI_FullEdition and Content Lists after being copied to the CorporateInvestments Site

5 Modify the data for the Edition and the Content Lists to match the specifications required for
the CorporateInvestments Site.

 Chapter 9 Configuring Publishing 353

Setting Up Publishing to a Local Web Server
In the FastForward sample data we have used to illustrate implementation procedures, we have defined
publishing to the FastForward Web applications installed with Rhythmyx. Percussion Software
recommends that in your implementation environment you publish to a robust Web server. A common
configuration is to publish to a Web server installed on the same machine as the Rhythmyx server. In this
topic we will illustrate the modifications to the FastFoward configurations we have used so far to publish
to the two most common production Web servers: Microsoft Internet Information Server (IIS) and the
Apache Web Server. To publish to a local Web server, we must modify the Published URL and Published
Path fields in the Site registration.

We will assume that these Web servers are installed using the defaults and that a virtual root named
EI_Home, has been set up for the EnterpriseInvestments Site. We will also assume that you have copied
the EI_Home/resources directory from the Rhythmyx installation to the EI_Home directory on the Web
server and that the EI_Home /resources directory contains all of the CSS, JavaScript, and static images
required to support the EnterpriseInvestments Site. Therefore we do not have to modify the Context
Variables.

Assuming default installations, the modification to the Published URL field is the same in both Web
servers. The default port for Web servers is port 80. Since we're assuming a virtual root that matches the
root used in Rhythmyx (EI_Home), only the port needs to change in this field. Change the value from

http://127.0.0.1:9992/EI_Home
to

http://127.0.0.1:80/EI_Home

354 Rhythmyx Rhythmyx Implementation Guide

The value of the Published Path will be different for each Web Server. The value in this field defines the
path to the location where the assembled content will be delivered. When using IIS, the virtual root is a
subdirectory of the wwwroot directory. Thus the value of the Published Path field of the
EnterpriseInvestments Site registration when using IIS would be:

c:\inetpub\wwwroot\EI_Home

Figure 271: Site registration when publishing to IIS

 Chapter 9 Configuring Publishing 355

When using an Apache Web Server, the value of the Published Path field must specify a subdirectory of
Apache's default publishing root, <Apacheroot>\htdocs. Thus, the value of the Published Path field
in this case would be

c:\Program Files\Apache Group\Apache\htdocs\XI_Home

Figure 272: Site regsitration when publishing to Apache Web Server

356 Rhythmyx Rhythmyx Implementation Guide

Implementing FTP Delivery
Common practice is to run the Rhythmyx server on a separate machine from the production Web server.
Since production Web servers are typically deployed in the demilitarized zone of your environment, file
transfer protocol (FTP) is commonly used to deliver the published content to them. Rhythmyx can support
both standard FTP and secure FTP.

In the following topics, we will set up delivery using both standard and secure FTP. Rhythmyx comes with
standard Delivery Types for both forms of FTP delivery. These standard Delivery Types should meet the
needs of most customers, and we will use them in our examples. If the standard Delivery Types do not
meet your needs, you can define custom Delivery Types. For details, see the Rhythmyx Technical
Reference Manual.

We will assume that a virtual root has been defined on the Web server for the Site, and that the contents of
the web_resources directory have been copied to the virtual root directory. You must also create a virtual
directory on the FTP server that points to the Site's virtual root on the Web server.

For the purposes of this exercise, we will assume that the virtual directory the virtual root for Enterprise
Investments has been created at wwwroot/EnterpriseInvestments and that a virtual directory called
FastForwardFTP has been created on the FTP server pointing at that virtual root. We will assume that the
user account for access to the FTP site is FastForwardFTP with a password of FastForward.

Setting up Standard FTP Delivery
Rhythmyx delivers assembled output to the location defined in your FTP server configuration. You need
to create the virtual root on the target Web server and copy all static resources to this location. You must
also create the virtual directory on the FTP server that points to the virtual root on the Web server.

For the purposes of this exercise, we will assume that the virtual directory for the EnterpriseInvestments
Site has been created and that a virtual directory called FastForwardFTP has been created on the FTP
server pointing to that virtual root. We will assume that the user account for access to the FTP server is
FastForwardFTP with a password of FastForward.

To set up standard FTP Publishing,

1 Create a Site definition that specifies the FTP connection data.

2 Define Content Lists that use the FTP Delivery Type.

3 Define Editions that use the Content Lists defined in Step 2.
The following topics illustrate an example implementation based on a copy of the EnterpriseInvestments
Site.

 Chapter 9 Configuring Publishing 357

Defining a Site Registration for FTP Publishing
This first step in setting up delivery using FTP is to define a Site registration with FTP data. In this
exercise, we will copy the EnterpriseInvestments Site registration and add the FTP data. We will rename
the Site registration to "EnterpriseInvestmentsFTP".

We will assume the following data for the FTP connection:

 The IP address of the production Web server is 255.255.255.112.
 The FTP port of the production Web server is 81.
 The FTP user on the production Web server is FastForwardFTP.
 The FastForwardFTP user's password is FastForward.

We will assume that the remaining data will remain the same for the Enterprise Investments FTP Site.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create the Site registration for FTP publishing:

1 In Content Explorer, select the Publishing Design tab.

2 In the Navigation bar, select the Sites node.

Content Explorer displays the Sites List.

3 Select the Enterprise Investments Site.

4 In the Menu bar, choose Action > Copy Selected Site.

Rhythmyx creates a copy of the EnterpriseInvestments Site and displays it in the Site editor.

5 The default name of the copied site is Copy of EnterpriseInvestments. Change the name to
EnterpriseInvestmentsFTP.

6 For the purposes of this exercise, we will assume that the rest of the Site registration data
remains the same.

7 To add FTP data:

a) Click the Show Site details link.

Content Explorer displays several additional fields on the Site editor, including FTP Server
IP address, FTP server port, User name, and Password.

b) In the FTP server IP address field, enter 255.255.255.112.

c) In the FTP port field, enter 81.

d) In the User name field, enter FastForwardFTP.

e) In the Password field enter FastForward.

8 To save the Site registration, in the Menu bar, click [Save].

358 Rhythmyx Rhythmyx Implementation Guide

Defining FTP Editions and Content Lists
The second and third steps in setting up FTP delivery is to define Content Lists to use the FTP Delivery
Type and Editions that include these Content Lists. The following procedure combines these two steps by
copying the EI_Full Edition and its Content Lists to the EnterpriseInvestmentsFTP Site. We will change
the name of the Edition to EI_Full_FTP, but will not change any other data. We will change the change
the Delivery Type to ftp and rename the Content Lists to indicate that they use FTP, but we will not modify
any other data.

To create the EI_Full_FTP Edition:

1 In Content Explorer, select the Publishing Design tab.

2 In the Navigation bar, expand the Sites, Node. Expand the EnterpriseInvestmentsFTP node.
Click on the Editions link.

Rhythmyx displays the Edition List.

3 In the Menu bar, choose Action > Copy Edition From Other Site.

4 Select the radio button in the row of the EI_Full Edition. Check the Copy Content Lists of the
Selected Edition box.

5 In the Menu bar, click Done.

Rhythmyx copies the Edition and Content Lists. When the processing is complete, Rhythmyx
displays the Edition Editor.

6 Change the Name to EI_Full_FTP.

7 In the Menu bar, click Save.

Rhythmyx saves the Edition and displays the Edition List.

8 Under the EnterpriseInvestmenstFTP node, click Content Lists.

Rhythymyx displays the List Content Lists page.

9 Click Copy_of_rffEIFullNonbinary.

Rhythmyx displays the Content List Editor for the Copy_of_rffEIFullNonbinary Content List.

10 Change the Name to rffEIFullNonbinaryFTP.

11 In the Delivery Type drop list, choose ftp.

12 In the Menu bar, click Save.

13 Repeat Steps 9 to 12 for the Copy_of_rffEIFullBinary Content List.

 Chapter 9 Configuring Publishing 359

Setting Up Secure FTP (SFTP) Delivery
Rhythmyx delivers assembled output to the location defined in your SFTP server configuration. You need
to create the virtual root on the target Web server and copy all static resources to this location. You must
also create the virtual directory on the SFPT server that points to the virtual root on the Web server.

Rhythmyx is certified against the following SSH servers:

 Open SSH
 Linux

 Solaris

 Windows
 freeSSHd

 Windows only
Files delivered to a Windows environment are created with the default permissions of that environment.
When delivered to a Unix environment, files are created with default permissions of 644.

NOTE: If you want to specify different permissions for files delivered to a Unix environment, in the file
<Rhythmyxroot>/AppServer/server/rx/deploy/rxapp.ear/rxapp.war/WEB-
INF/config/user/spring/publisher-beans.xml modify the SFTP Delivery Handler
configuration (bean id="sys_sftpDeliveryHandler") by adding the bean property umask,
with a value of the umask of the permissions you want to set. The umask is the seven's complement of the
desired file permissions; in other words, the value of each digit in the umask is the integer value between 0
and 7 that, when added to the same digit in the file permissions, results in a sum of 7. (File permissions
and the umask are both specified in octal.) For example, if you want file permissions of 740, specify the
value of the umask property as 037. If this property is not specified, Rhythmyx assumes a default umask
of 133, resulting in the default file permissions of 644 noted above.

For the purposes of this exercise, we will assume that a virtual directory for the EnterpriseInvestments Site
has been created and that a virtual directory called FastForwardSFTP has been created on the SFTP server
pointing to that virtual root.

To set up secure FTP Publishing,

1 Create a Site definition that specifies the SFTP connection data.

2 Define Content Lists that use the SFTP Delivery Type.

3 Define Editions that use the Content Lists defined in Step 2.
The following topics illustrate an example implementation based on a copy of the EnterpriseInvestments
Site.

360 Rhythmyx Rhythmyx Implementation Guide

Defining a Site Registration for SFTP Publishing
This first step in setting up delivery using SFTP is to define a Site registration with FTP data. In this
exercise, we will copy the EnterpriseInvestments Site registration and add the FTP data. We will rename
the Site registration to "EnterpriseInvestmentsSFTP".

We will assume the following data for the FTP connection:

 The IP address of the production Web server is 255.255.255.112.
 The SFTP port of the production Web server is 81.
 The SFTP user on the production Web server is FastForwardSFTP.
 The FastForwardFTP user's password is FastForward.

We will assume that the remaining data will remain the same for the Enterprise Investments FTP Site.

NOTE: The data in this procedure is included as an example. Substitute the data for your own objects.

To create the Site registration for FTP publishing:

1 In Content Explorer, select the Publishing Design tab.

2 In the Navigation bar, select the Sites node.

Content Explorer displays the Sites List.

3 Select the Enterprise Investments Site.

4 In the Menu bar, choose Action > Copy Selected Site.

Rhythmyx creates a copy of the EnterpriseInvestments Site and displays it in the Site editor.

5 The default name of the copied site is Copy of EnterpriseInvestments. Change the name to
EnterpriseInvestmentsSFTP.

6 For the pusposes of this exercise, we will assume that the rest of the Site registration data
remains the same.

7 To add FTP data:

a) Click the Show Site details link.

Content Explorer displays several additional fields on the Site editor, including FTP Server
IP address, FTP server port, User name, and Password.

b) In the FTP server IP address field, enter 255.255.255.112.

c) In the FTP port field, enter 81.

d) In the User name field, enter FastForwardSFTP.

e) In the Password field enter FastForward.

8 To save the Site registration, in the Menu bar, click [Save].

 Chapter 9 Configuring Publishing 361

Defining SFTP Editions and Content Lists
The second and third steps in setting up SFTP delivery is to define Content Lists to use the SFTP Delivery
Type and Editions that include these Content LIsts. The following procedure combines these two steps by
copying the EI_Full Edition and its Content Lists to the EnterpriseInvestmentsSFTP Site. We will change
the name of the Edition to EI_Full_SFTP, but will not change any other data. We will modify the Content
Lists by changing the Delivery Type to sftp and renaming them to indicate that they use SFTP, but we will
not modify any other data.

To create the EI_Full_FTP Edition:

1 In Content Explorer, select the Publishing Design tab.

2 In the Navigation bar, expand the Sites, Node. Expand the EnterpriseInvestmentsSFTP node.
Click on the Editions link.

Rhythmyx displays the Edition List.

3 In the Menu bar, choose Action > Copy Edition From Other Site.

4 Select the radio button in the row of the EI_Full Edition. Check the Copy Content Lists of the
Selected Edition box.

5 In the Menu bar, click Done.

Rhythmyx copies the Edition and Content Lists. When the processing is complete, Rhythmyx
displays the Edition Editor.

6 Change the Name to EI_Full_SFTP.

7 In the Menu bar, click Save.

Rhythmyx saves the Edition and displays the Edition List.

8 Under the EnterpriseInvestmenstSFTP node, click Content Lists.

Rhythymyx displays the List Content Lists page.

9 Click Copy_of_rffEIFullNonbinary.

Rhythmyx displays the Content List Editor for the Copy_of_rffEIFullNonbinary Content List.

10 Change the Name to rffEIFullNonbinarySFTP.

11 In the Delivery Type drop list, choose sftp.

12 In the Menu bar, click Save.

13 Repeat Steps 9 to 12 for the Copy_of_rffEIFullBinary Content List.

 363

C H A P T E R 1 0

Database Publishing in Rhythmyx

Database publishing allows you to deliver Rhythmyx content to external target database repositories
where it can be consumed by web-driven applications, such as portals. Rhythmyx only delivers the
content to the target repository. Rhythmyx does not interact directly with the application consuming the
content.

The following RDBMSs are supported as targets for database publishing:

 Microsoft SQL Server 2000, 2005, and 2008
 Oracle 9, 10, and 11

Note: The database publishing Delivery Type assumes that Rhythmyx generates the primary
keys. In some Oracle environments, Oracle defines the primary keys. These environments
require a custom Delivery Type. For details about developing a custom Delivery Type, see
the Rhythmyx Technical Reference Manual. Assistance from Percussion Professional
Services Organization is recommended for this implementation.

 MySQL 5.1
NOTE: MySQL is supported only as a target for database publishing. This RDBMS is not
supported as the Rhythmyx Repository.

NOTE: While Rhythmyx is shipped with a driver configuration for MySQL, the .jar files for
the driver are not included due to the limitations of the GPL used for MySQL. You can
download the drivers from www.mysql.com (http://www.mysql.com). The drivers should be
added to the directory <Rhythmyxroot>/Appserver/Server/rx/lib.

Rhythmyx is shipped with a standard database publishing Delivery Type which should meet the
requirements of most customers. If the standard database Publishing Delivery Type does not meet your
needs, you can develop a custom Delivery Type. For details, see the Rhythmyx Technical Reference
Manual.

The key element of database publishing is the database publishing Template. The Template is used to
retrieve the Content Item data from the Rhythmyx Repository, and it maps the Content Item data fields to
the tables and columns in the target database.

As always, planning before the implementation is important. In Modelling and Design of a Rhythmyx
Content Management System, we examined some of the issues that should be addressed when planning a
database publishing implementation.

http://www.mysql.com/

364 Rhythmyx Rhythmyx Implementation Guide

Database Publishing Implementation
Process
To implement database publishing:

1 Model and design your database publishing implementation. For details about modeling and
design of database Templates, see Modelling and Design of a Rhythmyx Content Management
System.

2 In the Rhythmyx Server Administrator, create a Connection to the target database or schema.

3 Create the database publishing Templates.

4 Create publishing configurations (Sites, Editions, Content Lists, and Contexts) to publish to
the database.

 Chapter 10 Database Publishing in Rhythmyx 365

Database Publishing Specifications
In our example implementation, we will publish Event Content Items to a database repository that
supports a web applications users query to find Events. In our example, we will publish to Microsoft SQL
Server. (In fact, for convenience, we will publish to the same instance as the Rhythmyx Repository; in
you implementation, the target database is likely to be in a different instance.)

We will assume that an additional binary field, brochure, has been added to the Event Content Type to
store a printable file about the event that customers can download. The following screenshot illustrates
the definition of the Event Content Type we will be publishing:

Figure 273: Event Content Type definition for the Database Publishing Examples

While many customers publish Content Item data to a single target table, it is also common to publish data
to a parent table and one or more child tables. We will illustrate two options for publishing child data:

 publishing data from a child field set in a Rhythmyx Content Item to a child table in the target
database. We will assume the following child editor has been defined in Rhythmyx:

Figure 274: Event Location field set

366 Rhythmyx Rhythmyx Implementation Guide

 publishing data drawn from an external database repository to a child table in the target
database. We will use the Northwind database available for Microsoft SQL Server, and draw
the data from the Employees table.

Our target tables have the following characteristics:

 The parent table holds some of the main fields from the Event Content Type: displaytitle,
callout, body, event_start, event_end, and event_type.

 The child table stores basic location and contact information: address, city state, and contact.
 Both the parent and the child tables are required to have primary/foreign keys. Standard

practice for Database Publishing in Rhythmyx is the include a column for the Content ID.
That column should be the primary key for the parent table, and the foreign key for
relationships between the parent tables and the child tables. (Note: The database publishing
Delivery Type assumes that Rhythmyx generates the primary key in the table. In some Oracle
environments, Oracle defines the primary key for the table. These environments require a
custom Delivery Type. For details about developing a custom Delivery Type, see the
Rhythmyx Technical Reference Manual. Assistance from Percussion Professional Services
Organization is recommended for this implementation.)

 The child table also uses the seq column as a primary key. This is necessary for enabling the
database publishing plugin to move incrementally through all the rows in the child table.

Note that in this example, the unassembled content is published from Rhythmyx Content Items to the
target database. If you want to publish assembled content to your target database, contact Rhythmyx
Professional Services Organization (PSO) for assistance.

 Chapter 10 Database Publishing in Rhythmyx 367

The target tables should resemble:

Figure 275: TARGET_CONTENT table

Figure 276: TARGET_LOCATION table

NOTE: Your database tables may already exist. If not, you should define them at this point. For this
example, we have created a new database, rx_Events, in the same Microsoft SQL Server instance as the
Rhythmyx Repository. If you want to follow the example implementation, create the tables as defined
above in a different SQL Server database than your Rhythmyx Repository.

368 Rhythmyx Rhythmyx Implementation Guide

Creating a JNDI Datasource Configuration
and a Database Connection
The first task in implementing database publishing is to define the connection to the target database.
Usually, the target database is on a different machine or at least a different instance than your Rhythmyx
Repository, so you will have to create the JNDI datasource configuration first. These configurations are
created in the Rhythmyx Server Administrator.

In the following procedure, we will create an example JNDI datasource configuration to a database on an
Oracle server. We will assume the following properties:

 The Oracle server runs on a machine called rxdb on the default Oracle port (1521). The
system identifier is also rxdb.

 A user called Rhythmyx has been created on the Oracle server, with a password of demo.
We will name the JNDI datasource configuration Oracle_DBPublishing.

To create the Oracle_DBPublishing datasource configuration:

1 Start and log in to the Rhythmyx Server Administrator.

2 Along the top, click the Datasources tab. Along the bottom, click the JNDI tab.

3 Click the [Add] button.

4 The Server Administrator displays the JNDI Datasource Configuration dialog.

5 The Name field defaults to jdbc/. After the "/" character, enter Oracle_DBPublishing.

6 In the Driver drop list, choose oracle:thin.

7 In the Server field, enter the connect string: @rxdb:1521:rxdb.

8 In the Password and Confirm Password fields, enter demo.

9 Do not change the values in any of the other fields.

 Chapter 10 Database Publishing in Rhythmyx 369

When complete, the JDNI datasource configuration should resemble the following screenshot:

Figure 277: Example Datasource Configuration for an Oracle Database

10 Click the [OK] button to save the configuration.

11 On the Server Administrator, click the [OK] button.
You must shut down and restart the Rhythmyx server before your changes will take effect. One you have
restarted the Rhythmyx server, you can test the datasource configuration. To test the configuration:

1 Start a browser and enter http://localhost:9992, where localhost is the name or IP address of
the machine where Rhythmyx is installed and 9992 is the Rhythmxy port.

Rhythmyx returns the Application Server Home page.

2 Click on the Testing and Debugging Tools for Implementers link.

3 Rhythmyx returns a login page. Log in to Rhythmyx.

Rhythmyx returns the Debugging and Testing page.

4 Click on the Test Bound JDBC Resources link.

370 Rhythmyx Rhythmyx Implementation Guide

Rhythmyx returns the JNDI Test Page showing the status of your JDNI datasource
configurations:

Figure 278: JNDI Test page showing a successful connection

Common problems with datasource configurations include:

 jTDS:
 invalid connect string:

SQL_Connection Exception: Could not create connection; -
nested throwable: (java.sql.SQLException: The syntax of the
connection URL 'jdbc:jtds:sqlserver:sqlserver' is
invalid.); - nested throwable:
(org.jboss.resource.JBossResourceException: Could not
create connection; - nested throwable:
(java.sql.SQLException: The syntax of the connection URL
'jdbc:jtds:sqlserver:sqlserver' is invalid.)) getting
connection

In this case, the connect string is missing the leading double-slashes ("//"). The correct
format of the connect string is //servername.

SQLAlt Exception: Could not create connection; - nested
throwable: (java.sql.SQLException: Unknown server host name
'sqserver'.); - nested throwable:
(org.jboss.resource.JBossResourceException: Could not
create connection; - nested throwable:
(java.sql.SQLException: Unknown server host name
'sqserver'.)) getting connection

In this case the machine name was specified incorrectly. Correct the name or IP address
of the machine.

 Chapter 10 Database Publishing in Rhythmyx 371

 invalid Userid or Password:
SQLAlt Exception: Could not create connection; - nested
throwable: (java.sql.SQLException: Login failed for user
'sb'.); - nested throwable:
(org.jboss.resource.JBossResourceException: Could not
create connection; - nested throwable:
(java.sql.SQLException: Login failed for user 'sb'.))
getting connection

 mySQL
 invalid connect string:

mysql_DBPublishing Exception: Could not create connection;
- nested throwable:
(org.jboss.resource.JBossResourceException: Apparently
wrong driver class specified for URL: class:
com.mysql.jdbc.Driver, url: jdbc:mysql:qadb); - nested
throwable: (org.jboss.resource.JBossResourceException:
Could not create connection; - nested throwable:
(org.jboss.resource.JBossResourceException: Apparently
wrong driver class specified for URL: class:
com.mysql.jdbc.Driver, url: jdbc:mysql:qadb)) getting
connection

In this case, the connect string is missing the leading double-slashes ("//"). The correct
format of the connect string is //servername.

mysql_DBPublishing Exception: Could not create connection;
- nested throwable:
(com.mysql.jdbc.exceptions.jdbc4.CommunicationsException:
Communications link failure Last packet sent to the server
was 0 ms ago.); - nested throwable:
(org.jboss.resource.JBossResourceException: Could not
create connection; - nested throwable:
(com.mysql.jdbc.exceptions.jdbc4.CommunicationsException:
Communications link failure Last packet sent to the server
was 0 ms ago.)) getting connection

In this case the machine name was specified incorrectly. Correct the name or IP address
of the machine.

 invalid Userid or Password:
mySQL Exception: Could not create connection; - nested
throwable: (java.sql.SQLException: Access denied for user
'rxserver'@'rxserver' (using password: YES)); - nested
throwable: (org.jboss.resource.JBossResourceException:
Could not create connection; - nested throwable:
(java.sql.SQLException: Access denied for user
'rxserver'@'rxserver' (using password: YES))) getting
connection

372 Rhythmyx Rhythmyx Implementation Guide

 Oracle
 invalid connect string:

Oracle_DBPublishing Exception: Could not create connection;
- nested throwable: (java.sql.SQLException: Io exception:
The Network Adapter could not establish the connection); -
nested throwable:
(org.jboss.resource.JBossResourceException: Could not
create connection; - nested throwable:
(java.sql.SQLException: Io exception: The Network Adapter
could not establish the connection)) getting connection

 invalid Userid or Password:
Oracle_DBPublishing Exception: Could not create connection;
- nested throwable: (java.sql.SQLException: ORA-01017:
invalid username/password; logon denied); - nested
throwable: (org.jboss.resource.JBossResourceException:
Could not create connection; - nested throwable:
(java.sql.SQLException: ORA-01017: invalid
username/password; logon denied)) getting connection

Now you can create the database connection. For details, see Creating a Connection to an External
Repository (on page 258)

 Chapter 10 Database Publishing in Rhythmyx 373

Creating a Database Publishing Template
Once you have created the connection, you can create the database publishing Template. In this example,
we will create a Template called rffEventDB to publish Event Content Items to the target database tables
(TARGET_LOCATION and TARGET_CONTACT) that we described in the database publishing
specification. We will assume that a database connection, named Event, has been created to connect to the
database where these tables reside.

We will make the Template available to both the member and admin communities of both the
EnterpriseInvestments and CorporateInvestments Sites.

We will also demonstrate two options for populating a child table: populating the child table with data
defined in a child editor of the Content Type, and populating the child table with data derived from an
external data repository.

To create the rffDbEvent Template:

1 Log in to the Rhythmyx Workbench and open the Assembly view.

2 In the Menu bar, choose File > New > Template.

The Rhythmyx Workbench displays the first dialog of the New Template Wizard.

3 Select the Database publishing XML radio button. Click the [Next] button.

The Rhythmyx Workbench displays the General Properties dialog of the New Template
Wizard.

4 In the Template name field, enter rffDbEvent. This value also defaults to the Label field.
Optionally, enter the description Event Database Publishing Template.

5 By default, new Templates are available to all Communities. Optionally, move the Default
Community to the Available Communities list.

NOTE: Users upgrading from earlier versions of Rhythmyx may recall that you also had to add the
XML definition of the target tables to the Template. That functionality is now included in the
Template on another dialog as described in the next step of this procedure.

6 Click the [Next] button.

The Rhythmyx Workbench displays the Target Tables dialog.

7 The Data Resource drop list defaults to the first Connection defined on the Connections subtab
of the Datasources tab of the Rhythmyx Server Administrator. (Typically, this will be the
connection to the Rhythmyx Repository.) Select the Event connection.

8 Click the [Catalog] button.

Rhythmyx catalogs the database specified by the connection and populates the Tables table
with a list of the tables found in that database.

374 Rhythmyx Rhythmyx Implementation Guide

9 In the Select column, check the boxes for the TARGET_LOCATION and
TARGET_CONTACT tables.

Figure 279: Table Definitions for the rffEventDB Template

10 Click the [Next] button.

 Chapter 10 Database Publishing in Rhythmyx 375

11 The Rhythmyx Workbench displays the Slots dialog. A Database Publishing Template does
not include any Slots, so do not add any to the Template. Click the [Next] button.

The Rhythmyx Workbench displays the Content Types dialog.

12 In the Available Content Types list, select the rffEvent Content Type, then click the > button
to associate the Content Type with the Template.

13 Click the [Finish] button.

376 Rhythmyx Rhythmyx Implementation Guide

Rhythmyx creates the Template and displays it in the Template Editor. The Source tab includes the table
definition XML used to map the Content Item data to the output tables:

Figure 280: Source tab of the rffEventDB Template showing the table definition XML

 Chapter 10 Database Publishing in Rhythmyx 377

The XML conforms to the sys_Tabledef.dtd. For details about the contents of the XML, see the DTD.

While the Bindings tab includes the set of standard bindings required by a database Template:

Figure 281: Default bindings generated when creating a database publishng Template

These bindings define the connection information for the database publishing Delivery Type to use when
connecting to the target database and delivering the data, or to specify the action to be performed when
delivering the Content Item data.

Binding Function Value

$db.action Action to perform on the
database with the
content.

"r" - "Replace" Inserts a row for the content. Deletes
it first if it already exists. This is the default value
when the binding is created, and is the assumed value
when the value is missing or invalid.

"n" - "New" Inserts a row for the content if it does not
already exist.

"u" - "Update" Updates the row for the content if it
already exists.

"d" - "Delete" Deletes the row for the content if it
exists.

NOTE: The "u" option should not be used if a Content
Type published using this Template includes complex
child data. The "r" option should be used instead.

$db.origin Name of the target
database schema.

"dbo"

$db.resource Name of the datasource "jdbc/[datasource name]"; in this case,
"jdbc/RhythmyxData"

$db.drivertype Database driver type. May be one of the following values, depending on your
dbms:

 jtds:sqlserver
 oracle:thin
 MySQL
 db2

378 Rhythmyx Rhythmyx Implementation Guide

Binding Function Value

$db.database Used for MS SQL Server
if the database name is
not specified in the
datasource. Name of the
database.

In this example: "rx_Events". Optional in this example
since it is specified in the datasource.

$db.parent Parent target database
table. or only target
database table if no child
data is being published

In this example: "TARGET_CONTENT"

Defining Bindings to Publish Content Item Data
A database publishing Template must include a set of bindings that maps Content Item fields to columns
in the target database table. Each column you want to publish is defined as a $row.COLUMNNAME
binding, where COLUMNNAME is the name of the target database column to which the Content Item
field data will be published. The value of each of these bindings is $sys.item.getProperty to retrieve the
data from the specified field. Bindings returning data from fields with a data type of string should use the
.String (or .getString) function to ensure that the data is returned in the correct format.

$row.COLUMNNAME=$sys.item.getProperty('rx:fieldname').String

For example:
$row.DISPLAYTITLE=$sys.item.getProperty('rx:displaytitle').String

In some cases, the bindings also specify encoding for specially coded values, such as binary data or rich
text data with HTML markup. The variable name for these bindings is
$row.$encoding.COLUMNNAME. The value of the binding is either base64 or null:

$row.$encoding.COLUMNNAME=base64

We are assuming that a binary field, brochure, has been added to the rffEvent Content Type to store a
downloadable binary file. The bindings for this field would be:

$row.BROCHURE=$sys.item.getProperty('rx:brochure')
$row.encoding.BROCHURE.='base64'

 Chapter 10 Database Publishing in Rhythmyx 379

The following graphic illustrates the bindings of the rffDbEvent Template to publish the data from the
rffEvent Content Type, without any child data:

Figure 282: rffEventDB Template bindings to publish the Event Content Type without children

Binding Function Value

$db.action Action to perform on
the database with the
content.

"r" - "Replace" Inserts a row for the content. Deletes
it first if it already exists. This is the default value
when the binding is created, and is the assumed value
when the value is missing or invalid.

"n" - "New" Inserts a row for the content if it does not
already exist.

"u" - "Update" Updates the row for the content if it
already exists.

"d" - "Delete" Deletes the row for the content if it
exists.

NOTE: The "u" option should not be used if a Content
Type published using this Template includes complex
child data. The "r" option should be used instead.

$db.origin Name of the target
database schema.

"dbo"

$db.resource Name of the datasource "jdbc/[datasource name]"; in this case,
"jdbc/RhythmyxData"

380 Rhythmyx Rhythmyx Implementation Guide

Binding Function Value

$db.drivertype Database driver type. May be one of the following values, depending on your
dbms:

 jtds:sqlserver
 oracle:thin
 MySQL
 db2

$db.database Used for MS SQL
Server if the database
name is not specified in
the datasource. Name of
the database.

In this example: "targetdb". Optional in this example
since it is specified in the datasource.

$db.parent Parent (or only)
database table.

In this example: "TARGET_CONTENT"

$row.CONTENTID Mapping for the
specified column in the
parent table. In this
example, the mapping is
for the CONTENTID
column.

A literal value or JEXL expression.

In this example: the JEXL expression
$sys.item.getProperty("rx:sys_contentid") gets the
value of sys_contentid from the Content Item.

For more information about JEXL expressions, see the
topic Bindings (see page 141).

$row.DISPLAYTITLE Mapping for the
specified column in the
parent table. In this
example, the mapping is
for the
DISPLAYTITLE
column.

A literal value or JEXL expression.

In this example: the JEXL expression
$sys.item.getProperty("rx:displaytitle").String gets the
value of displaytitle from the Content Item.

$row.CALLOUT Mapping for the
specified column in the
parent table. In this
example, the mapping is
for the CALLOUT
column.

A literal value or JEXL expression.

In this example: the JEXL expression
$sys.item.getProperty("rx:callout").String gets the
value of callout from the Content Item.

$row.$encoding.CALLOUT The type of encoding
for the specified
column.

The possible values for this column are "base64" or
empty (no encoding). See the explanation of encoding
in the $row.$encoding.BROCHURE column below.

In this case, the value is 'base64'.

$row.BODY Mapping for the
specified column in the
parent table. In this
example, the mapping is
for the BODY column.

A literal value or JEXL expression.

In this example: the JEXL expression
$sys.item.getProperty("rx:body").String gets the value
of body from the Content Item.

 Chapter 10 Database Publishing in Rhythmyx 381

Binding Function Value

$row.$encoding.BODY The type of encoding
for the specified
column.

The possible values for this column are "base64" or
empty (no encoding). See the explanation of encoding
in the $row.$encoding.BROCHURE column below.

In this case, the value is 'base64'.

$row.EVENT_START Mapping for the
specified column in the
parent table. In this
example, the mapping is
for the
EVENT_START
column.

A literal value or JEXL expression.

In this example: the JEXL expression
$sys.item.getProperty("rx:event_start") gets the value
of event_start from the Content Item.

$row.EVENT_END Mapping for the
specified column in the
parent table. In this
example, the mapping is
for the EVENT_END
column.

A literal value or JEXL expression.

In this example: the JEXL expression
$sys.item.getProperty("rx:event_end") gets the value of
event_end from the Content Item.

$row.EVENT_TYPE Mapping for the
specified column in the
parent table. In this
example, the mapping is
for the EVENT_TYPE
column.

A literal value or JEXL expression.

In this example: the JEXL expression
$sys.item.getProperty("rx:event_type").String gets the
value of event_type from the Content Item.

$row.BROCHURE Mapping for the
specified column in the
parent table. In this
example, the mapping is
for the BROCHURE
column.

A literal value or JEXL expression.

In this example: the JEXL expression
$sys.item.getProperty("rx:event_type").String gets the
value of event_type from the Content Item.

382 Rhythmyx Rhythmyx Implementation Guide

Binding Function Value

$row.$encoding.BROCHURE The type of encoding
for the specified
column.

The database publishing plugin must encode
special characters after retrieving data from the
source database to prevent incorrect formatting
when building the target database xml document.
The plugin decodes the content before inserting it
into the target database. The $encoding parameter
specifies how the plugin should encode and then
decode each column of data from the source table.

Currently, the only encoding type for Database
Publishing is base64.

 use base64 for:

 binary data;

 text data that includes HTML,
XML, or SGML markup;

 Data from a column in the
source table that uses rich-
text formatting.

In other cases, do not use an encoding parameter.

Since the brochure field stores binary data, this binding
has a value of 'base64'. (Be sure to include the
quotation marks. If the value is specified without
quotation marks, the JEXL processor will return the
error "can't overwrite cause" when assembling the
Template.

Defining Bindings to Publish Local Child Data
To publishing child data managed within a Detail Editor for the Content Type:

 Add a $db.child[0] binding for each target child table; increment the counter for each target
child table.

 Add a $child[0].COLUMNNAME binding for each child column you want to publish. The
value of the binding uses the $rx.asmhelper.childValues function. This function takes requires
the following parameters:
 parentNode

The Content Item whose child Fieldset children to return. Use $sys.item.

 childName

Name of the child Fieldset whose values you want to return.

 propertyName

Name of the field to return from the child Fieldset.

 Chapter 10 Database Publishing in Rhythmyx 383

For example:
$child[0].COLUMNNAME=$rx.asmhelper.childValues($sys.item,'childfie
ldset','childfield')

Bindings returning data from fields with a data type of string should use the .String (or .getString)
function to ensure that the data is returned in the correct format.

$child[0].COLUMNNAME=$rx.asmhelper.childValues($sys.item,'childfie
ldset','childfield').String

In this example, we will define bindings to publish data from the event_location child table we defined for
the rffEvent Content Type. We will assume that the value of the event_contact field is defined locally as
string data.

Figure 283: Database publishing Template bindings when publishing child data managed in a child editor

of the Content Type

384 Rhythmyx Rhythmyx Implementation Guide

For details of the parent bindings, see Defining Bindings to Publish Content Item Data (on page 378).
(NOTE: The "u" option for the $db.action binding should not be used if a Content Type published using
this Template includes complex child data. The "r" option should be used instead.)

Binding Function Value

$db.child[0] The first (or only) child
table name. If you
include additional child
tables, increment the
index by 1.

Do not include this
variable if you are not
using child tables.

In this example: "TARGET_LOCATION".

$child[0].CONTENTID Mapping for the
specified column in the
child table. In this
example, the mapping is
for the CONTENTID
column.

A literal value or JEXL expression.

In this example: the JEXL expression
$sys.item.getProperty("rx:sys_contentid") gets the
value of sys_contentid from the Content Item.

$child[0].SEQ Mapping of the sequence
column in the child table.
This column is required
when child tables are
used to allow the
database plugin to move
sequentially through all
of the child table rows.

The $rx.db.sequence(start value, increment value)
function returns the start value the first time it is used,
then adds the increment for each additional value. So
$rx.db.sequence(1,1) returns 1, 2, 3, 4, etc. as values.

$child[0].EVENT_CITY Mapping for the
specified column in the
child table. In this
example, the mapping is
for the EVENT_CITY
column.

A literal value or JEXL expression. For child field set
columns that have multiple rows, use the function:
$rx.asmhelper.childValues($sys.item,"child field set
name","rx:child field set field")

where:

$sys.item = the current item

"child field set name" = the child field set whose
column you are mapping. In this example
"event_location".

"rx:child field set field" = the field in the child field set
that you are mapping to a column in the child table in
the target database.

In this example: the JEXL expression
$rx.asmhelper.childValues($sys.item,"event_location",
"rx:event_city") gets the value of event_city from the
event_location child field set.

 Chapter 10 Database Publishing in Rhythmyx 385

Binding Function Value

$child[0].EVENT_STATE Mapping for the
specified column in the
child table. In this
example, the mapping is
for the EVENT_STATE
column.

A literal value or JEXL expression.

In this example: the JEXL expression
$rx.asmhelper.childValues($sys.item,"event_location",
"rx:event_state") gets the value of event_state from the
event_location child field set.

$child[0].EVENT_ADDRE
SS

Mapping for the
specified column in the
child table. In this
example, the mapping is
for the
EVENT_ADDRESS
column.

A literal value or JEXL expression.

In this example: the JEXL expression
$rx.asmhelper.childValues($sys.item,"event_location",
"rx:event_address") gets the value of event_address
from the event_location child field set.

$child[0].EVENT_CONTA
CT

Mapping for the
specified column in the
child table. In this
example, the mapping is
for the
EVENT_CONTACT
column.

A literal value or JEXL expression.

In this example: the JEXL expression
$rx.asmhelper.childValues($sys.item,"event_location",
"rx:event_contact") gets the value of event_contact
from the event_location child field set.

Defining Bindings to Publish Child Data from an External
Repository
Instead of being managed locally as child content, child data may be stored and managed in a remote
database repository. To retrieve child data stored in a remote repository:

 Define a database connection to the remote repository. For details about creating a database
connection, see Creating a Connection to an External Repository (on page 258).

 Define a binding that uses the binding function $rx.db.get to execute a SQL query in the
remote repository to retrieve the data you want to publish.
$soucedb=$rx.db.get("datasource","selectStatement")

where datasource is the name of the database connection used to connect to the source
database or schema, and selectStatement is the SQL query used to select data from that
repository. For example:
$sourcedb=$rx.db.get("NorthwindData","select
City,Region,Address,Contact from Employees where Country='USA'")

 Define column bindings using the binding function $rx.asmhelper.mapvalues() to map the
column data.
$child[0].TARGETCOLUMN=$rx.asmhelper.mapValues ($sourcedb,'key')

where $sourcedb is the name of the name of the binding variable used to query the data
from the remote repository and key is name of the remote repository column whose data you
want to output to the column specified in the name of the binding variable being defined. For
example:
$child[0].EVENT_CITY=$rx.asmhelper.mapValues($sourcedb,'City')

386 Rhythmyx Rhythmyx Implementation Guide

The data is selected from the remote repository as a block and inserted into the target child table. In the
following example, we are querying on the value in the Country column of the Employees table in the
Northwind database. You might want to define values for the "where" clause in the Content Items. For
example, if Events could take place in different States, the Content Type might include include a State
drop list and store the value selected by the user in that field. You could then build the query in the
following manner:

$state=$sys.item.getProperty('rx:state').String
$sourcedb=$rx.db.get("NorthwindData","select City,Region,Address,Contact
from Employees where Country="+$state);

In the example below, we assume that a Contact column is defined in the Employees table of the
Northwind database that stores the name and phone number.

Figure 284: Bindings to publish child data stored in a remote repository

 Chapter 10 Database Publishing in Rhythmyx 387

For details of the parent bindings, see Defining Bindings to Publish Content Item Data (on page 378).
(NOTE: The "u" option for the $db.action binding should not be used if a Content Type published using
this Template includes complex child data. The "r" option should be used instead.)

Binding Function Value

$db.child[0] The first (or only) child
table name. If you
include additional child
tables, increment the
index by 1.

Do not include this
variable if you are not
using child tables.

In this example: "TARGET_LOCATION".

$child[0].CONTENTID Mapping for the
specified column in the
child table. In this
example, the mapping is
for the CONTENTID
column.

A literal value or JEXL expression.

In this example: the JEXL expression
$sys.item.getProperty("rx:sys_contentid") gets the
value of sys_contentid from the Content Item.

$child[0].SEQ Mapping of the sequence
column in the child table.
This column is required
when child tables are
used to allow the
database plugin to move
sequentially through all
of the child table rows.

The $rx.db.sequence(start value, increment value)
function returns the start value the first time it is used,
then adds the increment for each additional value. So
$rx.db.sequence(1,1) returns 1, 2, 3, 4, etc. as values.

$sourcedb Query to the remote
repository where the data
is stored.

The $rx.db.get(datasource,selectStatement) function,
where datasource is the name of the database
connection used to connect to the remote repository
and selectStatement is the SQL query to run against
that repository to return the data. Data is returned as a
List of Maps

In this example, the JEXL expression
$rx.db.get("NorthwindData","select
City,Region,Address,FirstName,LastName,HomePhon
e from Employees where Country='USA'") retrieves
the values of the specified columns in the Employees
table.

388 Rhythmyx Rhythmyx Implementation Guide

Binding Function Value

$child[0].EVENT_CITY Mapping for the
specified column in the
child table. In this
example, the data is
derived from the City
column of the Employees
table in the Northwind
database.

A literal value or JEXL expression. For data derived
from a remote repository, use the function
$rx.asmhelper.mapValues(maplist,'key') where

maplist = the name of the binding variable used to
query the remote repository

key = the name of the column from the remote
repository whose data you want to insert into the
specified child column

In this example, the JEXL expression
$rx.asmhelper.mapValues($sourcedb,'City') gets the
value of the City column from the data returned by the
$sourcedb binding.

$child[0].EVENT_STATE Mapping for the
specified column in the
child table. In this
example, the mapping is
for the EVENT_STATE
column.

A literal value or JEXL expression.

In this example, the JEXL expression
$rx.asmhelper.mapValues($sourcedb,State') gets the
value of the State column from the data returned by the
$sourcedb binding.

$child[0].EVENT_ADDRE
SS

Mapping for the
specified column in the
child table. In this
example, the mapping is
for the
EVENT_ADDRESS
column.

A literal value or JEXL expression.

In this example, the JEXL expression
$rx.asmhelper.mapValues($sourcedb,'Address') gets
the value of the Address column from the data returned
by the $sourcedb binding.

$child[0].EVENT_CONTA
CT

Mapping for the
specified column in the
child table. In this
example, the mapping is
for the
EVENT_CONTACT
column.

A literal value or JEXL expression.

In this example, the JEXL expression
$rx.asmhelper.mapValues($sourcedb,'Contact) gets the
value of the Contact column from the data returned by
the $sourcedb binding.

 Chapter 10 Database Publishing in Rhythmyx 389

Testing and Debugging a Database Publishing Template
Templates for database publishing can be previewed just as Templates to publish files can be previewed.
Due to the different nature of the delivery target, the preview is different:

Figure 285: Previewing the rffEventDB Template

390 Rhythmyx Rhythmyx Implementation Guide

The preview displays the definition of the target tables and the output that will be published to each
column based on the bindings defined in the Template.

If any of the bindings are incorrect, the following error message will be returned:

Figure 286: Database Template preview showing error results

 Chapter 10 Database Publishing in Rhythmyx 391

To find the specific error, view the debug output (in the preview URL, change /assembler/render to
/assembler/debug). The bindings that are generating errors will be listed at the top of the debug output.

Figure 287: Database Template debug output showing a binding error.

In this example, the binding function $rx.db.get was specified incorrectly.

392 Rhythmyx Rhythmyx Implementation Guide

Defining the Publishing Configurations for
Database Publishing
Database publishing requires the standard publishing configurations:

 a Site
A Site for database publishing requires a minimum of data: a Name and a Rhythmyx Path.
None of the other data in a Site configuration is necessary for database publishing.

 a Context with a Location Scheme
The association of a Content List with an Edition requires a Location Scheme, so you must
define a Context and a Location Scheme. The Location Scheme is not used to define a
publishing location (the database Template defines the target location for the Content Item
data), but is used in the publishing log to define the value of the Location on the Published
Item Details dialog. A simple Locations Scheme similar to the following is all that is
required:

Figure 288: Simple Location Scheme for Database Publishing

 a Content List
A Content List for database publishing differs from a Content List for file publishing in two
ways:

 The value selected for the Delivery Type drop list must be database.

 Chapter 10 Database Publishing in Rhythmyx 393

 The value selected for the Template Expander should be sys_ListTemplateExpander.

The following graphic illustrates the Content List defined to publish Content Items of the
Event Content Type using the rffDbEvent Template we developed earlier in this chapter.

Figure 289: Content List defined to publish Event Content Items using the rffDbEvent Template

 an Edition
Assign the database publishing Content List to the Edition. As the Delivery Context for the
association, specify the Context you defined for database publishing.

 395

C H A P T E R 1 1

Specialized Implementations

The Rhythmyx Implementation Guide documents the basic procedures for implementing a Rhythmyx
Content Management System. A number of special implementation options are also available.

You may want to customize the Content Explorer interface, such as:

 adding new Display Formats;
 adding new Views and pre-defined Searches;
 customizing Lifecycle Analysis;
 customizing DocuComp (interface for comparing Content Items);
 enhancing accessibility;
 setting up the Active Assembly tutorial.

For details about performing these tasks, see Customizing Content Explorer.

Rhythmyx has been internationalized and can be localized. For details, see Internationalizing and
Localizing Rhythmyx.

If you need to provide alternate clients for entering and maintaining content in Rhythmyx, see the Web
Services Development Kit.

Rhythmyx can use WebDAV (Web Distributed Authoring and Versioning) to provide virtual access to
Rhythmyx Folders. For details, see Implementing WebDAV.

Microsoft Word can be used as an alternative editing interface. For details, see Implementing Word in
Rhythmyx.

 397

C H A P T E R 1 2

Next Steps

Once you have completed implementing your Rhythmyx design objects, you are ready to set up your
production server (and any staging or quality assurance servers that you want to implement as well). For
details about this process, see Setting Up the Rhythmyx Production Environment.

 399

Appendices

 401

A P P E N D I X I

Setting Up SSL

The Secure Socket Layer (SSL) is a protocol that ensures the authenticity of information exchanged over
HTTP. It uses a digital certificate, which identifies the sender, and public and private keys for signing
messages and encrypting/decrypting data. Enabling SSL ensures secure communication between the
Rhythmyx server and the Workbench or Content Explorer.

You can obtain a digital certificate to enable SSL publishing from a recognized certificate authority (such
as VeriSign or Thawte) or use a self-signed certificate. Communication will be equally secure in both
cases. Certificates from a certificate authority are rather expensive, but will be immediately recognized by
your users browsers. If you use a self-signed certificate, the browser will not recognize it and users will
be prompted to indicate whether they trust the certificate.

For details about obtaining a digital certificate from a certificate authority, see the Web site of the
certificate authority you want to use.

402 Rhythmyx Rhythmyx Implementation Guide

Enabling SSL on the Rhythmyx Server on
Windows
To enable SSL on the Rhythmyx server in Microsoft Windows:

1 Obtain a digital certificate from a certificate authority or create your own self-signed
certificate.

NOTE: Keystore files must be stored in the directory <Rhythmyxroot>/AppServer/server/rx/conf (or
in a subdirectory of that directory).

2 Start the Rhythmyx Server Properties Editor.

You can only the run the Server Properties Editor from the local Rhythmyx server. Go to
your Rhythmyx installation root directory and run RhythmyxServerPropertiesEditor.exe or
RhythmyxServerPropertiesEditor.sh.

3 In the SSL KeyStore File field of the Rhythmyx Server Properties Editor, enter the path to the
certificate keystore file.

4 In the SSL Key Password, enter the password of the keystore file. Enter the same value in the
Confirm SSL Key Password field.

5 In the SSL Port field, specify the Rhythmyx server will use for SSL communication. The
default SSL port for Rhythmyx is 9443.

6 You should not modify the Allowed SSL Ciphers field.

7 Click the [Save] button to save your changes.
You must restart the Rhythmyx server for your changes to take effect.

To confirm that you have configured SSL correctly, start a browser and log in to your Rhythmyx server
via SSL; for example:

https://10.10.10.100:9443/Rhythmyx

Remember to use https (secure http) as the protocol rather than the unsecure http protocol. If SSL is
configured correctly and you entered the address correctly, you should connect to Rhythmyx normally, but
via https instead of http. If you use a self-signed certificate, you may be prompted to trust the certificate.

 Appendix I Setting Up SSL 403

Enabling SSL on the Rhythmyx Server on
Solaris and Linux
To enable SSL on the Rhythmyx server on Solaris or Linux,

1 Obtain a digital certificate from a certificate authority or create your own self-signed
certificate.

NOTE: Keystore files must be stored in the directory <Rhythmyxroot>/AppServer/server/rx/conf (or
in a subdirectory of that directory).

2 Using a simple text editor, open the file
<Rhythmyxroot>AppServer/server/rx/deploy/jbossweb-tomcat55.sar/server.xml.

3 Add an SSL <Connector> with the other <Connector> elements:
<Connector URIEncoding="UTF-8" acceptCount="100"
address="${jboss.bind.address}" clientAuth="false"
connectionTimeout="20000" disableUploadTimeout="true"
enableLookups="false"
keystoreFile="${jboss.server.home.dir}/conf/Rhythmyx.keystore"
keystorePass="mypass" maxHttpHeaderSize="8192"
maxSpareThreads="75" maxThreads="250" minSpareThreads="25"
port="9443" scheme="https" secure="true" sslProtocol="TLS"/>

where:

 keystoreFile="${jboss.server.home.dir}/conf/Rhythmyx.keys
tore" specifies the path to your keystore file; use the
${jboss.server.home.dir} replacement variable to specify the path to the
Rhythmyx deployment directory.

 keystorePass="mypass" specifies the keystore password.

 port="9443" specifies the SSL port of the Rhythmyx server. Port 9443 is
commonly used as the Rhythmyx port, but you can use any port not already in use.

4 Save server.xml. You must restart the Rhythmyx server for your changes to take effect.
To confirm that you have configured SSL correctly, start a browser and log in to your Rhythmyx server
via SSL; for example:

https://10.10.10.100:9443/Rhythmyx

Remember to use https (secure http) as the protocol rather than the unsecure http protocol. If SSL is
configured correctly and you entered the address correctly, you should connect to Rhythmyx normally, but
via https instead of http. If you use a self-signed certificate, you may be prompted to trust the certificate.

404 Rhythmyx Rhythmyx Implementation Guide

Implementing a Self-signed Certificate
To implement SSL, you can use self-signed certificates, rather than certificates from a recognized
certificate authority. This option is less expensive, but your user's browsers will not recognize the self-
signed certificates and they will display prompts to trust the certificate.

Use the keytool included with the Rhythmyx JRE to create and manage the certificates.

To generate a self-signed certificate on the Rhythmyx server:

1 Create a certificate file (.csr file) to store your certificate. To create the .csr file, start a simple
text editor, such as Notepad or vi, and save an empty file. Use the name of your Rhythmyx
system alias. For example, if you name your Rhythmyx server “Rhythmyx”, you would save
your file with the name Rhythmyx.csr. Save this file to the directory
<Rhythmyxroot>/JRE/bin.

2 Open a terminal window and change directories to <Rhythmyxroot>/JRE/bin.

Note: Solaris and Linux environments that have Java installed may run keytool commands against the
keytool in the installed Java Runtime Engine, which may be different than the Java Runtime Engine
included with Rhythmyx. As a result, invalid keystore entries may be created. To resolve this issue,
enter the commands as /keytool to ensure that the keytool in the Rhythmyx JRE is run.

3 Create a public/private key pair:
keytool -genkey -alias <keystoreentryalias> -keyalg RSA -dname
"CN=<rhythmyxhostname>,OU=<organizationalunit>,O=<organization>,L=
<location>,S=<state>,C=<country>" -keypass <keypassword> -
storepass <storepassword> -keystore <keystorefilename>

Where:

 <keystoreentryalias> is the keystore entry alias;

 <rhythmyxhostname> is the name of the machine where the Rhythmyx server resides;

 <organizationalunit> is the name of the organization unit for which you are issuing
the certificate (typically the department responsible for operating the Rhythmyx
server);

 <organization> is the organization for which you are issuing the certificate (typically
your company name);

 <location> is the name of your location, typically the town or citykey -keystor

 <state> is the name of the state or province;

 <country> is the name of your country;

 <keypassword> is the password for the key pair;

 <storepassword> is the password for the keystore file;

 <keystorefilename> is the name of the keystore file; you can give this file any name,
but it must end in .keystore. You should also include the path to the Rhythmyx
JRE when defining the keystore. If you do not specify the location, the keystore is
created in the default location, which is the users home directory.

 Appendix I Setting Up SSL 405

For example:
keytool -genkey -alias Rhythmyx -keyalg RSA -dname
"CN=rhythmyxhostname,OU=Development,O=Percussion,L=Stoneham,S=Mass
achusetts,C=US" -keypass mypass -storepass mypass -keystore
<Rhythmyxroot>/JRE/bin/Rhythmyx.keystore

NOTE: The keystore file should be stored in the directory <Rhythmyxroot>/AppServer/server/rx/conf
(or a subdirectory of that directory). You can move the keystore files to that location at any time
during this process. To simplify the self-certification process, you may want to wait to move the
keystore until you are ready to enable SSL on the Rhythmyx server.

4 Self-certify the key pair:
keytool -selfcert -alias <keystoreentryalias> -keypass
<keypassword> -storepass <storepassword> -keystore
<keystorefilename>

Where:

 <keystoreentryalias> is the keystore entry alias;

 <keypassword> is the password for the key pair;

 <storepassword> is the password for the keystore file;

 <keystorefilename> is the name of the keystore file (including the path if you did not
create the keystore file in the default location).

For example:
keytool -selfcert -alias Rhythmyx -keypass mypass -storepass
mypass -keystore <Rhythmyxroot>/JRE/bin/Rhythmyx.keystore

5 Export the certificate file from the newly created key pair to the certification file (.csr):
keytool -export -alias <keystoreentryalias> -keypass <keypassword>
-storepass <storepassword> -keystore <keystorefilename> -file
<certificatefile>

Where:

 <keystoreentryalias> is the keystore entry alias;

 <keypassword> is the password for the key pair;

 <storepassword> is the password for the keystore file;

 <keystorefilename> is the name of the keystore file (including the path if you did not
created the keystore file in the default location).

 <certificatefile> is the name of the certificate file; you can give this file any name, but
to make it easy to recognize, it is strongly recommended that you use “.csr” as the
extension.

For example:
keytool -export -alias Rhythmyx -keypass mypass -storepass
mypass -keystore Rhythmyx.keystore -file
<Rhythmyxroot>/JRE/bin/Rhythmyx.csr

6 Repeat Steps 2 through 5 on the remote Rhythmyx Publisher. Give the keystore and
certificate files different names than you used for the Rhythmyx server.

406 Rhythmyx Rhythmyx Implementation Guide

7 Copy the Rhythmyx server certificate file (e.g, Rhythmyx.csr) to the Rhythmyx Publisher;
copy the Rhythmyx Publisher certificate file to the Rhythmyx server.

8 Import the Publisher certificate into the Rhythmyx server's cacerts file:
keytool -import -noprompt -trustcacerts -alias
<keystoreentryalias> -storepass changeit -file <certificatefile> -
keystore <cacertpath>

Where

 <keystoreentryalias> is the keystore entry alias;

 <certificatefile> is the name of the certificate file;

 <cacertpath> is the path to the cacert file into which you want to import the
certificate.

Note that the password for the cacert file is changeit. You cannot use a different value for this
parameter or the command will fail.

For example, the following command would import a key pair with the alias RxPub, stored in
a certificate file named RxPub.csr, into the Rhythmyx server's cacerts file:
keytool -import -noprompt -trustcacerts -alias Rxpub -storepass
changeit -file RxPub.csr -keystore
C:\Rhythmyx\Publisher\JRE\lib\security\cacerts

9 Import the Rhythmyx server's keypair into the Rhythmyx Publisher using the command in
Step 8.

10 Configure the Rhythmyx Server to use SSL (see "Enabling SSL on the Rhythmyx Server on
Windows" on page 402) and restart. (NOTE: The keystore files should be stored in the
directory <Rhythmyxroot>/AppServer/server/rx/conf before enabling SSL.)

 407

A P P E N D I X I I

Binding Variables

Rhythmyx includes an extensive array of variables to use when creating bindings. Note that all binding
variables must begin with the character "$". Variables fall into the following categories:

Prefix Category Description

$sys System Variables (see page 408) General system variables

$rx System Functions (see page 412) System methods implemented by system-defined
extensions

$nav Navon Properties (see page 307) Variables used in Managed Navigation Templates.

$db Database Publishing Variables (see
page 433)

Variables used to implement Database Publishing.

$user User-defined Variables and Functions Prefix used for custom variables and functions developed
by customers.

$tools Velocity Tools Extensions (see
"Velocity Tool Extensions" on page
434)

Prefix used for Velocity tools extensions.

408 Rhythmyx Rhythmyx Implementation Guide

System Variables
Simple system variables all begin with the string "$sys".

Some of these variables come with pre-defined bindings to values. Others require the user to define the
value for the variable. In several cases, (such as $sys.mimetype and $sys.charset) you can map an item
property directly to the binding; these bindings do not execute a function.

For details about the variable type, see the JavaDoc
(<RhythmyxRoot>/Docs.Rhythmyx/JavaDocs/index.html.).

Variable Type Description

$sys.activeAssembly Boolean Bound to the value true if the Template is invoked for
Active Assembly Preview.

Used in: Templates

$sys.assemblyItem IPSAssemblyItem
(../Javadocs/com/perc
ussion/services/assem
bly/IPSAssemblyItem
.html)

The current Content Item, assembled. This variable is
required to call Slot Content Finders and to generate
locations.

Used in: Templates

$sys.binary javax.jcr.Property or
Byte Array

Value of the binary field for a template. Required for
Binary Templates.

Used in: Templates

$sys.charset String Value of the Characterset field of the Template. The
bindings can override the value specified in the
Template. Default value is UTF-8.]

Used in: Templates

$sys.crossSiteLink Boolean True if the Dependent Content Item in the
ActiveAssembly Relationship is on a different Site.

Used in: Location Schemes

$sys.currentslot java.util.Map Container for data calculated in the #initslot macro.

Used in: Templates

$sys.ctx.Class.Name String Bound to the Velocity context. Required for the use of
certain Velocity tools functions, such as $tools.render.

Used in: Templates and Location Schemes

$sys.index Integer A loop counter for Slot contents; can only be used in a
Slot. The index of the Content Items in the Slot.
Indexing begins at 1. (In other words, the first Content
Item in the Slot is index1, the second index 2, and so
on.) This variable can be used to modify the rendering
of different rows in the Slot, or to add more data to the
Snippet rendering.

Used in: Templates

 Appendix II Binding Variables 409

Variable Type Description

$sys.item javax.jcr.Node Contains the fields and children of the current Content
Item. Each field, and each child, is considered a
property of the $sys.item variable.

Use the getProperty method to refer to a field of the
Content Item. Usually, you will use the getString
method to return a string, although you can also return
other Java data types. For example,
$sys.item.getProperty(displaytitle).getString refers to
the value of the displaytitle field of the current Content
Item as a string value. For details see the JavaDoc for
javax.jcr.Property in the JSR-170 JavaDoc.

Used in: Templates and Location Schemes

$sys.mimetype String Value of the MIMEType field of the Template. The
bindings can override the value specified in the
Template. Required for Binary Templates. Default
value is text/html.

Used in: Templates

410 Rhythmyx Rhythmyx Implementation Guide

Variable Type Description

$sys.params Map<String,String>[] Provides access to HTML parameters passed from the
Content Item being assembled to the Template. An
assembly request includes the following parameters:

Name Description

sys_path Path to the Content Item being
assembled.

Required.

sys_siteid The Site identifier.

Optional

sys_context The name of the Context used to
assemble the Content Item.

Required.

sys_itemfilter The name of the Item Filter to use to
filter Related Content when
assembling the Content Item.
Required.

sys_template The name or ID of the Template to
use to assemble the Content Item.

Required.

sys_command If specified with the value editrc, the
Content Item is assembled in Active
Assembly mode, including Active
Assembly decorations. If specified
as null or any other value, the
Content Item is assembled without
Active Assembly decorations.

Required.

sys_reinit If specified with the value true, the
Velocity engine in re-initialized
before assembling the Content Item,
which causes all macros to be
reloaded. If not included or specified
with the value false, the Velocity
engine is not re-initialized before
assembling the Content Item and
cached Templates are used.

Optional.

Used in: Templates and Location Schemes

$sys.path String The path of the Folder where the Content Item resides.
The path returned by this variable only uses the name
specified for the Folder, not the alternative name
specified in the Folder Properties.

Used in: Location Schemes

 Appendix II Binding Variables 411

Variable Type Description

$sys.pub_path String The publication path of the Content Item. If any Folder
in the path has an alternative name specified in the
Folder Properties, that name is used in the path returned
by this variable.

Used in: Location Schemes

$sys.site.globalTemplate String Name of the Global Template of the Site. If the Global
Template is undefined, returns null.

Used in: Location Schemes

$sys.site.id IPSGuid
(../Javadocs/com/perc
ussion/utils/guid/IPS
Guid.html)

ID of the Site, as a GUID

Used in: Templates and Location Schemes

$sys.site.path String Path in the Folder tree from the current Content Item to
the Site Folder

Used in: Templates and Location Schemes

$sys.site.url String URL of the Site defined in the Site Address field in the
Site registration.

Used in: Location Schemes

$sys.template String The input text of the Velocity template. Used to
override the default text of the template. (NOTE:
overriding the default text requires a custom
extension.).

Used in: Templates

$sys.template.prefix String Location prefix from the Template definition.

Used in: Location Schemes

$sys.template.suffix String Location suffix from the Template definition.

Used in: Location Schemes

$sys.variables Map<String,String>[] Provides access to context variables for the current Site.

Used in: Templates and Location Schemes

412 Rhythmyx Rhythmyx Implementation Guide

System Functions
Binding variables that begin with the prefix $rx are system functions.

Note that you can also write your own binding functions, which must use the prefix $user. For details, see
the Rhythmyx Technical Reference Manual.

 $rx.asmhelper: provide data for use in assembly
 $rx.codec (on page 417): encode and decode data
 $rx.cond (on page 418): evaluate conditional statements (Note: This binding function is

deprecated)
 $rx.db (on page 419): Database Publishing
 $rx.doc (on page 419): process XML and HTML documents
 $rx.ext (on page 420): call a Rhythmyx extension
 $rx.guid (on page 421): retrieve GUIDs
 $rx.i18n (on page 421): internationalization
 $rx.keyword (on page 422): provide access to Keyword data
 $rx.link (on page 424): manipulate links
 $rx.location (on page 425): generate hypertext links
 $rx.nav (on page 427): Managed Navigation processing
 $rx.pagination (on page 428): provide pagination in assembled Content Items
 $rx.session (on page 430): returns session IDs
 $rx.string (on page 430): manipulate string values

 Appendix II Binding Variables 413

$rx.asmhelper
The methods of this function provide data for use in assembly. The following methods are available:

 $rx.asmhelper.assemble
 $rx.asmhelper.isAASlot (slot)
 $rx.asmhelper.getPopupMenu
 $rx.asmhelper.getSingleParamValue
 $rx.asmhelper.getTidiedContent
 $rx.asmhelper.getTitle ($sys.item.guid)
 $rx.asmhelper.combine
 $rx.asmhelper.childValues
 $rx.asmhelper.mapValues

$rx.asmhelper.assemble
 Returns List<IPSAssemblyResult>

 Used in Templates

Assembles the related Content Items in the specified Slot of the specified Content Item using the
specified parameter values as overrides.

Name Type Description

item IPSAssemblyItem
(../Javadocs/com/per
cussion/services/ass
embly/IPSAssembly
Item.html)

The Content Item whose related Content Items to assemble. Use
$sys.item.

slot IPSTemplateSlot
(Javadocs/com/perc
ussion/services/asse
mbly/IPSTemplateS
lot.html)

The Slot whose related Content Items to assemble.

params Map<String,Object
>

Set of assembly parameters to use as overrides.

Example: $rx.asmhelper.assemble($sys.item, rffList,
“template=’rffSnTitleCalloutLink’”) returns the contents of the rffList Slot
assembled using the rffSnTitleCalloutLink Template.

414 Rhythmyx Rhythmyx Implementation Guide

$rx.asmhelper.isAASlot (slot)
 Returns boolean

 Used in Templates

Returns true if the specified Slot is an Active Assembly Slot; otherwise returns false. The Slot
Content Finder defines whether the Slot is an Active Assembly Slot. Of the Content Finders
shipped with Rhythmyx, only Slots that use the sys_RelationshipContentFinder are considered
Active Assembly Slots and will return true.

$rx.asmhelper.getPopupMenu
 Returns String

 Used in Templates

Used internally. Returns the popup menus used in Active Assembly. The menuname parameter is
optional; if not included, the menu is named using the Content ID of the specified Content Item.

Name Type Description

itemguid IPSGuid
(../Javadocs/com/per
cussion/utils/guid/IP
SGuid.html)

The GUID of the Content Item whose menus to retrieve. Use
$sys.item.guid.

mode String The operational Mode of Content Explorer for which to display
the Menu. An operational Mode is a portion of Content Explorer
for which unique menus can be displayed. For additional details,
see "Action Menus" in Customizing Content Explorer.

uicontext String The Visibility Context for which to display the Menu.

menuname String Name to display for the menu.

$rx.asmhelper.getSingleParamValue
 Returns String

 Used in Templates

Returns the value of the specified parameter. If the specified parameter does not have a value, returns
null.

Name Type Description

params Map<String,String> Set of Content Item parameters. Use $sys.params.

key String name of the parameter whose value you want to return.

Example: $rx.asmhelper.getSingleParamValue ($sys.params, sys_title)
returns the value in the sys_title field for the current Content Item.

 Appendix II Binding Variables 415

$rx.asmhelper.getTidiedContent
 Returns String

 Used in Templates

Used to return a tidied field value when including an inline Snippet Template the value of a non-rich-
text field that includes both HTML code and the ampersand character ("&").

Name Type Description

fieldValue String The Contents of the field to tidy and return.

Example:
$rx.asmhelper.getTidiedContent($sys.item.getProperty(“displaytitle
”).String()

 returns the value in the sys_displaytitle field tidied to render both HTML and the ampersand character
correctly in an inline Snippet.

$rx.asmhelper.getTitle ($sys.item.guid)
 Returns String

 Used in Templates

Returns the title of the specified Content Item.

$rx.asmhelper.combine
 Returns Map<String, Object>

 Used in Templates

Generates a new parameter map with the parameters from the urlquery "overlaid" over the parameters
in the input parameter map. The original input parameters still exist and are unchanged. If a later
function uses a parameter from the map that exists in both the original parameter map and the
urlquery, the value of the parameter from the urlquery supersedes the value from the original
parameter map. If a later function uses a parameter that does not exist in the urlquery, it takes the
value from the original parameter map.

The value of the urlquery parameter can refer to another function. In that case, you must develop a
function that returns a parameter string. For example, you could develop the function
$user.example to return the set of overlay parameters. To use the output of this function, you
would define the binding value $rx.asmhelp.combine($sys.params,
$user.example).

Name Type Description

params Map<String, String[]> Set of Content Item parameters. Use $sys.params.

urlquerystring String URL-query-style string, with names and values separated by
equals, and each name and value pair separated by ampersands

416 Rhythmyx Rhythmyx Implementation Guide

$rx.asmhelper.combine
 Returns Map<String, Object>

 Used in Templates

Generates a new parameter map with the parameters from the added parameter "overlaid" over the
parameters in the input parameter map. The original input parameters still exist and are
unchanged. If a later function uses a parameter from the map that exists in both the original
parameter map and the added parameter, the value of the parameter from the added parameter
supersedes the value from the original parameter map. If a later function uses a parameter that
does not exist in the added parameter, it takes the value from the original parameter map.

Name Type Description

params Map<String, String[]> Set of Content Item parameters. Use $sys.params.

added Map<String, String[]> Map of additional parameters,

$rx.asmhelper.childValues
 Returns List<Object>

 Used in Templates

Used for database publishing. Returns a list of the values of the specified child Fieldset.

Name Type Description

parentNode javax.jcr.Value The Content Item whose child Fieldset children to return. Use
$sys.item.

childName javax.jcr.Value Name of the child Fieldset whose values you want to return.

PropertyName javax.jcr.Value Name of the field to return from the child Fieldset whose
values you want to return

Example: $rx.asmhelper.childValues($sys.item, Location, “city”) would
return a list of the values of the field city in the Location child Fieldset of the current Content Item.

$rx.asmhelper.mapValues
 Returns List<Object>

 Used in Templates

Used for database publishing. Takes the output of $rx.db.get (a list of values of specified columns in a
database returned as a list of maps) as input. Returns the list of the values of the specified columns
for inserting into the child table.

Name Type Description

mapList List<Map<String,
Object>>

List of maps. Usually derived from the output of the $rx.db.get
function.

key String Name of the key in the mapList parameter whose values you
want to return

 Appendix II Binding Variables 417

$rx.codec
The methods of this function encode and decode data.

 $rx.codec.base64Decoder
 $rx.codec.base64Encoder
 $rx.codec.escapeForXml
 $rx.codec.decodeFromXml

$rx.codec.base64Decoder(string)
 Returns String

 Used in Templates

Decodes the string passed from base-64 encoding. The value to be decoded must be passed as a string.
Example:
$rx.codec.base64Decoder($sys.item.getProperty(“body”).String())
would decode the value of the body field from base-64 coding to UTF-8 coding and return the
resulting string.

$rx.codec.base64Encoder(string)
 Returns String

 Used in Templates

Encodes the string passed to base-64 coding. The value to be encoded must be passed as a string.
Example:
$rx.codec.base64Encoder($sys.item.getProperty(“body”).String())
would encode the value of the body field to base-64 and return the resulting string.

418 Rhythmyx Rhythmyx Implementation Guide

$rx.codec.escapeForXml(string)
 Returns String

 Used in Templates

Escapes the any characters in the input string specified that must be escaped for XML, including:

o & (ampersand)

o " (double quotation marks)

o < (greater than symbol)

o > (less than symbol)

o ' (single quotation mark)

Example:
$rx.codec.base64Encoder($sys.item.escapeForXml($sys.item.getProper
ty(“body”).String()) would escape any of the characters specified above that occurred in
the body field and return the string so it could be used in an XML document.

$rx.codec.decodeFromXml(string)
 Returns String

 Used in Templates

Converts the embedded XML entities in the input string to characters.

$rx.cond
NOTE: This function is deprecated. JEXL expressions that use this binding should be rewritten to use the
JEXL if...else conditional function instead.

The method of this function is used to evaluate conditional statements.

$rx.cond.choose
 Returns Object

If the boolean condition evaluate to true, returns the first value; otherwise, returns the second value.

Name Type Description

boolean Object The boolean expression to evaluate

truevalue Object The value to return if the boolean expression evaluates to true.

falsevalue Object The value to return if the boolean expression evaluates to false.

Example:
$rx.cond.choose($location=="above",”rffSnTitleAndImage”,”rffSnImag
eAndTitle”) returns rffSnTitleAndImage if the value of $location is above, otherwise it returns
rffSnImageAndTitle.

 Appendix II Binding Variables 419

$rx.db
The method of this function is used in database publishing.

Note: Be careful not to confuse this function with the Database Publishing variables. Note that those
variables all begin with the prefix $db, while this function begins with $rx.db. If you attempt to specify
this function as $db.get, the system will return an error.

$rx.db.get
 Returns List<Map<String,Object>>

 Used in Templates

Executes the specified SQL query on the specified datasource and returns the results as a list of
entries. Each entry consists of a column name and a value.

Name Type Description

datasource String Name of the datasource on which to execute the query. To
specify the Rhythmyx datasource, specify an empty string.

selectStatement String SQL query to execute on the specified datasource.

Example: $rx.db.get(“RhythmyxData”, “select LANGUAGESTRING,
DISPLAYNAME from RXLOCALES where LOCALE_ID<10”) would return a list of the
values of the LANGUAGESTRING and DISPLAYNAME columns in the database specified by
the Rhythmyx Data datasource. The results are returned as a map array.

$rx.doc
The methods of this function process XML and HTML documents.

$rx.doc.getDocument(url)
 Returns String

 Used in Templates

Calls the URL specified as the parameter and returns the result document data. Use this method to call
an existing Rhythmyx application. If an error occurs, returns an empty string. If the URL is
defined as relative (../), the request is submitted internally.

Name Type Description

url String URL to query for the document.

420 Rhythmyx Rhythmyx Implementation Guide

$rx.doc.getDocument(url,user,password)
 Returns String

 Used in Templates

Alternate signature of the $rx.doc.getDocument function that includes the user and password
parameters to access an external resource that requires authentication.

Name Type Description

url String URL to query for the document.

user String User name to use to access external resource. (Optional)

password String Password to use to access external resource. (Optional)

$rx.doc.extractBody
 Returns String

 Used in Templates

Extracts the body from the submitted data.

Name Type Description

rval IPSAssemblyResult
(Javadocs/com/perc
ussion/services/asse
mbly/IPSAssembly
Result.html)

The assembled result from which to extract the body. Optional; not
used if the text parameter is used.

text String The HTML document from which to extract the body. Optional; not
used if the rval parameter is used.

$rx.ext
The method of this function allows you to call an extension.

$rx.ext.call
 Returns Object

 Used in Templates and Location Schemes

Calls the specified extension, with the specified parameters. Returns whatever the requested extension
returns.

Name Type Description

name String Name of the extension to call

parameters String Parameters to submit to the requested extension. Up to 20
parameters can be submitted as strings.

 Appendix II Binding Variables 421

$rx.guid
The method of this function allows you to retrieve GUIDs.

$rx.guid.getContentId($sys.item.guid)
 Returns int

 Used in Templates and Location Schemes

Extracts the Content Item ID from the submitted GUID. The GUID must be the ID of a Content Item.
If the GUID is any other type of object, the method fails.

$rx.i18n
The method of this function is used to retrieve internationalized and localized data.

$rx.i18n.getString
 Returns String

 Used in Templates

For the specified key, looks up the localized text for the specified Locale.

Name Type Description

key String The key whose translated text to look up.

locale String The Locale for which to look up the text of the key..

Example: $rx.i18n.getString ("psx.role@admin", "fr-fr") returns the French
translation of the Role admin for France.

422 Rhythmyx Rhythmyx Implementation Guide

$rx.keyword
The methods of this function provide access to Keyword data.

 $rx.keyword.keywordSelectChoices
 $rx.keyword.keywordChoices
 $rx.keyword.getLabel

$rx.keyword.keywordSelectChoices
 Returns String

 Used in Templates

Returns the set of Choices and Values for the specified Keyword formatted as a set of HTML
<SELECT> elements.

Name Type Description

keywordname String Name of the Keyword whose Choices and Values to return.

currentchoice String Specifies the currently selected Choice of the Keyword

$rx.keyword.keywordChoices
 Returns List<String[]>

 Used in Templates

.Returns a list of results. Each result is an array consisting of two elements. The first element of this
array is the label of the keyword choice, the second is the value of the keyword choice.

Name Type Description

keywordname String Name of the Keyword whose Choices and Values to return.

$rx.keyword.getLabel
 Returns String

 Used in Templates

Returns the Label of the specified Value of the specified Keyword.

Name Type Description

keywordname String Name of the Keyword for which to return a Label.

keywordvalue String Name of the Keyword Value for which to return the Label.

 Appendix II Binding Variables 423

$rx.keyword.getLabel
 Returns String

 Used in Templates

Alternative signature of the $rx.keyword.getLabel function that can return the localized value of the
label. The locale for which to return the label is specified in the locale parameter. The local
parameter cannot be null or empty.

Name Type Description

keywordname String Name of the Keyword for which to return a Label.

keywordvalue String Name of the Keyword Value for which to return the Label.

locale String Locale code of the Locale for which to return the localized
Label.

$rx.keyword.getChoiceLabel
 Returns String; the string may be empty if

 the specified Content Type does not exist;

 the specified field does not exist or does not contain a choice list; or

 the specified value does not exist in the choice list.

 Used in Templates

Retrieves the specified field for the specified Content Type and returns the label for the specified
choice. If any problems occur, an error is logged and a runtime exception is thrown.

Name Type Description

contenttypename String Name of the Content Type whose field is being specified. Cannot
be null or empty.

fieldname String Name of the field of the specified Content Type for which to return
the choice label.

choicevalue String The choice value whose name to return.

424 Rhythmyx Rhythmyx Implementation Guide

$rx.link
The methods of this function allow you to manipulate links.

 $rx.link.addParams
 $rx.link.getAbsUrl
 $rx.link.getRelUrl

$rx.link.addParams
 Returns String

 Used in Templates

Adds up to five name-value pairs to the specified URL.

Name Type Description

url String URL to which to add the additional parameters.
param1...
param5

String Parameter to add to the URL. Up to five parameters can
be added. Each parameter must be match with a value
(e.g., param1, value 1, param2,value2...param5,value5).
If any parameter is missing a corresponding value, the
system returns an error.

value1...
value5

String Value for the parameter.

$rx.link.getAbsUrl
 Returns String

 Used in Templates

Returns the absolute URL of the request path. Can be used with the addParams method to extend the
URL with additional parameters.

Name Type Description

path String Partial path that will be appended to the Rhythmyx URL to
produce an absolute URL.

secure boolean If specified as true, generates a secure link. If omitted, defaults
to false.

$rx.link.getRelUrl
 Returns String

 Used in Templates

Creates a fully-qualified URL through the Rhythmyx server for the specified request root. For
example, if alpha/beta were submitted, the URL http://127.0.0.1:9992/Rhythmyx/alpha/beta would
be returned, where 127.0.0.1 was the IP address of the Rhythmyx server and 9992 was its port.

 Appendix II Binding Variables 425

Name Type Description

path String Path whose URL base you want to retrieve.

addParams String HTML parameters to add to the output URL.

$rx.location
The methods of this function allow you to generate hypertext links.

 $rx.location.generate
 $rx.location.generateToPage
 $rx.location.getFirstDefined
 $rx.location.siteBase($sys.site)

$rx.location.generate
 Returns String

 Used in Templates and Location Schemes

Generates the target URL for the assembly item using the default Template.

Can be specified with the template parameter, in which case the link will be generated to the specified
Page Template. The value of the Template parameter must be the name of a page Template.

Name Type Description

targetItem IPSAssemblyItem
(../Javadocs/com/percussi
on/services/assembly/IPS
AssemblyItem.html)

The target Content Item to which the URL will point.

targetTemplate String The specific Template to which the URL will point.

$rx.location.generate
 Returns String

 Used in Templates and Location Schemes

Additional signature of the $rx.location.generate function that allows the user to specify the data used
to generate the URL.

Name Type Description

templateinfo String The Page Template to which the URL will point.

item Node The target Content Item to which the URL will point.

folderPath String The Folder location to which the URL will point.

filter String The Item Filter to use when generating the URL.

siteid Number The ID of the Site to which the URL will point.

426 Rhythmyx Rhythmyx Implementation Guide

Name Type Description

context Number The publishing Context for which to generate the URL.

$rx.location.generateToPage
 Returns String

 Used in Templates and Location Schemes

Generates the target URL for a page of a paginated item. Used to support pagination.

Name Type Description

$assemblyItem IPSAssemblyItem
(../Javadocs/com/percuss
ion/services/assembly/IP
SAssemblyItem.html)

The paginated target Content Item to which the URL will
point.

$pageNo String The page number to which to generate the URL. A value of
0 or null indicates that the Content Item will not be
paginated.

$rx.location.generateToPage
 Returns String

 Used in Templates and Location Schemes

Additional signature of the $rx.location.generateToPage function that allows the user to specify the
Template to which to link.

Name Type Description

$assemblyItem IPSAssemblyItem
(../Javadocs/com/percuss
ion/services/assembly/IP
SAssemblyItem.html)

The paginated target Content Item to which the URL will
point.

$template String The name of the target Template of the URL.

$pageNo String The page number to which to generate the URL. A value of
0 or null indicates that the that the Content Item will not be
paginated.

$rx.location.getFirstDefined
 Returns String

 Used in Templates and Location Schemes

Looks through the set of fields specified to find a field that contains a value. The first field in the list
specified that contains a value will be used. If none of the specified fields contains a value, the
default value will be used.

Name Type Description

item Node The Content Item whose fields to search.

 Appendix II Binding Variables 427

Name Type Description

listofproperties String Comma-separated list of fields to search for a value.

defaultvalue String default value to use if none of the specified fields contains a
value.

$rx.location.siteBase
 Returns String

 Used in Templates and Location Schemes

Returns the base URL for the specified Site. Can include the modify parameter. If the modify
parameters is set to yes [siteBase($sys.assemblyitem, yes)], the protocol, host, and
port are not included in the returned URL.

Name Type Description

siteid String The Site whose base URL to return

modify String If the value of this parameter is "yes", the protocol, host, and
port will be stripped from the base URL. Otherwise, the
protocol, host, and port are included. (Optional)

$rx.nav
The methods of this function are used in processing Managed Navigation. They are only valid when
applied to nodes returned from the Managed Navigation Slot Content Finder.

Note: Be careful not to confuse the methods of this function with the Managed Navigation variables,
which begin with the prefix $nav. If you attempt to specify this function as $nav, the system will return
an error.

$rx.nav.findProperty
 Returns Property

 Used in Templates

Starting at the specified node, searches up the navigation hierarchy to find a node that has a value for
the specified property.

Name Type Description

node Node The node from which to start the search

propertyname String The name of the property to search for.

428 Rhythmyx Rhythmyx Implementation Guide

$rx.nav.findNode
 Returns Node

 Used in Templates

Starting at the specified node, searches up the navigation hierarchy until it finds a node that has a child
node with the specified name.

Name Type Description

node Node The node from which to start the search

childname String The name of the child node to search for.

$rx.pagination
The methods of this function are used when paginating assembled Content Items.

 $rx.paginate.fieldContentPageCount
 $rx.paginate.getFieldPage
 $rx.paginate.getSlotPage
 $rx.paginate.slotContentPageCount

$rx.paginate.fieldContentPageCount
 Returns String

 Used in Templates and Location Schemes

Generates the target URL for the assembly item using the default Template.

Can be specified with the template parameter, in which case the link will be generated to the specified
Page Template. The value of the Template parameter must be the name of a page Template.

Name Type Description

targetItem IPSAssemblyItem
(../Javadocs/com/percussi
on/services/assembly/IPS
AssemblyItem.html)

The target Content Item to which the URL will point.

targetTemplate String The specific Template to which the URL will point.

$rx.paginate.getFieldPage
 Returns String

 Used in Templates and Location Schemes

Generates the target URL for the assembly item using the default Template.

Can be specified with the template parameter, in which case the link will be generated to the specified
Page Template. The value of the Template parameter must be the name of a page Template.

 Appendix II Binding Variables 429

Name Type Description

targetitem IPSAssemblyItem
(../Javadocs/com/percussi
on/services/assembly/IPS
AssemblyItem.html)

The target Content Item to which the URL will point.

targetTemplate String The specific Template to which the URL will point.

$rx.paginate.getSlotPage
 Returns String

 Used in Templates and Location Schemes

Generates the target URL for the assembly item using the default Template.

Can be specified with the template parameter, in which case the link will be generated to the specified
Page Template. The value of the Template parameter must be the name of a page Template.

Name Type Description

targetItem IPSAssemblyItem
(../Javadocs/com/percussi
on/services/assembly/IPS
AssemblyItem.html)

The target Content Item to which the URL will point.

targetTemplate String The specific Template to which the URL will point.

$rx.paginate.slotContentPageCount
 Returns String

 Used in Templates and Location Schemes

Generates the target URL for the assembly item using the default Template.

Can be specified with the template parameter, in which case the link will be generated to the specified
Page Template. The value of the Template parameter must be the name of a page Template.

Name Type Description

targetItem IPSAssemblyItem
(../Javadocs/com/percussi
on/services/assembly/IPS
AssemblyItem.html)

The target Content Item to which the URL will point.

targetTemplate String The specific Template to which the URL will point.

430 Rhythmyx Rhythmyx Implementation Guide

$rx.session
The methods of this function return session IDs that can be returned to Rhythmyx when calling Rhythmyx
applications or other URLs via HTTP.

 $rx.session.getJSessionID
 $rx.session.getSessionID

$rx.session.getJSessionID
 Returns String

 Used in Templates

Returns the JSession ID. The ID must be passed back to Rhythmyx in one of the following ways:

 a cookie called JSESSION

 as part of the URL using the required syntax for JSESSION IDs.

$rx.session.getSessionID
 Returns String

 Used in Templates

Returns the session ID. The ID must be passed back to Rhythmyx in a HTTP parameter called
PSSESSIONID.

$rx.string
The methods of this function allow you to allow you to manipulate string values.

 $rx.string.stringTo Map
 $rx.string.equalNumbers
 $rx.string.extractNumber

$rx.string.stringTo Map
 Returns Map<String, String>

 Used in Templates

Converts a URL-style parameter string to a Java map. Used to pass parameters to Slot Content
Finders.

Name Type Description

paramstring String Parameter string to convert. If null, an empty map is returned.

 Appendix II Binding Variables 431

$rx.string.equalNumbers
 Returns boolean

 Used in Templates and Location Schemes

Compares two parameters, each a number or a string with a numeric value (which will be converted to
a number; if a parameter value cannot be converted to a number or if a parameter is of an unknown
type, it is converted to 0). If the two numbers are equal, returns true.

Name Type Description

a Object The first object to compare

b Object The second object to compare.

$rx.string.extractNumber
 Returns long

 Used in Templates and Location Schemes

Extracts the numerical value of the parameter. If the object is of the type java.lang.Number, returns
the Long value of that number. If the object is of the type java.lang.String, the string is converted
to a number; the default value in this case is 0. If the data type of the object is unknown, returns 0.

Name Type Description

a Object The object from which to extract the number.

$rx.string.stripSpace
 Returns string

 Used in Templates and Location Schemes

Removes leading and trailing whitespace, and replace any embedded sequence of whitespace
characters with a single space each.

Name Type Description

src String The source string to process for extraneous whitespace. May
be empty but never null.

432 Rhythmyx Rhythmyx Implementation Guide

Navon Properties
Navons have several unique properties and child nodes that play an important role in implementing
Managed Navigation.

Navon properties are only used in Templates.

Variable Data Type Description

nav:axis String The axis of the Navon being processed in relation to the Navon
from which processing was initiated. Available options include:

 ANCESTOR: a node in the path of the Navon higher than
the PARENT Navon node

 DESCENDANT: A node in the path after the Navon
 NONE: No other category applies
 PARENT: The immediate predecessor of the Navon in its

path.
 SELF: The Navon itself.
 SIBLING: Another Navon that shares the PARENT of the

Navon.

nav:url String The URL of the Navon's landing page.

nav:landingPage Node The landing page Content Item.

nav:leaf Boolean Boolean specifying whether the Navon is a leaf (in other words, has
no children)

 True: The Navon is a leaf (has no children).
 False: The Navon is not a leaf (has children).

nav:submenu Node Iterator The variable contains all Navon children of the Navon being
processed.

nav:image Node Iterator This variable contains all NavImage children of the Navon being
processed.

nav:selectedImage Node The NavImage selected by the Selector

 Appendix II Binding Variables 433

Database Publishing Variables
The following variables have been defined specifically for use in Database Publishing. For additional
details, see the Rhythmyx JavaDoc (<RhythmyxRoot>/Docs.Rhythmyx/JavaDocs/index.html).

Note: Be careful not to confuse these variables with the Database function, $rx.db. If you specify these
variables with the prefix $rx.db, the system will return an error.

Database Publishing Variables are used only in Templates.

Variable Type Description

$db.action String The action to perform. Always a single alphabetic
character:

Value Action

r Inserts the row. If the row already exists, it is
deleted first.

n Inserts the row if it does not already exist.

u Updates the row if it exists.

d Deletes the row if it exists.
$db.origin String The schema or origin of the target database.

$db.resource String The JNDI resource on the target server that contains the
database.

$db.drivertype String The type of the driver. The driver type is the portion of
the JDBC URL after jdbc: and before the database
specification.

$db.parent String The name of the parent table.

$db.child [n] String The name of the child table.

$row.columnname String or
Number

The name of a specific column in a row of the parent
database.

$child[n].columnname[i] String or
Number

Each child row maps to an index on the child. Each
indexed row has a series of column names. This variable
specifies the name of the specific column in the specified
index row of the child.

$row.$encoding.columnname String The encoding of the specified column. Options are empty
or base64.

$child[n].$encoding.columnname String The encoding of the specified child column. Options are
empty or base64.

434 Rhythmyx Rhythmyx Implementation Guide

Velocity Tool Extensions
Velocity tools are available using the $tool prefix. For details, see the Velocity tools documentation
(http://jakarta.apache.org/velocity/tools/index.htm).

Velocity tools may be used in either Templates or in Location Schemes.

The following tools are available:

Tool Class

$tools.alternator org.apache.velocity.tools.generic.AlternatorTool

$tools.date org.apache.velocity.tools.generic.DateTool

$tools.esc org.apache.velocity.tools.generic.EscapeTool

$tools.mill org.apache.velocity.tools.generic.IteratorTool

$tools.list org.apache.velocity.tools.generic.ListTool

$tools.math org.apache.velocity.tools.generic.MathTool

$tools.number org.apache.velocity.tools.generic.NumberTool

$tools.render org.apache.velocity.tools.generic.RenderTool

$tools.sorter org.apache.velocity.tools.generic.SortTool

$tools.parser org.apache.velocity.tools.generic.ValueParser

 Appendix II Binding Variables 435

Assembly Items and Assembly Nodes
When working with Templates and with bindings, it is important to understand the differences between
Assembly Items and Assembly Nodes.

An Assembly Item is a container for all data required to assemble a Content Item output, such as the Site
and the Template, including the Assembly Node.

The Node is the Content Item itself. The node consists of Content Item data as a set of node properties. A
child item edited in a Detail Editor is represented in the Content Item node as a child node with its own set
of properties.

 437

A P P E N D I X I I I

Accessing Object Properties

When implementing Rhythmyx, you may sometimes need to know an object's ID or some other property
of the object. You can view and access these properties on the Properties view in the Rhythmyx
Workbench. The Properties view is located in the lower left corner of the Workbench, under the
Navigation views, with the Snippet Drawer:

Figure 290: Properties tab

438 Rhythmyx Rhythmyx Implementation Guide

You can copy these properties to the clipboard for use elsewhere in your implementation. To copy a
property, select the property you want to copy, right-click, and from the popup menu choose Copy. This
action copies the entire row. For example, if you copied the ID property in the graphic above, when you
pasted the value, the result would be:

ID 0-4-505 (17179869689)
You should remove extraneous data from the pasted value (for example, ID would not be necessary).

The most common property to use is the ID property. In Rhythmyx, IDs are Generic Universal IDs
(GUIDs). A Rhythmyx GUID consists of three parts separated by hyphens:

 host ID
The host ID is a randomly-generated value that identifies the host machine on which the
object was created. Each machine on which Rhythmyx is installed has a unique host ID. In
the example above, the host ID is 0.

 object type ID
The object type ID specifies the type of object. In the example above, the object ID (4)
indicates that the object is a Template. Object Type ID values are defined by Percussion
Software.

 object ID
The object ID is a unique identifier of the specific object of that type on that host. In the
example above, the object ID is 505.

The numeric value in parentheses following the GUID is a binary representation of the GUID. This value
is usually also extraneous data and can be removed.

When using a GUID, you may use either the complete GUID (0-4-505 in this example) or the object ID
(505 in this example). When a ID is used, Rhythmyx documentation will specify whether to use the
GUID or the object ID. In no case should you use the binary representation of the GUID.

 439

A P P E N D I X I V

Naming Conventions

Percussion Software has defined two sets of naming conventions. The first set of naming conventions
applies to files and XML applications, the second to design objects (such as Content Types, Templates,
Slots, and so forth).

440 Rhythmyx Rhythmyx Implementation Guide

File and Application Naming Conventions
The naming conventions for files and XML applications are mandatory. Percussion Software uses these
naming conventions to determine which files and applications will be upgraded when Rhythmyx is
upgraded and which are eligible to be customized by customers during implementations. Failure to
observe these naming conventions may result in loss of customization when the system is upgraded,
failure to upgrade, or failure of the upgraded system.

Any application or file with the prefix "sys" is a Rhythmyx system file or application. These files and
applications may be modified during upgrades. DO NOT modify or customize these files and
applications. Modification or customization of these files and applications may cause the system to fail.
Any modifications or customizations to a file or application with the prefix "sys" will be lost on upgrade,
and may cause the upgrade to fail.

Files and applications with the prefix "rx" are eligible for customization and modification. These files and
applications will not be modified during upgrade and changes to them will not be lost.

In many cases, two files or applications may exist with nearly the same name, differing only in the prefix
(one with the prefix "sys", the other with the prefix "rx"). For example, two Velocity macro files are
provided with Rhythmyx, sys_assembly.vm and rx_assembly.vm. The macro file sys_assembly.vm is the
system file and may be changed on upgrade as Percussion Software changes existing macros and adds
new ones. The macro file rx_assembly.vm is provided for you to define your own Velocity macros if
needed. This file will not be changed by Percussion Software.

REMEMBER: You can modify or customize files and applications with the prefix "rx". DO NOT modify
files and applications with the prefix "sys".

 Appendix IV Naming Conventions 441

Design Object Naming Conventions
These naming conventions are designed for the Content Types, Templates, Workflows, and other design
objects that constitute the CMS implementation. Use of these naming conventions is not required, but it is
strongly recommended that some form of consistent naming be used for the design objects in your
implementation.

Names should consist of alphanumeric characters. Names should not include spaces, which are converted
to underscores for JSR-170 queries. Underscores may be used instead, but this practice is discouraged.
Recommended practice is to compress names. Use of other non-alphanumeric characters is not
recommended. Object-specific names (not including various prefixes) should use Title Case. Names
should be common words rather than acronyms to ensure that they are easily recognizable.

In many cases, a design object has a label as well as a name. Labels should be easily read and understood
by business users of the system. Spaces and other characters are allowed in labels; spaces in particular are
encouraged to make them easily readable. Labels need not be unique across the system. In fact, it is
common for design objects with different names to have the same label.

Names must be unique throughout the system, but labels need not be unique.

Project Prefix
Each project should have a three-letter prefix, which is applied to most design objects in the
implementation. A project may consist of a single Site, or it may be comprised of a group of Sites that
share Content Types and Templates and possibly Content Items as well. The project prefix should always
be lower-case and is applied to design objects that require unique names across the system.

Note that the following strings are reserved and should not be used for as a project prefix:

gbl

nav

psx

rx

rxs

sys

For example, the prefix used in the FastForward implementation is "rff", for "Rhythmyx FastForward".

Content Types
Content Types should use the project prefix and must be unique across the system. The names should be
descriptive, for example:

rffContact

rffEvent

442 Rhythmyx Rhythmyx Implementation Guide

rffGeneric
Automated Index Content Types should include the string "Auto" in the name after the project prefix:

rffAutoIndex
Content Types also have a label. In most cases, the label can be the name without the project prefix:

Auto Index

Contact

Event

Generic

Shared Field Groups
Shared Field files and Shared Field Sets must have unique names across the system and should use the
project prefix. Shared Field Sets are not visible to business users and do not have a label.

Fields
Fields should have descriptive names that make sense to business users, and do not use the project prefix.
Field names should always be lower-case. Fields also have a label. The word "field" should not be
included in the name or label of a field.

Examples:

city

location

postalCode

Templates
Template names must be unique across the system and should use the project prefix. The following
template is recommended:

<prefix><type><ContentType><Name>

where

prefix is the project prefix

type is one of the following values:

Abbreviation Type

Bn Binary

Ds Dispatch

Db Database Publishing

Gt Global Template

Pg Page

Sn Snippet

 Appendix IV Naming Conventions 443

ContentType specifies the Content Type with which the Template is associated if the Template is
Type-specific.

Name is the Template name.
Templates also have a label.

Slots
Slot names use the project prefix and must be unique across the system. Slots also have a label. The word
"slot" must not appear in the name.

Slots should follow one of the following five conventions:

 "List" Slot - used for a list of Content Items of a specific Content Type
<prefix><ContentType>List

For example, rffEventList
 "Used-on" Slot - Slot only appears on a specific page or group of pages

<prefix><PageName>

For example, rffEventPage
 "Business Name" Slot - used for Slots that have a business name users will recognize

<prefix><BusinessName>

For example, rffSidebar
 "Singleton Link" Slot - Used for image links and other special functions where a Slot will

contain a single link to a specific Content Item
<prefix><Name>Link

For example, rffImageAndTitleLink
 "Singleton Image" Slot - used for images where a single Content Item will be expected.

<prefix><name>Image

For example, rffNavImage

Communities
Communities do not have a label. The name is visible to business users, so it should be meaningful to
business users and should not use the project prefix. The word "community" should not be used in the
name.

Examples:

InternetContent

ExtranetAdmin

444 Rhythmyx Rhythmyx Implementation Guide

Workflows
Workflows should have simple, descriptive names, which do not include the project prefix. The Word
"workflow" should be included in the name.

Workflow States and Transitions should also have simple, descriptive names. Note that States and
Transitions do not have labels. The names are directly visible to business users.

Sites
Site should have simple, descriptive names without the project prefix. Site names must be unique. Sites
do not have a label, so the name should be the name used by business users to refer to the Site. It is
recommended that Site names not include spaces. The name should not include the word "site".

Editions and Content Lists
Editions should have unique names that include the project prefix. The names should be organized by
Site. Use of camelCase without spaces or underscores is recommended. Editions have a description,
which is similar to the label of other design objects and should be a name friendly to business users.

Content Lists should follow the same conventions, but are more likely to require a specific name because
there are typically more of them. If an Edition includes only one Content List, the Content List should
usually have the same name as the Edition.

The recommended format of the name is:
<prefix><Site><Type><Name>

where

prefix is the project prefix

Site is the name of the Site to which the Edition publishes.

Type is one of the following:

Full

Incremental

Unpublish

Name is an optional additional name if necessary to distinguish multiple Editions of the same type for
a specific Site.

Context Variables
Context variables should have common sense names that do not use the project prefix. Use of TitleCase
without spaces or underscores is recommended.

Context variables can be reused on multiple Sites even on multiple projects if they share Templates.

 Appendix IV Naming Conventions 445

Publishers
Publishers should have common sense names that do not include a project prefix. The names should use
Title Case and should not include spaces or underscores.

 447

A P P E N D I X V

FastForward Implementation Plan

This appendix contains the complete FastForward Implementation Plan as installed with Rhythmyx. Note
that in a production Rhythmyx CMS, the default implementation for some of these design objects may
change. Design objects whose implementation is illustrated in the Rhythmyx Implementation Guide are
implemented according to this plan unless otherwise specified in the text.

448 Rhythmyx Rhythmyx Implementation Guide

Shared Field Sets
FastForward includes three shared Field Sets.

 shared
This shared Field Set contains generic fields used by multiple Content Types.

 sharedimage
This shared Field Set contains fields shared by Content Types used to managed image files.

 sharedbinary
This shared Field Set contains field shared by Content Types used to managed binary files.

All of these shared Field Sets are defined in the rxs_ct_shared Shared Field Editor.

shared Field Set

Name Label Hidden Description Control Data Type/
Storage Size

displaytitle Label The title shown to users. sys_EditBox text/512

body Body The main body of
content. Since the
sys_EditLive control is
used, the body is stored
in rich text format and
may include inline links
and images.

sys_EditLive text/max

filename File name yes The file name of the item
when it is published.

sys_EditBox text/512

keywords Keywords Search terms that are not
part of the item's content
and are inserted into
markup tags.

sys_TextArea text/1024

callout Callout A synopsis of the body
content.

sys_EditLive text/max

description Description Search phrases that are
not part of the item's
content and are inserted
into markup tags.

sys_TextArea text/1024

webdavowner WebDAV Owner yes Stores the user with a
lock on the Content Item
when content is uploaded
through WebDAV.

sys_TextArea text/255

 Appendix V FastForward Implementation Plan 449

sharedimage Field Set

Name Label Hidden Description Control Data Type/
StorageSize

img1 Image Field that uploads the
image.

sys_file binary/max

img1_filename Image Filename File name of the uploaded
image. sys_FileInfo
extracts this data for
system processing or user
interface display.

sys_EditBox text/10

img1_size Image File Size yes File size of the uploaded
image. sys_FileInfo
extracts this data for
system processing or user
interface display.

sys_EditBox integer/none

img1_type Image Mime Type MIME type of the
uploaded image.
sys_FileInfo extracts this
data which is required to
display the file in a
browser.

sys_EditBox text/256

img1_ext Image Extension yes Extension of the uploaded
image. sys_FileInfo
extracts this data which is
required to display the file
in a browser.

sys_EditBox text/10

img1_height Image Height Height of the uploaded
image. The
sys_imageInfoExtractor
pre-exit extracts this data
for system processing or
user interface display.

sys_EditBox integer/none

img1_width Image Width Width of the uploaded
image. The
sys_imageInfoExtractor
pre-exit extracts this data
for system processing or
user interface display.

sys_EditBox integer/none

img_alt Image Alt Text Alternate text shown on
screen if image does not
render.

sys_EditBox text/512

img2 Mini yes Field that uploads
thumbnail of image.

sys_file binary/max

450 Rhythmyx Rhythmyx Implementation Guide

Name Label Hidden Description Control Data Type/
StorageSize

img2_filename Mini Filename yes File name of the uploaded
thumbnail image.
sys_FileInfo extracts this
data for system processing
or user interface display.

sys_Editbox text/512

img2_size Mini File Size yes File size of the uploaded
thumbnail image.
sys_FileInfo extracts this
data for system processing
or user interface display.

sys_Editbox integer/none

img2_type Mini Mime Type yes MIME type of the
uploaded thumbnail image.
sys_FileInfo extracts this
data which is required to
display the file in a
browser.

sys_Editbox text/256

img2_ext Mini Extension yes Extension of the uploaded
thumbnail image.
sys_FileInfo extracts this
data which is required to
display the file in a
browser.

sys_Editbox text/10

img2_height Mini Height yes Height of the uploaded
thumbnail image. The
sys_imageInfoExtractor
pre-exit extracts this data
for system processing or
user interface display.

sys_EditBox integer/none

img2_width Mini Width yes Width of the uploaded
thumbnail image. The
sys_imageInfoExtractor
pre-exit extracts this data
for system processing or
user interface display.

sys_EditBox integer/none

sharedBinary Field Set Specification

Name Label Hidden Description Control Data Type/
StorageSize

item_file_attachment File: Field that uploads the
binary file.

sys_File binary/max

item_file_attachment_
filename

Binary
Filename:

 Field that stores the name
of the binary file.

sys_EditBox text/512

 Appendix V FastForward Implementation Plan 451

Name Label Hidden Description Control Data Type/
StorageSize

item_file_attachment_
size

File Size: Field that stores the size of
the binary file.

sys_EditBox integer

item_file_attachment_t
ype

File Type: Field that stores the
MIMEtype of the binary
field.

sys_EditBox text/256

item_file_attachment_
ext

File
Extension:

 Field that stores the
extension of the binary file.

sys_EditBox text/50

452 Rhythmyx Rhythmyx Implementation Guide

Content Types
This section describes the Development Plan for the Content Types included in FastForward. The
Development Plan for each Content Type includes the following information:

 A brief description of the Content Type
 The Content Type fields
 The Templates associated with the Content Type
 The Workflows associated with the Content Type
 The Communities to which the Content Type is visible

rffAutoIndex Content Type Specification
Automated lists of Content Items.

Fields

Source Name Label Control Name Occur Data
Type

Format

system sys_title System
Title:

sys_EditBox required text 255

shared shared/displaytitle Title: sys_EditBox required text 512

system sys_contentstartdate Start Date: sys_CalendarSimple required datetime none

local query Query: sys_DropDownSingle required text 2100

system sys communityid Community: sys DropDownSingle required integer none
system sys_workflowid Workflow: sys_DropDownSingle required integer none

system sys_lang Locale: sys_DropDownSingle required text 16

system sys_currentview sys_HiddenInput optional text

system sys_hibernateVersion sys_HiddenInput optional integer none

Default Values

Field Value

sys_contentstartdate sys_DateFormat(yyyy-MM-dd,)

query rffAutoPressRelease2005

sys_communityid PSXUserContext/User/SessionObject/sys_community

sys_lang PSXUserContext/User/SessionObject/sys_lang

 Appendix V FastForward Implementation Plan 453

Templates

 rffSnAutoBulletList
 rffSnAutoList

Workflows:

 Standard (Default)
 Simple

"Visible to" Communities:

 Corporate Investments
 Corporate Investments Admin
 Enterprise Investments
 Enterprise Investments Admin

rffBrief Content Type Specification
A text blurb used in conjunction with other Content Items. Not a stand-alone page.

Fields

Source Name Label Control Name Occur Data
Type

Format

system sys_title System
Title:

sys_EditBox required text 255

shared shared/displaytitle Title: sys_EditBox required text 512

system sys_contentstartdate Start Date: sys_CalendarSimple required datetime none

shared shared/callout Callout: sys_EditLive required text max

local placeholder Placeholder sys_HiddenInput required text 50

system sys_communityid Community: sys_DropDownSingle required integer none

system sys_workflowid Workflow: sys_DropDownSingle required integer none

system sys_lang Locale: sys_DropDownSingle required text 16

system sys_currentview sys_HiddenInput optional text

system sys_hibernateVersion sys_HiddenInput optional integer none

Default Values

Field Value

sys_contentstartdate sys_DateFormat(yyyy-MM-dd,)

454 Rhythmyx Rhythmyx Implementation Guide

callout Free form content goes here

sys_communityid PSXUserContext/User/SessionObject/sys_community

sys_lang PSXUserContext/User/SessionObject/sys_lang

Templates

 rffSnCallout

Workflows:

 Standard
 Simple (Default)

"Visible to" Communities:

 Corporate Investments
 Corporate Investments Admin
 Enterprise Investments
 Enterprise Investments Admin

rffCalendar Content Type Specification
An automated index of Event Content Items.

Fields

Source Name Label Control Name Occur Data
Type

Format

system sys_title System
Title:

sys_EditBox required text 255

shared shared/displaytitle Title: sys_EditBox required text 512

system sys_contentstartdate Start Date: sys_CalendarSimple required datetime none

system sys_contentexpirydate Expiration
Date:

sys_CalendarSimple optional datetime none

system sys_reminderdate Reminder
Date:

sys_CalendarSimple optional datetime none

shared shared/keywords Keywords: sys_TextArea optional text 1024

shared shared/description Description: sys_TextArea optional text 1024

shared shared/callout Callout: sys_EditLive optional text max

shared shared/body Body: sys_EditLive optional text max

local calendar_start Calendar
Date:

sys_CalendarSimple required datetime none

local query Query: sys_DropDownSingle optional text 255

 Appendix V FastForward Implementation Plan 455

Source Name Label Control Name Occur Data
Type

Format

shared shared/filename
*Note that by default
this field is hidden

File Name: sys_EditBox optional text 512

system sys_suffix Suffix: sys_EditBox optional text 50

system sys_communityid Community: sys_DropDownSingle required integer none

system sys_workflowid Workflow: sys_DropDownSingle required integer none

system sys_lang Locale: sys_DropDownSingle required text 16

system sys_currentview sys_HiddenInput optional text

system sys_hibernateVersion sys_HiddenInput optional integer none

Default Values

Field Value

sys_contentstartdate sys_DateFormat(yyyy-MM-dd,)

body Enter body here

calendar_start sys_DateFormat(yyyy-MM-dd, ,)

sys_suffix .html

sys_communityid PSXUserContext/User/SessionObject/sys_community

sys_lang PSXUserContext/User/SessionObject/sys_lang

Templates

 rffPgCalendarMonth
 rffSnCallout
 rffSnTitleCalloutLink
 rffSnTitleLink

Workflows:

 Standard (Default)
 Simple

"Visible to" Communities:

 Corporate Investments
 Corporate Investments Admin
 Enterprise Investments
 Enterprise Investments Admin

456 Rhythmyx Rhythmyx Implementation Guide

rffContacts Content Type Specification
Personal contact information used in conjunction with the Press Release Content Type.

Fields

Source Name Label Control Name Occur Data
Type

Format

system sys_title System
Title:

sys_EditBox required text 255

shared shared/displaytitle Title: sys_EditBox required text 512

local firstname First Name: sys_EditBox optional text 100

local middlename Middle
Name:

sys_EditBox optional text 100

local lastname Last Name: sys_EditBox optional text 100

local dept Dept: sys_EditBox optional text 255

local address1 Address 1: sys_EditBox optional text 200

local address2 Address 2: sys_EditBox optional text 200

local city City: sys_EditBox optional text 200

local state State sys_EditBox optional text 100

local zipcode ZIP Code: sys_EditBox optional text 10

local country Country: sys_EditBox optional text 100

local phone Phone: sys_EditBox optional text 50

local cellphone Cell Phone sys_EditBox optional text 50

local fax Fax: sys_EditBox optional text 50

local email Email: sys_EditBox optional text 200

system sys_contentstartdate Start Date: sys_CalendarSimple required datetime none

system sys_communityid Community: sys_DropDownSingle required integer none

system sys_workflowid Workflow: sys_DropDownSingle required integer none

system sys_lang Locale: sys_DropDownSingle required text 16

system sys_currentview sys_HiddenInput optional text

shared shared/webdavowner
* hidden by default

WebDAV
Owner:

sys_TextArea optional text 255

system sys_hibernateVersion sys_HiddenInput optional integer none

 Appendix V FastForward Implementation Plan 457

Default Values

Field Value

sys_contentstartdate sys_DateFormat(yyyy-MM-dd,)

sys_communityid PSXUserContext/User/SessionObject/sys_community

sys_lang PSXUserContext/User/SessionObject/sys_lang

Templates

 rffSnNameAndAddress
 rffSnNameAndEmail

Workflows:

 Standard
 Simple (Default)

"Visible to" Communities:

 Corporate Investments
 Corporate Investments Admin
 Enterprise Investments
 Enterprise Investments Admin

rffEvent Content Type specification
A full-page Content Type that include description and event date and location information.

Fields

Source Name Label Control Name Occur Data
Type

Format

system sys_title System Title: sys_EditBox required text 255

shared shared/displaytitle Title: sys_EditBox required text 512

system sys_contentstartdate Start Date: sys_CalendarSimple required datetime none

system sys_contentexpirydate Expiration
Date:

sys_CalendarSimple optional datetime none

system sys_reminderdate Reminder Date: sys_CalendarSimple optional datetime none

shared shared/keywords Keywords: sys_TextArea optional text 1024

shared shared/description Description sys_TextArea optional text 1024

shared shared/callout

Callout: sys_EditLive optional text max

458 Rhythmyx Rhythmyx Implementation Guide

Source Name Label Control Name Occur Data
Type

Format

shared sharedbody Body: sys_EditLive optional text max

local event_start Event Start
Date:

sys_CalendarSimple required datetime none

local event_end Event End
Date:

sys_CalendarSimple optional datetime none

local event_location Event Location sys_EditBox optional text 1000

local event_type Event Type: sys_DropDownSingle optional text 255

shared shared/filename File Name: sys_EditBox optional text 512

system sys_suffix Suffix: sys_EditBox optional text 50

system sys_communityid Community: sys_DropDownSingle required integer none

system sys_workflowid Workflow: sys_DropDownSingle required integer none

system sys_lang Locale: sys_DropDownSingle required text 16

system sys_currentview sys_HiddenInput optional text

shared shared/webdavowner WebDAV
Owner

sys_TextArea optional text 255

system sys_hibernateVersion sys_HiddenInput optional integer none

Default Values

Field Value

sys_contentstartdate sys_DateFormat(yyyy-MM-dd,)

body Enter body here

event_start sys_DateFormat(yyyy-MM-dd, ,)

sys_suffix .html

sys_communityid PSXUserContext/User/SessionObject/sys_community

sys_lang PSXUserContext/User/SessionObject/sys_lang

Templates

 rffPgCIEvent
 rffPgEIEvent
 rffSnCallout
 rffSnDateRange
 rffSnTitleLink
 rffSnTitleWithDate

 Appendix V FastForward Implementation Plan 459

Workflows:

 Standard (Default)
 Simple

"Visible to" Communities:

 Corporate Investments
 Corporate Investments Admin
 Enterprise Investments
 Enterprise Investments Admin

rffExternalLink Content Type Specification
A link to a non-managed page or external site.

Fields

Source Name Label Control Name Occur Data
Type

Format

system sys_title System
Title:

sys_EditBox required text 255

shared shared/displaytitle Title: sys_EditBox required text 512

system sys_contentstartdate Start Date: sys_CalendarSimple required datetime none

local url URL: sys_TextArea required text 2048

system sys_communityid Community: sys_DropDownSingle required integer none

system sys_workflowid Workflow: sys_DropDownSingle required integer none

system sys_lang Locale: sys_DropDownSingle required text 16

system sys_currentview sys_HiddenInput optional text

shared shared/webdavowner WebDAV
Owner:

sys_TextArea optional text 255

system sys_hibernateVersion sys_HiddenInput optional integer none

Default Values

Field Value

url #

sys_contentstartdate sys_DateFormat(yyyy-MM-dd,)

sys_communityid PSXUserContext/User/SessionObject/sys_community

sys_lang PSXUserContext/User/SessionObject/sys_lang

460 Rhythmyx Rhythmyx Implementation Guide

Templates

 rffSnLink

Workflows:

 Standard
 Simple (Default)

"Visible to" Communities:

 Corporate Investments
 Corporate Investments Admin
 Enterprise Investments
 Enterprise Investments Admin

rffFile Content Type Specification
A single downloadable binary with appropriate metadata (such as MIME type, size, and so forth).

Fields

Source Name Hid-
den

Label Control Name Occur Data
Type

Size

system sys_title System Title: sys_EditBox required text 255

shared shared/displaytitle Title: sys_EditBox required text 512

system sys_contentstartdate Start Date: sys_CalendarSimple required datetime none

system sys_contentexpirydate Expiration Date: sys_CalendarSimple optional datetime none

system sys_reminderdate Reminder Date: sys_CalendarSimple optional datetime none

shared sharedbinary/item_file
_attachment

 File: sys_file required binary max

shared sharedbinary/item_file
_attachment_filename

 Binary Filename: sys_EditBox required text 512

shared sharedbinary/item_file
_attachment_type

 File Type: sys_EditBox optional text 256

local file_category File Category: sys_DropDownSingle optional text 50

local filename File Name: sys_EditBox optional text 512

shared sharedbinary/item_file
_attachment_ext

yes File Extension: sys_EditBox required text 50

system sys_suffix yes Suffix: sys_EditBox optional text 50

shared sharedbinary/item_file
_attachment_size

yes File Size: sys_EditBox optional integer none

 Appendix V FastForward Implementation Plan 461

Source Name Hid-
den

Label Control Name Occur Data
Type

Size

system sys_communityid Community: sys_DropDownSingle required integer none

system sys_workflowid Workflow: sys_DropDownSingle required integer none

system sys_lang Locale: sys_DropDownSingle required text 16

system sys_currentview sys_HiddenInput optional text

shared shared/
webdavowner

yes WebDAV
Owner:

sys_textArea optional text 255

system sys_hibernateVersion sys_HiddenInput optional integer none

Default Values

Field Value

sys_contentstartdate sys_DateFormat(yyyy-MM-dd,)

sys_suffix .html

sys_communityid PSXUserContext/User/SessionObject/sys_community

sys_lang PSXUserContext/User/SessionObject/sys_lang

Templates

 rffBnBinary
 rffSnTitleLink
 rffSnTitleAndIcon

Workflows:

 Standard (Default)
 Simple

"Visible to" Communities:

 Corporate Investments
 Corporate Investments Admin
 Enterprise Investments
 Enterprise Investments Admin

462 Rhythmyx Rhythmyx Implementation Guide

rffGeneric Content Type
A full-page Content Type with built-in navigation and banners and a single Body field. This Content
Type forms the basis for all Content that takes up a full page.

Fields

Source Name Label Control Name Occur Data
Type

Format

system sys_title System
Title:

sys_EditBox required text 255

shared shared/displaytitle Title: sys_EditBox required text 512

system sys_contentstartdate Start Date: sys_CalendarSimple required datetime none

system sys_contentexpirydate Expiration
Date:

sys_CalendarSimple optional datetime none

system sys_reminderdate Reminder
Date:

sys_CalendarSimple optional datetime none

shared shared/keywords Keywords: sys_TextArea optional text 1024

shared shared/description Description: sys_TextArea optional text 1024

shared shared/callout Callout: sys_EditLive optional text max

shared shared/body Body: sys_EditLive optional text max

shared shared/filename
*Note that by default a
this field is hidden

File Name: sys_EditBox optional text 512

system sys_suffix Suffix: sys_EditBox optional text 50

system sys_communityid Community: sys_DropDownSingle required integer none

system sys_workflowid Workflow: sys_DropDownSingle required integer none

system sys_lang Locale: sys_DropDownSingle required text 16

system sys_currentview sys_HiddenInput optional text

system sys_hibernateVersion sys_HiddenInput optional integer none

local usage Usage: sys_DropDownSingle required text 1

Default Values

Field Value

sys_contentstartdate sys_DateFormat(yyyy-MM-dd,)

body Enter body here

sys_suffix .html

sys_communityid PSXUserContext/User/SessionObject/sys_community

 Appendix V FastForward Implementation Plan 463

Field Value

sys_lang PSXUserContext/User/SessionObject/sys_lang

usage N

Templates

 rffDsEIGenericSelector
 rffPgCIGeneric
 rffPgEIGeneric
 rffPgEIGenericCategoryPage
 rffSnCallout
 rffSnImageLink
 rffSnTitleCalloutAndMoreLink
 rffSnTitleCalloutLink
 rffSnTitleLink

Workflows:

 Standard (Default)
 Simple

"Visible to" Communities:

 Corporate Investments
 Corporate Investments Admin
 Enterprise Investments
 Enterprise Investments Admin

rffGenericWord Content Type Specification
A full-page Content Type with built-in navigation and banners and a single Body field, edited using
Microsoft Word.

Fields

Source Name Label Control Name Occur Data
Type

Format

system sys_title System
Title:

sys_EditBox required text 255

shared shared/displaytitle Title: sys_HiddenInput required text 512

system sys_contentstartdate Start Date: sys_CalendarSimple required datetime none

464 Rhythmyx Rhythmyx Implementation Guide

Source Name Label Control Name Occur Data
Type

Format

system sys_contentexpirydate Expiration
Date:

sys_CalendarSimple optional datetime none

system sys_reminderdate Reminder
Date:

sys_CalendarSimple optional datetime none

shared shared/keywords Keywords: sys_TextArea optional text 1024

shared shared/description Description: sys_HiddenInput optional text 1024

local PageAuthor Page
Author:

sys_HiddenInput optional text 100

shared shared/callout Callout: sys_EditLive optional text max

local bodysource Body: sys_FileWord optional binary max

local bodysource_filename File Name sys_EditBox optional text 50

shared shared/body Body: sys_HiddenInput optional text max

shared shared/filename
*Note that by default a
this field is hidden

File Name: sys_HiddenInput optional text 512

local bodysource_encoding Body Source
Encoding:

sys_HiddenInput optional text 50

system sys_suffix Suffix: sys_EditBox optional text 50

system sys_communityid Community: sys_DropDownSingle required integer none

system sys_workflowid Workflow: sys_DropDownSingle required integer none

system sys_lang Locale: sys_DropDownSingle required text 50

system sys_currentview sys_HiddenInput optional text

system sys_hibernateVersion sys_HiddenInput optional integer none

Default Values

Field Value

displaytitle Default Display Title

sys_contentstartdate sys_DateFormat(yyyy-MM-dd,)

body Enter body here

sys_suffix .html

sys_communityid PSXUserContext/User/SessionObject/sys_community

sys_lang PSXUserContext/User/SessionObject/sys_lang

Templates

 rffDsEIGenericSelector

 Appendix V FastForward Implementation Plan 465

 rffPgCIGeneric
 rffPgCIGenericWord
 rffPgEIGeneric
 rffPgEIGenericCategoryPage
 rffSnCallout
 rffSnImageLink
 rffSnTitleCalloutLink
 rffSnTitleLink

Workflows:

 Standard (Default)
 Simple

"Visible to" Communities:

 Corporate Investments
 Corporate Investments Admin
 Enterprise Investments
 Enterprise Investments Admin

rffHome
A Site home page

Fields

Source Name Label Control Name Occur Data
Type

Format

system sys_title System
Title:

sys_EditBox required text 255

shared shared/displaytitle Title: sys_EditBox required text 512

system sys_contentstartdate Start Date: sys_CalendarSimple required datetime none

system sys_contentexpirydate Expiration
Date:

sys_CalendarSimple optional datetime none

system sys_reminderdate Reminder
Date:

sys_CalendarSimple optional datetime none

shared shared/keywords Keywords: sys_TextArea optional text 1024

shared shared/description Description: sys_TextArea optional text 1024

shared shared/body Body: sys_EditLive optional text max

466 Rhythmyx Rhythmyx Implementation Guide

Source Name Label Control Name Occur Data
Type

Format

shared shared/filename
*Note that by default a
this field is hidden

File Name: sys_EditBox optional text 512

system sys_suffix Suffix: sys_EditBox optional text 50

system sys_communityid Community: sys_DropDownSingle required integer none

system sys_workflowid Workflow: sys_DropDownSingle required integer none

system sys_lang Locale: sys_DropDownSingle required text 16

system sys_currentview sys_HiddenInput optional text

local placeholder Placeholder sys_HiddenInput optional text 1

system sys_hibernateVersion sys_HiddenInput optional integer none

Default Values

Field Value

sys_contentstartdate sys_DateFormat(yyyy-MM-dd,)

body Enter body here

filename index

sys_suffix .html

sys_communityid PSXUserContext/User/SessionObject/sys_community

sys_lang PSXUserContext/User/SessionObject/sys_lang

Templates

 rffPgCIHome
 rffPgEIHome
 rffSnTitleLink

Workflows:

 Standard (Default)
 Simple

"Visible to" Communities:

 Corporate Investments
 Corporate Investments Admin
 Enterprise Investments
 Enterprise Investments Admin

 Appendix V FastForward Implementation Plan 467

rffImage Content Type specification
The Image Content Type is used to upload image files, such as .gif and .jpg files. It should not be used for
non-image binary files. The Image Content Type includes fields to upload and manage both full-size
images thumbnails.

Fields

Source Name Hid-
den

Label Control Name Occur Data
Type

Size

system sys_title System Title: sys_EditBox required text 255

shared shared/
displaytitle

 Title: sys_EditBox required text 512

system sys_contentstartdate Start Date: sys_CalendarSimple required datetime none

system sys_contentexpirydate Expiration Date: sys_CalendarSimple optional datetime none

system sys_reminderdate Reminder Date: sys_CalendarSimple optional datetime none

shared shared/
description

 Description: sys_TextArea optional text 1024

shared sharedimage/img1 Image: sys_File required binary max

shared sharedimage/
img1_filename

 Image File Name: sys_EditBox optional text 512

shared sharedimage/
img1_ext

yes Image Extension: sys_EditBox required text 50

shared sharedimage/
img1_type

 Image Mime
Type:

sys_EditBox optional text 256

shared sharedimage/
img1_height

 Image Height: sys_EditBox optional integer none

shared sharedimage/
img1_width

 Image Width: sys_EditBox optional integer none

shared sharedimage/
img_alt

 Image Alt Text: sys_EditBox required text 512

local img_category Image Category: sys_DropDownSingle optional text 50

shared sharedimage/
img1_size

yes Image File Size: sys_EditBox optional integer none

shared shared/filename yes File Name: sys_EditBox optional text 512

system sys_suffix yes Suffix: sys_EditBox optional text 50

shared sharedimage/img2 yes Mini: sys_file optional binary max

shared sharedimage/
img2_filename

yes Mini File Name: sys_EditBox optional text 512

468 Rhythmyx Rhythmyx Implementation Guide

Source Name Hid-
den

Label Control Name Occur Data
Type

Size

shared sharedimage/
img2_ext

yes Mini Extension: sys_EditBox optional text 50

shared sharedimage/
img2_type

yes Mini Mime Type: sys_EditBox optional text 256

shared sharedimage/

img2_height

yes Mini Height sys_EditBox optional integer none

shared sharedimage/
img2_width

yes Mini Width sys_EditBox optional integer none

shared sharedimage/
img2_size

yes Mini File Size: sys_EditBox optional integer none

system sys_communityid yes Community: sys_DropDownSingle required integer none

system sys_workflowid yes Workflow: sys_DropDownSingle required integer none

system sys_lang yes Locale: sys_DropDownSingle required text 16

system sys_currentview sys_HiddenInput optional text

shared shared/
webdavowner

yes WebDAV Owner: sys_textArea optional text 255

system sys_hibernateVersion sys_HiddenInput optional integer none

Default Values

Field Value

sys_contentstartdate sys_DateFormat(yyyy-MM-dd,)

sys_suffix .html

sys_communityid PSXUserContext/User/SessionObject/sys_community

sys_lang PSXUserContext/User/SessionObject/sys_lang

Templates

 rffBnImage
 rffSnFlash
 rffSnImage
 rffSnImageAndTitle

Workflows:

 Standard (Default)
 Simple

 Appendix V FastForward Implementation Plan 469

"Visible to" Communities:

 Corporate Investments
 Corporate Investments Admin
 Enterprise Investments
 Enterprise Investments Admin

rffPressRelease
A page Content Type with additional data and metadata required for press release.

Fields

Source Name Label Control Name Occur Data
Type

Size

system sys_title System
Title:

sys_EditBox required text 255

shared shared/displaytitle Title: sys_EditBox required text 512

system sys_contentstartdate Start Date: sys_CalendarSimple required datetime none

system sys_contentexpirydate Expiration
Date:

sys_CalendarSimple optional datetime none

system sys_reminderdate Reminder
Date:

sys_CalendarSimple optional datetime none

shared shared/keywords Keywords: sys_TextArea optional text 1024

shared shared/description Description: sys_TextArea optional text 1024

shared shared/callout Callout: sys_EditLive optional text max

shared shared/body Body: sys_EditLive optional text max

local pr_summary Summary: sys_EditLive optional text max

local includehome Include on
Home Page:

sys_SingleCheckBox optional text 50

local pr_type Type: sys_DropDownSingle optional text 255

shared shared/filename
*Note that by default a
this field is hidden

File Name: sys_EditBox optional text 512

system sys_suffix Suffix: sys_EditBox optional text 50

system sys_communityid Community: sys_DropDownSingle required integer none

system sys_workflowid Workflow: sys_DropDownSingle required integer none

system sys_lang Locale: sys_DropDownSingle required text 16

system sys_currentview sys_HiddenInput optional text

470 Rhythmyx Rhythmyx Implementation Guide

Source Name Label Control Name Occur Data
Type

Size

system sys_hibernateVersion sys_HiddenInput optional integer none

Default Values

Field Value

sys_contentstartdate sys_DateFormat(yyyy-MM-dd,)

body Enter body here

sys_sufix .html

sys_communityid PSXUserContext/User/SessionObject/sys_community

sys_lang PSXUserContext/User/SessionObject/sys_lang

Templates

 rffPgCIPressRelease
 rffPgEIPressRelease
 rffSnCallout
 rffSnDateAndTitleLink
 rffSnHome
 rffSnTitleCalloutLink
 rffSnTitleLink

Workflows:

 Standard (Default)
 Simple

"Visible to" Communities:

 Corporate Investments
 Corporate Investments Admin
 Enterprise Investments
 Enterprise Investments Admin

 Appendix V FastForward Implementation Plan 471

FastForward Workflows
The following sections document the implementation plan for the Simple and Standard Workflows. For
each Workflow, the implementation plan lists:

 Each State in the Workflow
 The value of the Publishable field for each State

This value determines where and when Content Items in the State will be published.
 The Sort Order of the State

This value determines the order in which the States will be listed in the Workflow.
 A table specifying the Role Assignments for the State. The table consists of the following

columns:
 Roles assigned to the State.

A Role must be assigned to the State to be able to see, access, and take action on
Content Items in that State.

 The Assignment Type for each Role

The Assignment Type defines what a user can do with Content Items in a State.

 Whether Ad Hoc assignment is enabled for each Role.

 Whether Content Items in the State will be in the Inbox View of users in the Role.

 Whether users in the Role will receive Notification e-mails sent to Role Recipients of
Notification.

 A table defining the Transitions for the State, specifying the State to which the Content Item
will be Transitioned; details about the Transition, such as whether the Transition is a Manual
Transition or an Aging Transition, whether a specific number of approvals are required or
approvals from specific Roles; and whether the Transition includes a Notifications (and if so,
the details of the Notification).

472 Rhythmyx Rhythmyx Implementation Guide

Implementation Plan for Simple Workflow
The Simple Workflow is the most basic recommended Workflow for Rhythmyx. It includes the minimum
specific set of States, with associated Transitions and State-assigned Roles. This Workflow does not
require any approvals before Content Items are published. The Simple Workflow (or minor variations
based on the Simple Workflow) is designed for simple or support Content Types. In FastForward, this
Workflow is available to all Communities.

State: Draft
 Publishable Value: Unpublish

 Sort Order: 10

 Assigned Roles

Roles Assignment
Type

Ad Hoc Show in Inbox Receive Notifications?

Web Admin Assignee No No No

Admin Assignee No No No

Author Assignee No Yes No

Editor Reader No No No

 Transitions

Name To State Details Notification

Approve Pending Manual Transition, 1 Approval No

Direct to Public Public Manual Transition, 1 Approval No

State: Pending
 Publishable Value: Unpublish

 Sort Order: 20

 Assigned Roles

Roles Assignment
Type

Ad Hoc Show in Inbox Receive Notifications?

Web Admin Assignee No No No

Admin Assignee No No No

Editor Reader No No No

QA Reader No No No

 Appendix V FastForward Implementation Plan 473

 Transitions

Name To State Details Notification

Age to Public Public Aging Transition, Triggered by Start
Date of Content Item

No

Force to Public Public Manual Transition, 1 Approval No

State: Public
 Publishable Value: Publish

 Sort Order: 30

 Assigned Roles

Roles Assignment
Type

Ad Hoc Show in Inbox Receive Notifications?

Web Admin Assignee No No No

Admin Assignee No No No

RxPublisher Reader No No No

Author Reader No No No

Editor Reader No No No

QA Assignee No No No

 Transitions

Name To State Details Notification

Age to Archive Archive Aging Transition, triggered by
Expiration Date of the Content Item

Content Archived, to
State Role Recipients
only, "A content item
has transitioned into the
archived state and will
be removed from your
web site."

Expire Archive Manual Transition, 1 Approval Content Archived, to
State Role Recipients
only, "A content item
has transitioned into the
archived state and will
be removed from your
web site."

Move to Quick Edit Quick Edit Manual Transition, 1 Approval No

474 Rhythmyx Rhythmyx Implementation Guide

Name To State Details Notification

Reminder Transition Public Aging Transition, triggered by
Reminder Date of Content Item.
Reminds administrator that a Content
Item is about to expire

Reminder Notification,
to State Role Recipients
only, "A Content Item
has been waiting for
your action."

State: Quick Edit
 Publishable Value: Ignore

 Sort Order: 40

 Assigned Roles

Roles Assignment
Type

Ad Hoc Show in Inbox Receive Notifications?

Web Admin Assignee No No No

Admin Assignee No No No

RxPublisher Reader No No No

Author Reader No No No

Editor Reader No No No

QA Assignee No No No

 Transitions

Name To State Details Notification

Return to Public Public Manual Transition, 1 Approval,
Admin only

No

State: Archive
 Publishable Value: Archive

 Sort Order: 50

 Assigned Roles

Roles Assignment
Type

Ad Hoc Show in Inbox Receive Notifications?

Web Admin Assignee No No Yes

Admin Assignee No No No

Author Reader No No No

QA Assignee No No No

 Appendix V FastForward Implementation Plan 475

 Transitions

Name To State Details Notification

Republish Public Manual Transition, 1 Approval,
Admin or Web Admin only

No

Revive Draft Manual Transition, 1 Approval No

Implementation Plan for Standard Workflow
The Standard Workflow is used for most Content Types. It requires one approval before a Content Item
can be published.

State: Draft
 Publishable Value: Unpublish

 Sort Order: 10

 Assigned Roles

Roles Assignment
Type

Ad Hoc Show in Inbox Receive Notifications?

Web Admin Assignee No No No

Admin Assignee Yes No No

Author Assignee No Yes No

Editor Reader No No No

 Transitions

Name To State Details Notification

Submit Review Manual Transition, 1 Approval Content Into Review, to
State Role Recipients;
"A content item has
transitioned into the
review state."

Direct to Public Public Manual Transition, 1 Approval,
Admin or Web_Admin only

No

476 Rhythmyx Rhythmyx Implementation Guide

State: Review
 Publishable Value: Unpublish

 Sort Order: 20

 Assigned Roles

Roles Assignment
Type

Ad Hoc Show in Inbox Receive Notifications?

Web Admin Assignee No No No

Admin Assignee Yes No No

Author Reader No No No

QA Reader No No No

Editor Assignee No Yes Yes

 Transitions

Name To State Details Notification

Approve Pending Manual Transition, 1 Approval No

Rework Draft Manual Transition, 1 Approval No

State: Pending
 Publishable Value: Unpublish

 Sort Order: 40

 Assigned Roles

Roles Assignment
Type

Ad Hoc Show in Inbox Receive Notifications?

Web Admin Assignee No No No

Admin Assignee No No No

Author Reader No No No

Editor Reader No No No

QA Reader No No No

 Transitions

Name To State Details Notification

Age to Public Public Aging Transition, Triggered by
Publish Date of Content Item

No

Force to Public Public Manual Transition, 1 Approval No

 Appendix V FastForward Implementation Plan 477

State: Public
 Publishable Value: Publish

 Sort Order: 50

 Assigned Roles

Roles Assignment
Type

Ad Hoc Show in Inbox Receive Notifications?

Web Admin Assignee No No Yes

Admin Assignee No No No

RxPublisher Reader No No No

Author Reader No No No

Editor Reader No No No

QA Assignee No No No

 Transitions

Name To State Details Notification

Age to Archive Archive Aging Transition, triggered by
Expiration Date of the Content Item

Content Archived, to
State Role Recipients
only, "A content item
has transitioned into the
archived state and will
be removed from your
web site."

Expire Archive Manual Transition, 1 Approval Content Archived, to
State Role Recipients
only, "A content item
has transitioned into the
archived state and will
be removed from your
web site."

Move to Quick Edit Quick Edit Manual Transition, 1 Approval No

Reminder Transition Public Aging Transition, triggered by
Reminder Date of Content Item.
Reminds administrator that a Content
Item is about to expire

Reminder Notification,
to State Role Recipients
only, "A Content Item
has been waiting for
your action."

478 Rhythmyx Rhythmyx Implementation Guide

State: Quick Edit
 Publishable Value: Ignore

 Sort Order: 60

 Assigned Roles

Roles Assignment
Type

Ad Hoc Show in Inbox Receive Notifications?

Web Admin Assignee No No No

Admin Assignee No No No

Author Reader No No No

Editor Reader No No No

QA Assignee No No No

 Transitions

Name To State Details Notification

Return to Public Public Manual Transition, 1 Approval No

State: Archive
 Publishable Value: Archive

 Sort Order: 70

 Assigned Roles

Roles Assignment
Type

Ad Hoc Show in Inbox Receive Notifications?

Admin Assignee No No No

Author Reader No No No

Web_Admin Assignee No No Yes

QA Assignee No No No

 Transitions

Name To State Details Notification

Republish Public Manual Transition, 1 Approval,
Admin or Web Admin only

No

Revive Draft Manual Transition, 1 Approval No

 Appendix V FastForward Implementation Plan 479

FastForward Publishing Configurations
This section details the publishing configurations of FastForward.

FastForward Sites
FastForward includes two Sites: Corporate Investments and Enterprise Investments

SiteName Corporate Investments Enterprise Investments

Description Represents the Corporate Investments
web site

Represents the Enterprise Investments web
site

Site Address URL http://127.0.0.1:9992/CI_Home http://127.0.0.1:9992/EI_Home

Site Home Page URL http://localhost:9992/Rhythmyx/assemble
r/render?sys_revision=8&sys_siteid=303
&sys_itemfilter=preview&sys_template=
rffPgCiHome&sys_contentid=551&sys_f
olderid=523&sys_context=0

http://localhost:9992/Rhythmyx/assembler/
render?sys_revision=4&sys_siteid=301&s
ys_itemfilter=preview&sys_template=rffP
gEiHome&sys_contentid=466&sys_folderi
d=301&sys_context=0

Publishing Root
Location

../CI_Home.war ../EI_Home.war

Publisher Localhost Publisher Default Port Localhost Publisher Default Port

Folder Root //Sites/CorporateInvestments //Sites/EnterpriseInvestments

Global Template CI Global Template EI Global Template

FastForward Item Filters
The following Item Filters are shipped with FastForward.

incremental
Incremental publishing filter

Rules

sys_incrementalPublish

preview
Preview Item Filter

Rules

None

Associated Authorization Type

All Content

480 Rhythmyx Rhythmyx Implementation Guide

public
Public Item Filter

Rules

sys_filterByPublishableFlag

Parameter Value

sys_FlagValues y,i

Associated Authorization Type

All Public Content

sitefolder
Allows public content that is present on the target site (either the site being published, or the site
referenced in the related content information). The content type involved must have a publishable template
on the target site.

Inherit From

Public

Rules

sys_filterBySiteFolder

Associated Authorization Type

Site Folder Content

unpublish

Rules

sys_filterByPublishableFlag

Parameter Value

sys_FlagValues u

FastForward Content Lists
FastForward is delivered with the following Content Lists

rffCiFullBinary
Site Root Full for Binary Content Types - Corporate Investments

Generator: sys_SearchGenerator

Query: select rx:sys_contentid, rx:sys_folderid from rx:rfffile,rx:rffimage,rx:rffnavimage where
jcr:path like '//Sites/CorporateInvestments%'

Template Expander: sys_SiteTemplateExpander

 Appendix V FastForward Implementation Plan 481

Site ID: 303

Item Filter: Public

Incremental: no

rffCiFullNonBinary
Site Root Full for Non-Binary Content Types - Corporate Investments

Generator: sys_SearchGenerator

Query: select rx:sys_contentid, rx:sys_folderid from
rx:rffautoindex,rx:rffbrief,rx:rffcalendar,rx:rffcontacts,rx:rffevent,rx:rffexternallink,rx:rffgenericw
ord,rx:rffgeneric,rx:rffhome,rx:rffpressrelease where jcr:path like '//Sites/CorporateInvestments%'

Template Expander: sys_SiteTemplateExpander

Site ID: 303

Item Filter: Public

Incremental: no

rffCiIncremental
Site Root Incremental - Corporate Investments

Generator: sys_SearchGenerator

Query: select rx:sys_contentid, rx:sys_folderid from nt:base where jcr:path like
'//Sites/CorporateInvestments%'

Template Expander: sys_SiteTemplateExpander

Site ID: 303

Item Filter: Public

Incremental: yes

rffEiFullBinary
Site Root Full for Binary Content Types - Enterprise Investments

Generator: sys_SearchGenerator

Query: select rx:sys_contentid, rx:sys_folderid from rx:rfffile,rx:rffimage,rx:rffnavimage where
jcr:path like '//Sites/EnterpriseInvestments%'

Template Expander: sys_SiteTemplateExpander

Site ID: 301

Item Filter: Public

Incremental: no

482 Rhythmyx Rhythmyx Implementation Guide

rffEiFullNonBinary
Site Root Full for Non-Binary Content Types - Enterprise Investments

Generator: sys_SearchGenerator

Query: select rx:sys_contentid, rx:sys_folderid from
rx:rffautoindex,rx:rffbrief,rx:rffcalendar,rx:rffcontacts,rx:rffevent,rx:rffexternallink,rx:rffgenericw
ord,rx:rffgeneric,rx:rffhome,rx:rffpressrelease where jcr:path like '//Sites/EnterpriseInvestments%'

Template Expander: sys_SiteTemplateExpander

Site ID: 301

Item Filter: Public

Incremental: no

rffEiIncremental
Site Root Incremental - EnterpriseInvestments

Generator: sys_SearchGenerator

Query: select rx:sys_contentid, rx:sys_folderid from nt:base where jcr:path like
'//Sites/EnterpriseInvestments%'

Template Expander: sys_SiteTemplateExpander

Site ID: 301

Item Filter: Public

Incremental: yes

rffEiPublishNow
Site Publish Now - Enterprise Investments

Generator: sys_SelectedItemsGenerator

Template Expander: sys_SiteTemplateExpander

Site ID: 301

default_template: unspecified - include all default Templates

Item Filter: sitefolder

Incremental: no

 483

A P P E N D I X V I

Content Editor System Definition

The following table describes the fields defined in the Content Editor System Definition that are eligible
to be included in Content Editors. By default, all of these fields are defined with the following property
values:

Treat data as binary: No

Show in Preview: Yes

Allow this field to be searched: Yes

Name Label Mandatory Comments

sys_communityid Community Id Yes Defined when the Content Item is
created and never modified afterwards.

By default, value is derived from the
currently logged Community of the
user that creates the Content Item.

Hidden by default.

If visible, options include all
Communities defined in the system.

sys_contentexpirydate Content expiration date No

sys_contentstartdate Content start date Yes Date format is yyyy-MM-dd

sys_currentview (None) Yes Hidden Input.

sys_hibernateVersion (None) Yes Hidden Input. Field only used
internally, but must be included on all
Content Editors.

sys_lang Locale ID Yes Defined when the Content Item is
created and never modified afterwards.

By default, value is derived from the
currently logged Locale of the user that
creates the Content Item.

Hidden by default.

If visible, options include all Locales
defined in the system.

sys_pathname Path name No

sys_pubdate Publication date No

sys_reminderdate Reminder date No

484 Rhythmyx Rhythmyx Implementation Guide

Name Label Mandatory Comments

sys_suffix Suffix No Defaults to ".html".

Hidden by default.

sys_title System title Yes This field cannot be empty and must be
unique within the folder.

sys_workflowid Workflow Yes Hidden by default.

The next table describes fields defined in the Content Editor System Definition that are not eligible to be
included in Content Editors. These fields are used mostly for processing of Content Items or to provide
human-readable information for ID fields defined in the system definition. The value of some of these
fields is computed at runtime. Those fields are not eligible to be searched, but, like all fields in the system
definition, can be included in Display Formats.

Name Label Searchable Comments

sys_assignees Assignees No Computed.

sys_assignmenttype Assignment type No Computed.

Valid values include:

 None
 Reader
 Assignee
 Admin

sys_assignmenttypeid Assignment type ID No Computed.

sys_checkoutstatus Checkout status No Computed.

sys_communityname Community Name Yes

sys_contentcreatedby Created by Yes Defined when the Content Item is
created and never modified
afterwards

sys_contentcreateddate Created on Yes Defined when the Content Item is
created and never modified
afterwards.

sys_contentcheckoutusername Checked out user
name

Yes

sys_contentid Content id Yes Defined when the Content Item is
created and never modified
afterwards.

sys_contentlastmodifieddate Last modified date Yes

sys_contentlastmodifier Last modified by Yes

sys_contentstateid Workflow State ID Yes

sys_contenttypeid Content Type Yes Defined when the Content Item is
created and never modified
afterwards.

 Appendix VI Content Editor System Definition 485

Name Label Searchable Comments

sys_contenttypename Content Type Name Yes

sys_folderid Folder Path Yes

sys_localename Locale Name Yes

sys_objecttype Object type No Defined when the Content Item is
created and never modified
afterwards.

sys_publishabletype Publishable status No Computed

sys_relevancy Rank Yes This field is used to provide the
relevancy ranking returned by the
external search engine. The field
value is overwritten by the search
engine at the time the search
results are processed. If no rank is
available, or if the search was
performed against the internal
engine, the value is left at -1.

sys_siteid Site Yes

sys_statename Workflow State Name Yes

sys_thumbnail Thumbnail Yes

sys_variantid Variant Yes

sys_variantname Variant Name Yes

sys_workflowname Workflow Name Yes

 487

Index

#children macro • 164
#displayfield • 131
#field • 131
#inner macro • 175
#slot macros • 156, 164

$
$rx Functions • 417, 418, 419, 420, 421, 422,

424, 427, 430

A
Absolute Aging • 44
Access Control Lists • 67, 76
Accessibility • 395
ACL • 76, See Access Control Lists
Active Assembly Tutorial • 395
Ad Hoc Assignment • 55
Administrator • 36
Aging • 44, 61, 64
Allowed Content • 120, 121
Ancestor • 281
Ancestor-sibling • 281
Approvals (on Transitions) • 62
Assembly Binding Variables • 435
Automated Index • See Automated Slots
Automated Slots • 192, 196, 198, 199

and Incremental Publishing • 192
Axis • 281

B
Binary

fields • 98
files • 144
Templates • 125, 144
treat data as • 87

Binding Variables • 434
Bindings • 141, 142, 144, 147, 151, 198, 307

variables • 307, 407, 408, 412, 433, 434, 435

C
Cascading Stylesheets • 303, 305

Cataloging • 28
Child Field Set • 250, 252
Child Table • 164

and database publishing • 382, 385
Comments • 60
Communities • 33, 37
Community Visibility • 37, 231
Content Editor • 483, See Content Type
Content Finder • 120, 121
Content List • 314, 318, 319

Database Publishing • 392
Content Type • 215, 217, 219, 220, 222, 223,

227, 235, 236, 239, 240, 241, 243, 246, 248,
250, 251, 252, 271, 272, 291
child field set • 250, 252
definition • 215
including shared and system fields • 227
overriding a shared field • 251
properties • 243

Context Variables • 180, 182
Contexts • 321, 327, 328
Controls • 87, 95, 98
CSS • See Cascading Stylesheets

D
Data bindings • See Bindings
Data Type • 87, 98
Database Publishing • 363, 364, 368, 373, 378,

382, 389, 392
Binding Variables • 373, 378, 382, 385, 433
Content List • 392
Context • 392
datasource • 368
Edition • 392
modeling and design • 363, 365
Oracle • 363
Site • 392
Templates • 125, 373, 378, 382, 385
troubleshooting • 389

Datasource • 368
Default Security Provider • 21, 23
Default Value • 87, 98
Demand Publishing • 342
Descendant • 281
Development Infrastructure • 19
Display Formats • 395
DOCTYPE • 126

E
Editions • 309, 330, 334, 342, 392

488 Index

Database Publishing • 392
Demand Publishing • 342

Escalating Notices • 64

F
FastForward Implementation Plan • 447, 448,

452, 471, 479
Fields • 81, 87, 98, 104, 105, 108, 227, 241, 251

binary • 98
Field and Field Set Editor • 85
read-only • 104
transformations • 104
validation • 104, 108
visibility • 105

Folders • 76
FROM Clause • 196

G
Global Template • 169, 173, 175, 178, 180, 182

adding Context Variables • 180, 182
adding Managed Navigation • 178

H
HTML

preparing for use in Templates • 126
search properties • 87

Hypertext Links • 147

I
Icons • 229, 243, 252
Image Links • 151
Implementation Guide • 11
Implementation Roadmap • 12, 14
Incremental Publishing • 311, 319, 330

and Automated Slots • 192, 334
Content List • 319
Incremental Publishing/Edition • 334

Initial State • 42
Inline scripting • 126
Internationalization • 395
Item Validation • 215, 248, 271

J
JSR-170 • 192, 196

K
Keywords • 291

L
Label, and internationalization • 87

Landing Page • 285
Lifecycle Analysis • 395
LIKE Operator • 196
Links • 147, 151
List Control • 95
Local Content • 175
Local Fields • 241
Local Template • 125, See Templates
Localization • 395
Location Schemes • 321, 327, 328

M
Macros • See Velocity
Managed Navigation • 74, 120, 125, 279, 281,

285, 286, 287, 290, 291, 295, 296, 297, 303,
305, 306, 307
adding to a Global Template • 178
adding to a Site • 74
bindings • 307
Cascading Stylesheets • 303, 305, 306
Customizing Look and Feel • 296, 297, 303,

305, 306, 307
maintaining • 285, 286, 287, 290, 291
Slots • 295
Templates • 296, 297, 307

Max Results • 196
Members • 28
Microsoft Word • 395
Migration • 275
Mime type • 87, 95, 98, 251
Mnemonic • 87, 98

N
Naming Conventions • 439, 440, 441, 442, 443,

444, 445
Navigation Sections

merging • 290
Merging Navigation Sections • 290
splitting • 287
Splitting Navigation Sections • 287

NavImage • 279, 281, 286
Navon • 74, 279, 285, 287, 290

Binding Variables • 307
landing page • 285
merging • 290
splitting • 287

NavTree • 67, 74, 281, 285
Notification • 46, 47, 55

 Index 489

associating with a Transition • 47
creating • 46
enabling for a Role • 55

O
Object Properties • 437
Oracle • 363
ORDER BY Clause • 196

P
Page Template • 125, 153, 156, 164
Post-processing • 271, 272
Pre-processing • 271, 272
Publish Now • See Demand Publishing
Publishing • 309, 311, 313, 314, 318, 319, 321,

327, 328, 330, 334, 337, 338, 340, 342, 344,
349, 351, 353, 356, 357, 358, 359, 360, 361,
363, 364, 365, 368, 373, 378, 382, 385, 389,
392
Database Publishing • See Database

Publishing
FTP • 356, 357, 358, 359, 360, 361
Local Web Server • 353
setting up Site • 67, 69
SFTP • 356, 359, 360, 361

Publishing Root Location • 71

R
Read-only rules • 104
Repeating Transitions • 61
Rich Text Control • 87
Roadmap • 12, 14
Roles • 24, 28

Ad Hoc assignment • 55
adding users to • 28
assigning to a State • 42
Community • 24, 33
Notification • 55
Workflow • 24, 38

Root • 281

S
Scripting • 126
Search (field properties) • 87, 98
Searches • 395
Security Provider

Default Security Provider • 21, 23
SELECT Clause • 196
Self • 281
Server Administrator • 18

Shared Fields • 81, 83, 84, 85, 87, 98
creating Shared Field Sets • 87, 98
including in a Content Editor • 227
including shared/system • 227
overriding • 251

Shared Templates • 125
Show in Preview • 87, 98
Sibling • 281
Sites • 67, 69, 71, 73

adding Managed Navigation • 74
adding Subfolders • 73
creating Site Root • 69
Database Publishing • 392
registering • 71

Slots • 113, 120, 124, 192, 196, 198, 199, 295
Automated • 113, 192, 196, 198, 199
controlling Contents • 124
Creating • 120, 121, 124
Managed Navigation • 113, 295
queries • 196, 199
Standard • 120, 121, 124

Snippets
Complex • 147, 151
Snippet Drawer • 131
Snippet Template • 127, 128, 131

Standard Slots • 120, 121, 124
States • 39, 40, 42, 57

assigning Roles • 40
creating • 39
Initial State • 42

Static Files • 180, 182
Storage size • 87, 95, 98
System Fields • 227

T
Templates • 113, 125, 126, 127, 128, 131, 139,

144, 147, 151, 153, 156, 164, 169, 173, 175,
178, 180, 182, 187, 296, 297

490 Index

binary • 144
debugging • 139
dispatch • 187, 188, 190
Global Templates • 169, 173, 175, 178, 180,

182
HTML, preparing for use in Templates • 126
Local • 125
Managed Navigation • 296, 297, 307
page • 153, 156, 164
Page without Global • 183, 184, 186
Snippet • 127, 128, 131, 147, 151
Troubleshooting • 200, 201, 202, 203, 204,

205, 206, 207, 208, 209, 211, 212, 213
Text Extraction • 275
Text, treating as binary • 87
Transformation • 104, 271
Transition • 42, 43, 44, 58, 60, See Aging

approvals • 62
comments • 60
creating • 42, 43, 44

Treat data as binary • 87
Troubleshooting • 200
Tutorial • 395
Type-specific Template • 125

U
Unpublishing • 39, 311, 314, 330, 444, 479
USERLOGIN • 21, 23
Users

adding to a Role • 28
adding to default Security Provider • 21, 23

V
Validation • 104, 108, 271
Variable Parameters • 198, 199
Variable Selectors • 305, 306
Variables • 407
Velocity • 125, 131, 156, 434
Views • 395
Visibility • 104, 105

W
Web Services • 395
WebDAV • 275, 395
WebImageFX • 249
WHERE Clause • 196
Word • See Microsoft Word
Workbench • 16

Workflow • 35, 36, 37, 38, 39, 40, 42, 43, 44, 46,
53, 54, 55, 57, 58, 60, 61, 62, 64, 471, 472,
475, See Transition, See States
associating with a Community • 37
copying • 54
creating • 36
defined • 35
Roles • 38

	About the Rhythmyx Implementation Guide
	Rhythmyx Implementation Roadmap
	Implementation in the Rhythmyx Implementation Roadmap

	Accessing Rhythmyx Client Interfaces
	Starting the Rhythmyx Workbench
	Starting the Rhythmyx Server Administrator

	Setting Up the Development Infrastructure
	Creating User Logins
	Adding Users to the USERLOGIN Table Manually
	Adding Users to the USERLOGIN Table Using a Script

	Roles
	Creating a Role
	Adding Users to a Role

	Communities
	Creating a New Community

	Workflows
	About the Workflow Administrator
	Implementing the Simple Workflow
	Creating a Workflow
	Associating a Workflow with a Community
	Adding a Role to a Workflow
	Creating a Workflow State
	Assigning a Role to a State
	Assigning an Initial State to a Workflow

	Defining Transitions for the Simple Workflow
	Implementing a Basic Manual Transition
	Implementing an Aging Transition

	Implementing Notifications
	Creating the "Content Archived" Notification
	Associating the Content Archived Notification
	Specifying Workflow Properties for Notification

	Implementing Quick Edit

	Implementing the Standard Workflow
	Copying a Workflow
	Enabling Ad Hoc Assignment and Notification for a Role Assignment
	Adding a New State to a Copied Workflow
	Updating Transitions in a Copied Workflow
	Requiring Comments on a Transition and Including User Comments on Notifications
	Implementing a Repeating Transition
	Implementing a Transition Requiring Approvals from Specific Roles
	Implementing an Escalating Aging Scenario

	Associating a Copied Workflow with Content Types

	Setting up the Publishing Site and Basic Navigation
	Creating the Site Root Folder
	Registering the Publishing Site with Rhythmyx
	Creating Site Subfolders
	Managed Navigation for the Site
	Adding a NavTree to the Site Hierarchy

	Defining Access to Folders using Access Control Lists (ACLs)

	Creating Shared Fields
	shared Field Set
	sharedimage Field Set
	The Rhythmyx Workbench Field and Field Set Editor
	Creating Shared Field Sets and Configuring Fields
	Implementing the "shared" Field Set
	Implementing a List Control
	Implementing the sharedimage Field Set

	Field Visibility, Validation, and Transform Rules
	Adding a Field Visibility Rule
	Adding a Field Validation Rule

	Creating Slots and Templates
	Creating Slots
	Creating a Standard Slot
	Controlling the Contents of a Slot

	Creating Templates
	Preparing HTML for Use in Templates
	Implementing Snippet Templates
	Creating a Text Template Object
	Adding Velocity Macros to a Text Snippet
	Debugging Templates

	Bindings
	Defining Bindings

	Implementing a Binary Template
	Complex Snippets
	Implementing Hypertext Links
	Adding a Link to an Image File

	Implementing Page Templates
	Creating the Page Template Object
	Adding Velocity Macros to a Page Template
	Using the params attribute of the #slot Macro
	Adding Child Data to a Page Template
	Adding Paging Support
	Implementing Paging Support for a Field
	Implementing Paging Support for a Slot

	Implementing Global Templates
	Creating the Global Template Object in the Rhythmyx Workbench
	Adding Local Content to the Global Template HTML
	Adding Managed Navigation to the Global Template
	Converting References to Static Files
	Defining Context Variables
	Adding a Context Variable to the Global Template

	Adding Linkback

	Implementing a Page Template Without a Global Template
	Creating a Page Template Object Without a Global Template
	Adding Velocity to the EIHome Page Template
	Adding Linkback to a Page Template

	Dispatch Templates
	Creating the Dispatch Template Object
	Defining the Dispatch Binding

	Creating an Automated Slot
	Creating a Simple Automated Slot
	Writing Automated Slot Queries
	Testing JSR-170 Queries

	Automated Slots with Variable Parameters
	Setting Up Bindings for an Automated Slot
	Adding Variables to an Automated Slot Query

	Troubleshooting Templates
	Property Not Found Error
	Macro Rendered as Plain Text
	Invalid Argument
	Problem Assembling Output: Value is Badly Formed
	Parameter Not Defined
	Lexical Error
	Velocity Code in Output
	Illegal Argument Exception: Target Template May Not be Null
	Problems Assembling Binary Outputs
	Could Not Find Method <Name> for Object [null]
	Java.lang.RuntimeException: Could not find method <name> for object <bindingfunction>
	Problem Parsing Expression
	Java.lang.NullPointerException

	Creating Content Types
	Summary of Content Types
	Generic Content Type
	Image Content Type
	Event Content Type

	Basic Content Type Creation
	Creating the Generic Content Type Object
	Including Shared and System Fields
	Specifying an Icon for the Generic Content Type
	Making the Generic Content Type Visible to Another Community
	The Generic Content Editor
	Viewing Generic Content Items

	Image Content Type Creation
	Creating the Image Content Type Object
	Including a Local Field
	Entering Content Editor Properties
	The Image Content Editor
	Viewing Image Content Items
	WebImageFX

	Creating a Content Type with a Child Field Set
	Overriding a Shared Field
	Adding a Child Field Set
	Populating a Field from an External Lookup
	Creating a Connection to an External Repository
	Creating a Lookup Application
	Populating a Control with Results from an Application

	The Event Content Editor
	Viewing Event Content Items

	Item Transformation, Validation, and Pre- and Post-Processing
	Adding Pre-processing Extensions

	Implementing Text Extraction
	Creating a Text Extraction Content Type

	Managed Navigation
	How Managed Navigation Works
	Maintaining Managed Navigation Content Items
	Navigation Communities
	Assigning a Landing Page to a Navon
	Creating a NavImage
	Assigning a NavImage to a Navon

	Splitting Navigation Sections
	Merging Navigation Items
	Reordering a Submenu
	Creating and Using Keywords

	Managed Navigation Slot
	Customizing Navigation Look and Feel
	Creating Managed Navigation Templates
	Left-Navigation Template

	Customizing Navigation CSS
	Variable Selectors
	Default Variable Selector Variables
	Using Variable Selectors

	Navon Properties

	Configuring Publishing
	Publishing Specifications
	Content Explorer's Publishing DesignTab
	Defining Content Lists
	Defining the Full Binary Content List
	Defining the Full Non-Binary Content List
	Defining the Incremental Content List

	Defining Contexts and Location Schemes
	Creating the Publish Context and its Generic Location Scheme
	Common Errors in JEXL Expressions
	Creating Additional Contexts
	Creating Additional Location Schemes

	Creating Editions
	Full Publish Edition
	Incremental Edition Edition
	Testing your Content Lists

	Testing Publishing of your Editions
	Publishing the Full Publish Edition
	Publishing the Incremental Edition

	Implementing Demand Publishing (Publish Now)
	Setting Up the Corporate Investments Site
	Copying a Site in the Content Tab
	Copying a Site Registration
	Copying Editions and Content Lists

	Setting Up Publishing to a Local Web Server
	Implementing FTP Delivery
	Setting up Standard FTP Delivery
	Defining a Site Registration for FTP Publishing
	Defining FTP Editions and Content Lists

	Setting Up Secure FTP (SFTP) Delivery
	Defining a Site Registration for SFTP Publishing
	Defining SFTP Editions and Content Lists

	Database Publishing in Rhythmyx
	Database Publishing Implementation Process
	Database Publishing Specifications
	Creating a JNDI Datasource Configuration and a Database Connection
	Creating a Database Publishing Template
	Defining Bindings to Publish Content Item Data
	Defining Bindings to Publish Local Child Data
	Defining Bindings to Publish Child Data from an External Repository
	Testing and Debugging a Database Publishing Template

	Defining the Publishing Configurations for Database Publishing

	Specialized Implementations
	Next Steps
	Appendices
	Setting Up SSL
	Enabling SSL on the Rhythmyx Server on Windows
	Enabling SSL on the Rhythmyx Server on Solaris and Linux
	Implementing a Self-signed Certificate

	Binding Variables
	System Variables
	System Functions
	$rx.asmhelper
	$rx.codec
	$rx.cond
	$rx.db
	$rx.doc
	$rx.ext
	$rx.guid
	$rx.i18n
	$rx.keyword
	$rx.link
	$rx.location
	$rx.nav
	$rx.pagination
	$rx.session
	$rx.string

	Navon Properties
	Database Publishing Variables
	Velocity Tool Extensions
	Assembly Items and Assembly Nodes

	Accessing Object Properties
	Naming Conventions
	File and Application Naming Conventions
	Design Object Naming Conventions
	Project Prefix
	Content Types
	Templates
	Slots
	Communities
	Workflows
	Sites
	Editions and Content Lists
	Context Variables
	Publishers

	FastForward Implementation Plan
	Shared Field Sets
	shared Field Set
	sharedimage Field Set
	sharedBinary Field Set Specification

	Content Types
	rffAutoIndex Content Type Specification
	rffBrief Content Type Specification
	rffCalendar Content Type Specification
	rffContacts Content Type Specification
	rffEvent Content Type specification
	rffExternalLink Content Type Specification
	rffFile Content Type Specification
	rffGeneric Content Type
	rffGenericWord Content Type Specification
	rffHome
	rffImage Content Type specification
	rffPressRelease

	FastForward Workflows
	Implementation Plan for Simple Workflow
	Implementation Plan for Standard Workflow

	FastForward Publishing Configurations
	FastForward Sites
	FastForward Item Filters
	FastForward Content Lists

	Content Editor System Definition
	Index

